专题10 圆锥曲线 -备战2020年高考数学(理)之纠错笔记系列(解析版)
- 格式:docx
- 大小:2.46 MB
- 文档页数:54
高考数学最新真题专题解析—圆锥曲线综合(新高考卷)【母题来源】2022年新高考I卷【母题题文】已知点A(2,1)在双曲线C:x2a2−y2a2−1=1(a>1)上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.(1)求l的斜率;(2)若tan∠PAQ=2√2,求△PAQ的面积.【答案】解:(1)将点A代入双曲线方程得4a2−1a2−1=1,化简得a4−4a2+4=0得:a2=2,故双曲线方程为x22−y2=1;由题显然直线l的斜率存在,设l:y=kx+m,设P(x1,y1),Q(x2,y2),则联立直线与双曲线得:(2k2−1)x2+4kmx+2m2+2=0,△>0,故x1+x2=−4km2k2−1,x1x2=2m2+22k2−1,k AP+k AQ=y1−1x1−2+y2−1x2−2=kx1+m−1x1−2+kx2+m−1x2−2=0,化简得:2kx1x2+(m−1−2k)(x1+x2)−4(m−1)=0,故2k(2m2+2)2k2−1+(m−1−2k)(−4km2k2−1)−4(m−1)=0,即(k+1)(m+2k−1)=0,而直线l不过A点,故k=−1.(2)设直线AP的倾斜角为α,由tan∠PAQ=2√2,得tan∠PAQ2=√22,由2α+∠PAQ=π,得k AP=tanα=√2,即y1−1x1−2=√2,联立y 1−1x1−2=√2,及x 122−y 12=1得x 1=10−4√23,y 1=4√2−53, 同理,x 2=10+4√23,y 2=−4√2−53, 故x 1+x 2=203,x 1x 2=689而|AP|=√3|x 1−2|,|AQ|=√3|x 2−2|, 由tan∠PAQ =2√2,得sin∠PAQ =2√23, 故S △PAQ =12|AP||AQ|sin∠PAQ =√2|x 1x 2−2(x 1+x 2)+4|=16√29. 【母题来源】2022年新高考II 卷【母题题文】.设双曲线C:x 2a 2−y2b2=1(a >0,b >0)的右焦点为F(2,0),渐近线方程为y =±√3x. (1)求C 的方程;(2)经过F 的直线与C 的渐近线分别交于A ,B 两点,点P(x 1,y 1),Q(x 2,y 2)在C 上,且x 1>x 2>0,y 1>0.过P 且斜率为−√3的直线与过Q 且斜率为√3的直线交于点M ,从下面三个条件 ① ② ③中选择两个条件,证明另一个条件成立: ①M 在AB 上; ②PQ//AB; ③|AM|=|BM|.【答案】解:(1)由题意可得ba =√3,√a 2+b 2=2,故a =1,b =√3. 因此C 的方程为x 2−y 23=1.(2)设直线PQ 的方程为y =kx +m(k ≠0),将直线PQ 的方程代入C 的方程得(3−k 2)x 2−2kmx −m 2−3=0, 则x 1+x 2=2km3−k 2,x 1x 2=−m 2+33−k 2,x 1−x 2=√(x 1+x 2)2−4x 1x 2=2√3(m 2+3−k 2)3−k 2.不段点M 的坐标为(x M ,y M ),则{y M −y 1=−√3(x M −x 1)y M −y 2=√3(x M −x 2).两式相减,得y 1−y 2=2√3x M −√3(x 1+x 2),而y 1−y 2=(kx 1+m)−(kx 2+m)=k(x 1−x 2),故2√3x M =k(x 1−x 2)+√3(x 1+x 2),解得x M =k√m 2+3−k 2+km3−k 2.两式相加,得2y M −(y 1+y 2)=√3(x 1−x 2),而y 1+y 2=(kx 1+m)+(kx 2+m)=k(x 1+x 2)+2m ,故2y M =k(x 1+x 2)+√3(x 1−x 2)+2m ,解得y M =3√m 2+3−k 2+3m3−k 2=3k x M ⋅因此,点M 的轨迹为直线y =3k x ,其中k 为直线PQ 的斜率. 若选择 ① ②:设直线AB 的方程为y =k(x −2),并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =k(x A −2)y A =√3x A,解得x A =k−√3,y A =√3kk−√3.同理可得x B =k+√3,y B =√3kk+√3.此时x A +x B =4k 2k 2−3,y A +y B =12kk 2−3.而点M 的坐标满足{y M =k(x M −2)y M =3k x M , 解得x M =2k 2k 2−3=x A +x B2,y M =6kk 2−3=y A +y B2,故M 为AB 的中点,即|MA|=|MB|. 若选择 ① ③:当直线AB 的斜率不存在时,点M 即为点F(2,0),此时M 不在直线y =3k x 上,矛盾.故直线AB 的斜率存在,设直线AB 的方程为y =p(x −2)(p ≠0), 并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =p(x A −2)y A =√3x A,解得x A =p−√3,y A =√3pp−√3.同理可得x B =p+√3,y B =−√3pp+√3.此时x M =x A +x B2=2p 2p 2−3,y M =y A +y B2=6pp 2−3.由于点M 同时在直线y =3k x 上,故6p =3k ·2p 2,解得k =p.因此PQ//AB . 若选择 ② ③:设直线AB 的方程为y =k(x −2),并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =k(x A −2)y A =√3x A解得x A =k−√3,y A =√3kk−√3.同理可得x B =k+√3,y B =√3kk+√3,设AB 的中点为C(x C ,y C ),则x C =x A +x B2=2k 2k 2−3,y C =y A +y B2=6kk 2−3.由于|MA|=|MB|,故M 在AB 的垂直平分线上,即点M 在直线y −y C =−1k (x −x C )上.将该直线与y =3k x 联立,解得x M =2k 2k 2−3=x C ,y M =6kk 2−3=y C ,即点M 恰为AB 中点,故点而在直线AB 上. 【命题意图】本题考查双曲线的标准方程和几何性质,考查直线与双曲线的位置关系,考查开放探究能力,属于压轴题.主要考查直线与双曲线的位置关系及双曲线中面积问题,属于难题【命题方向】圆锥曲线综合大题是属于高考历年的压轴题之一,难度较大,对学生的综合要求较高。
高考数学专项突破:圆锥曲线专题目录一、知识考点讲解 (2)第一部分了解基本题型 (3)第二部分掌握基本知识 (6)第三部分掌握基本方法 (8)二、知识考点深入透析 (15)三、圆锥曲线之高考链接 (18)四、基础知识专项训练 (22)五、解答题专项训练 (30)附录:圆锥曲线之高考链接参考答案 (35)附录:基础知识专项训练参考答案 (39)附录:解答题专项训练参考答案 (41)一、知识考点讲解一、圆锥曲线的考查重点:高考试卷对圆锥曲线的考查主要是:给出曲线方程,讨论曲线的基本元素和简单的几何性质;或给出曲线满足的条件,判断(或求)其轨迹;或给出直线及曲线、曲线及曲线的位置关系,讨论及其有联系的有关问题(如直线的方程、直线的条数、弦长、曲线中参数的取值范围等);或讨论直线及曲线、曲线及曲线的关系;或考查圆锥曲线及其它知识的综合(如及函数、数列、不等式、向量、导数等)等。
二、圆锥曲线试题的特点:1、突出重点知识的考查。
直线及圆的方程、圆锥曲线的定义、标准方程、几何性质等是圆锥曲线命题的根本,在对圆锥曲线的考查中,直线及圆锥曲线的位置关系仍然是重点。
2、注重数学思想及方法的考查。
3、融合代数、三角、不等式、排列组合、向量和几何等知识,在知识网络的交汇点处设计问题是高考的一大特点,由于向量具有代数和几何的双重身份,使得圆锥曲线及平面向量的整合交汇成为高考命题的热点,导数知识的引入为我们解决圆锥曲线的最值问题和切线问题提供了新的视角和方法。
三、命题重点趋势:直线及圆锥曲线或圆及圆锥曲线1、高考圆锥曲线内容重点仍然是直线及圆锥曲线或圆及圆锥曲线,直线及圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现。
2、热点主要体现在:直线及圆锥曲线的基础题;涉及位置关系的判定;轨迹问题;范围及位置问题;最值问题;存在性问题;弦长问题;对称问题;及平面向量或导数相结合的问题。
3、直线及圆锥曲线的题型涉及函数的及方程,数形结合,分类讨论,化归及转化等重要的数学思想方法,是高考必考内容之一,这类题型运算量比较大,思维层次较高,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能,对学生的能力要求也相对较高,是每年高考中平面几何部分出题的重点内容第一部分了解基本题型一、高考中常见的圆锥曲线题型1、直线及圆锥曲线结合的题型(1)求圆锥曲线的轨迹方程:这类题主要考查学生对圆锥曲线的标准方程及其相关性质,要求较低,一是出现在选择题,填空题或者解答题的第一问,较容易。
圆锥曲线是广泛应用于科学研究及生产和生活中的曲线,是高中数学中几何与代数知识的重要组成部分,是高中学生运用平面直角坐标系将曲线与方程、几何与代数融会贯通的重要载体,更是让学生体验和领悟数与形相互转化过程的重要途径,在高考数学中占有较大的比重.2020年高考数学试卷中圆锥曲线与方程专题部分的试题,着重考查圆锥曲线的定义、方程,以及简单的几何性质,立足“四基”,凸显基础性;注重对数形结合、代数方法与几何问题化归的考查,立意能力,在数与形之间彰显综合性、应用性;重视对数学运算、逻辑推理、直观想象等数学学科核心素养的考查,立旨素养,引导数学教学,实现数学学科的育人价值.同时,与往年相比,试题结构和难度保持稳定,既体现对主线内容、核心概念、数学本质考查的连贯性,也体现了对学生的人文关怀.一、考查内容分析2020年全国各地高考数学试卷共10套13份,具体为全国Ⅰ卷(文、理)、全国Ⅱ卷(文、理)、全国Ⅲ卷(文、理)、全国新高考Ⅰ卷、全国新高考Ⅱ卷、北京卷、上海卷、天津卷、江苏卷、浙江卷.有的试卷由国家统一命题,也有的由各省市自主命题,无论是延续2019年模式的全国卷和地方卷高考试题,还是2020年首次亮相的立足《普通高中数学课程标准(2017年版)》(以下简称《标准》)的全国新高考卷试题,都是重视基础,突出能力,并围绕学生的数学学科核心素养展开全方位考查.1.布局合理,考点紧扣标准2020年高考数学试卷,以圆锥曲线的定义、基本量、标准方程、简单几何性质、位置关系等核心内容为载体,重点考查学生对平面解析几何问题基本解决过程的掌握情况:用代数语言把几何问题转化为代数问题,根据对几何问题(图形)的分析,探索解决问题的思路,运用代数方法得到结论并给出代数结论合理的几何解释解决几何问题.突出考查学生运用代数方法研究上述曲线之间的基本关系、运用平面解析几何的思想解决一些简单的实际问题的能力,旨在考查学生的直观想象、数学运算、逻辑推理等数学学科核心素养.试题紧扣《标准》,以基础题、中档题为主,在总共的26道(相同试题算1道)试题中:基础题有10道、中档题有12道,占比约85%;难题4道,其中2020年高考“圆锥曲线与方程”专题命题分析段喜玲1摘要:2020年高考数学试题中的圆锥曲线与方程部分考查内容紧扣高中数学课程标准,分值、结构稳定,试题突出对“四基”的考查,注重圆锥曲线与其他知识的结合,注重对数学思维和数学学科核心素养的考查.试题体现基础性、应用性、综合性等特点,以基础知识的考查为载体,将对学生分析问题、解决问题能力的考查蕴含在解题过程之中,以实现对学生数学学科核心素养的考查.基于2020年高考试题的命题分析,给出高考复习建议,有效引导高三复习.关键词:圆锥曲线;命题分析;数形结合;数学运算收稿日期:2020-08-01基金项目:重庆市教育科学“十三五”规划2017年度规划课题——课堂教学中自主学习实施途径与策略的研究(2017-MS-13).作者简介:段喜玲(1979—),女,中学高级教师,主要从事高中数学课堂教学研究.全国新高考Ⅰ卷第22题、全国Ⅰ卷文科第21题(同理科第20题)、全国Ⅲ卷文科第21题(同理科第20题)为压轴题,布局合理.2.分值稳定,多选双填增新彩高考试题对本专题内容的考查一般是两道客观题和一道主观题,共22分,占全卷分值的14.7%,其中北京卷24分,占全卷分值的16%,而全国Ⅰ卷文科、全国Ⅱ卷文(理)科、天津卷、江苏卷、上海卷中是一道客观题和一道主观题,共17分,占全卷分值的11.3%.考查形式、题型分布及分值比例与往年基本持平,有很高的稳定性.在全国新高考Ⅰ卷、全国新高考Ⅱ卷中出现多选题,北京卷中出现两个空的填空题,使试题形式更丰富.这是新高考题型的示范,为教学指引方向.3.文、理略异,趋同铺垫新高考2020年高考数学试卷中只有全国卷分别命制了文、理科试题.由于新高考将不再区分文科和理科,因此2020年全国卷的文、理科试题从内容到难度,差异较往年减小,姊妹题数量增加.在对圆锥曲线与方程的考查中:全国Ⅰ卷文科第21题与理科第20题相同,第11题不同,文科比理科少一道填空题;全国Ⅱ卷文科第9题与全国Ⅱ卷理科第8题相同,全国Ⅱ卷文、理科试卷第19题第(1)小题相同,第(2)小题的已知条件不同,但求解相同,方法相同;全国Ⅲ卷文科第7题、第21题与全国Ⅲ卷理科第5题、第20题相同,文科第14题不同.由此可以看出,文、理科试题虽有不同之处,但同根同源,体现趋同性,明确导向新高考.4.层次分明,数形结合思想贯穿始终《标准》对圆锥曲线与方程的要求有了解和掌握两个层次:圆锥曲线的实际背景、圆锥曲线在刻画现实世界和解决实际问题中的作用、抛物线与双曲线的定义、几何图形和标准方程,以及它们的简单几何性质、椭圆与抛物线的简单应用为了解;椭圆的定义、标准方程及简单几何性质为掌握.2020年高考数学试题对圆锥曲线与方程部分的考查层次分明,基础题和中档题均以抛物线和双曲线的定义、简单几何性质、位置关系为考查内容,部分较难的中档题和难题考查椭圆定义、标准方程、几何性质、简单应用,唯独上海卷的解答题考查圆和双曲线的组合,意在打破常规、力求创新,以考查学生的创新应用意识.同时,在试题中,数形结合思想这条主线贯穿始终,方程与曲线的表述与理解、代数与几何的转化与化归在数形结合中体现得淋漓尽致.5.综合性强,凸显思想育素养圆锥曲线与方程知识是平面几何、平面向量、直线与圆的知识的延续,可以将很多知识、方法(如三角形、直线位置关系、圆、向量、角度、长度、面积、坐标、方程、不等式及函数等)有机结合起来进行考查,体现在知识的交会处命题的基本原则.例如,全国Ⅰ卷理科第20题、全国Ⅲ卷理科第20题、全国新高考Ⅰ卷第22题、北京卷第20题、江苏卷第18题、浙江卷第21题,上海卷第20题综合性都较强,对学生要求较高.同时,试题凸显了数形结合、转化与化归、函数与方程等重要思想,为培育学生的数学抽象、直观想象、数学运算、逻辑推理等数学学科核心素养做好了指挥引领作用.二、命题思路分析1.注重对基础知识和基本方法的考查圆锥曲线的定义、方程、基本量、性质、位置关系是这部分知识的常规考查内容,要求学生既要对椭圆、双曲线、抛物线的共性建构良好的知识网络,又要对每种曲线的自身特点掌握得清楚准确,特别是区分不同曲线的定义、方程、基本量关系、性质、离心率的异同,这些知识容易混淆出错.借助平面直角坐标系将几何问题坐标化、用代数方法解决几何问题是解析几何的灵魂所在,因此建立方程或方程组、整体求解、设而不求等基本方法,通性、通法也是高频考点.命题围绕这些设置试题,突出考查学生对基本概念、基础知识、基本方法的掌握.例1(全国Ⅰ卷·理15)已知F为双曲线C:x2a2-y2b2=1()a>0,b>0的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C 的离心率为.【评析】该题主要考查对双曲线的离心率、直线斜率、双曲线的几何性质的应用,属于基础题.可以用方程组求出||BF,或者联立方程求得点B的坐标,再或者直接用公式求得||BF,然后用斜率公式求得离心率.该题解法常规,在运算处理上较灵活,能够对学生数学思维、数学运算进行多角度考查.例2(全国Ⅱ卷·理19)已知椭圆C1:x 2a2+y2b2=1()a>b>0的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且||CD=43||AB.(1)求C1的离心率;(2)设M是C1与C2的公共点,若||MF=5,求C1与C2的标准方程.【评析】考查椭圆、抛物线的基本量a,b,c,p 之间的关系,相交弦长(通径),椭圆离心率,抛物线定义及方程,椭圆方程.注重学生对基本量、关系式、离心率、弦长等基础知识的掌握,要求学生弄清知识之间的区别与联系.该题求解方法简单,整体法求离心率亦常见,第(2)小题利用离心率得a,c的关系,化简方程是解答关键,很好地考查了学生的数学运算素养.除了联立方程求解外,还可以用圆锥曲线的统一定义表示焦半径,简化了运算,提高了解题速度和准确率.类似试题还有全国Ⅰ卷理科第4题、第15题,全国Ⅱ卷文科第19题,全国Ⅲ文科第14题,全国新高考Ⅰ卷第9题、第13题,全国新高考Ⅱ卷第9题,北京卷第7题、第12题、第20题,天津卷第7题,江苏卷第6题,浙江卷第8题,上海卷第10题.2.注重对圆锥曲线与其他知识的综合应用的考查在知识的交会处命题一直是高考数学命题的一大特点,圆锥曲线不仅是知识交会的高频考点,更是代数与几何的完美结合体,因此将圆锥曲线内容与章节内、章节间、学段间、学科间的知识综合,既体现知识的连贯性,又体现知识的交叉性,既考查学生学习的延续性,也考查学生的综合能力.2020年高考数学试题中综合考查了圆锥曲线的方程、离心率、渐近线、弦长、交点,以及三角形的面积、周长等,综合考查圆锥曲线与向量、不等式、函数、解三角形的交会,其中不乏对特殊三角形、圆、线段中垂线等初中平面几何知识的考查,以及几何性质与代数表达式之间互相转化的考查,能有效检测学生的思维能力与水平.例3(全国Ⅲ卷·理11)设双曲线C:x2a2-y2b2=1 ()a>0,b>0的左、右焦点分别为F1,F2,离心率为5.P是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a的值为().(A)1(B)2(C)4(D)8【评析】该题综合考查双曲线的定义、离心率、焦点直角三角形、三角形面积,要求学生不仅熟练掌握知识,还要熟悉求解方程组的方法,是一道题型常见、思路常规的综合性试题.例4(江苏卷·18)如图1,在平面直角坐标系xOy 中,已知椭圆E:x24+y23=1的左、右焦点分别为F1,F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.(1)求△AF1F2的周长;(2)在x轴上任取一点P,直线AP与椭圆E的右准线相交于点Q,求OP⋅QP的最小值;(3)设点M在椭圆E上,记△OAB与△MAB的面积分别为S1,S2,若S2=3S1,求点M的坐标.【评析】考查椭圆的定义、直线与椭圆相交、向量数量积和点到直线的距离.第(2)小题中数量积的最值问题考查函数与方程思想,将最值问题转化为函数问题求解的关键点是选取变量,明晰点P,Q的主、被动关系,特别是OP的纵坐标为0,即点Q的纵坐标对数量积没有影响,从而可以不求点Q的纵坐标,这是降低该题难度的关键点,需要学生有极强的数学运算素养.第(3)小题考查三角形的面积关系,实质是考查点到直线的距离,需要学生看到问题的本质,即当三角形的一边为定值时,面积取决于这一边上的高,进一步将高的值转化为椭圆上的点到直线的距离,即直线和椭圆的位置关系.这一系列问题将圆锥曲线与三角形、向量、函数、直线,以及距离流畅地结合起来,在综合考查学生基础知识的同时,考查学生灵活运用转化与化归思想以及数形结合思想解决问题的能力.例5(全国Ⅲ卷·理20)已知椭圆C :x 225+y 2m 2=1()0<m <5的离心率为,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且||BP =||BQ ,BP ⊥BQ ,求△APQ 的面积.【评析】该题是以直线与椭圆相交成图,考查三角形面积的综合问题,试题表述简洁,脉络清晰,是常规题型,但是试题却不易找到解题突破口.利用垂直关系证得三角形全等,然后用三角形全等求得关键点P ,Q 的坐标是求解该题的切入点,要求学生认识知识的联系性,将圆锥曲线与初中三角形知识自然地糅合在一起,考查学生对初中所学知识的延伸及初高中知识的融合应用,对学生的跨学段知识综合应用能力要求较高.此类型的试题还有全国Ⅰ卷文科第11题、全国Ⅱ卷理科第8题、全国Ⅲ卷文科第21题、全国新高考Ⅱ卷第21题、天津卷第18题、上海卷第10题.3.注重对数学思维、核心素养的考查《标准》对高考数学命题提出明确要求:注重对学生数学学科核心素养的考查,处理好数学学科核心素养与知识技能的关系,充分考虑对教学的积极引导作用;要适度增加试题的思维量,应特别关注数学学习过程中思维品质的形成.“一核”“四层”“四翼”的新高考评价体系也明确核心素养、关键能力等考查内容和要求.2020年高考圆锥曲线与方程的相关试题,以此为依据,注重考查数学思想方法、理性思维和学科核心素养,考查学生通过平面直角坐标系将图形定位、量化,利用代数(方程、方程组)研究平面图形的几何性质,将对数形结合思想、转化与化归思想、函数与方程思想、分类讨论思想的考查不动声色地浸润在试题里,使学生在解题中充分展示分析问题、解决问题的能力,同时注重对数学抽象、逻辑推理、数学运算、直观想象等数学学科核心素养的考查,对数学教学起到很好的引导作用.例6(全国新高考Ⅰ卷·22)已知椭圆C :x 2a2+y 2b2=1()a >b >0的离心率为,且过点A ()2,1.(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得||DQ 为定值.【评析】该题为全国新高考Ⅰ卷的压轴题,第(2)小题是圆锥曲线中的定点、定值问题,特别之处是并不知道定点Q 的具体位置,需要学生自己寻找,增加了试题的难度.首先,学生要分析点M ,N 在椭圆上运动的过程中的变量和不变量,找出直线MN 过定点E ;其次,求得定点E 的坐标,并能在由点A ,D ,E 构成的直角三角形中找到定长.该题不仅在思维上起点高、难度大,在运算上亦是如此,设点、设线还需分类讨论验证,需要学生具有超强的运算功底.在解答过程中,充分体现对通性、通法的重视,对技巧的弱化,完整展现学生分析问题、解决问题的能力,对学生数学抽象、直观想象、逻辑推理、数学运算等数学学科核心素养有充分的检验作用.由于知识和思维跨度较大,数学运算繁杂,对学生综合能力要求较高,真正考查学生用数学眼光观察世界、用数学思维思考世界、用数学语言表达世界的能力.例7(上海卷·20)如图2,双曲线C 1:x 24-y 2b2=1,圆C 2:x 2+y 2=4+b 2()b >0在第一象限交点为A ,A ()x A ,y A ,曲线Γ:ìíîïïx 24-y 2b 2=1,x 2+y 2=4+b2()||x >x A .图2(1)若x A =6,求b ;(2)若b =5,C 2与x 轴交点记为F 1,F 2,P 是曲线Γ上一点,且在第一象限,并满足||PF 1=8,求∠F1PF2;(3)过点Sæèçöø÷0,2+b22且斜率为-b2的直线l交曲线Γ于M,N两点,用b的代数式表示OM⋅ON,并求出OM⋅ON的取值范围.【评析】该题是以双曲线系、圆系的交点为动点的轨迹问题,打破常规命题背景,有创新意识和应用意识.考查学生对曲线与方程的定义、双曲线的定义、直线与圆的位置关系、直线与直线的位置关系、向量数量积、函数最值的理解和综合应用.因为含有参数b使得轨迹不为学生所熟悉,所以要求学生对曲线方程的定义有较深的理解.第(3)小题中的直线l 与圆始终相切,切点为M是关键点,并观察直线l与一条渐近线平行,对学生的直观想象、逻辑推理素养要求较高,是一道以能力立意、考查素养、有创新意识的好题.此类型试题还有全国Ⅰ卷理科第20题、文科第21题,浙江卷第21题.三、复习建议通过对2020年高考圆锥曲线与方程试题的分析,可以看到试题对从基础知识、基本方法到运用基本数学思想解决数学问题的思维过程的考查,都体现了注重“四基”、能力立意、突出思维、落实素养的特点.因此,在高三复习过程中,要通过教学注重数学思想的渗透和学生思维能力的培养,让数学学科核心素养在课堂教学中生根发芽、开花结果.1.掌握知识,明辨异同,构建网络基础知识不仅是高考考查的重点,也是教学重点.高三复习首当其冲就是要把知识点弄清、理透、掌握牢.圆锥曲线部分的基本知识点有圆锥曲线的定义、标准方程、几何性质、位置关系,每个知识点所包含的内容很丰富.例如,圆锥曲线的定义,既有各自的定义,又有统一定义,还有其他方式的定义.又如,标准方程有焦点在x轴和焦点在y轴等.这些知识虽然靠记忆,但是学生容易混淆,因此复习时要让学生明晰同一知识点之间的联系与区别、圆锥曲线与圆锥曲线之间的联系与区别,牢固掌握基础知识.同时,复习不是知识点的简单重复与堆砌,复习是立足章节对所学知识的横向再认识,是站在数学学科角度对所学知识的纵向再认识,要高站位地建构横纵知识结构网络.2.注重通法,提升运算,渗透思想做题是复习课上必不可少的教学活动,《标准》在命题原则中明确提出:注重数学本质、通性和通法、淡化解题技巧.复习的例题、习题、试题要多选用通性、通法求解的题目,让学生熟练掌握通性、通法.圆锥曲线部分的内容特点决定了解题需要学生具有超强的运算能力,常用的运算方法、运算技巧、运算素养都需要在做题中提升.高中的运算不仅仅是简单的数的运算,更多的是式的运算,需要在理解运算对象的基础上,探究运算思路、选择运算方法、求得运算结果,即数学运算素养.这需要依赖教师在教学中加强对学生运算能力的培养,不能只靠学生自己算,要重视学生在求解运算中的过程设计,如整体解法、方程思想、设而不求、点差法、同理法等.运算的速度、准确度在很大程度上决定解析几何试题的得分情况,提升运算能力、培养数学运算素养是圆锥曲线部分复习的重点和难点.教学中要有意识渗透数学思想,方程与函数思想、数形结合思想、转化与化归思想、分类讨论思想等在解题中贯穿始终,能很好地体现理性思维.3.提高能力,增强思维,培育素养能力立意,关注思维,培育核心素养是新高考命题的宗旨,也是高三复习的风向标.能力、思维、素养的培养都“润物细无声”地存在于教学过程之中,因此教学要从培育核心素养的角度思考复习方案和教学设计,并深入了解学生学习的困难,关注一题多解和多题一解的内容与题目,体现灵活性,放手让学生大胆尝试、引导学生有效反思,有助于强化学生思维,培养学生在面对新的问题情境时运用数学概念对问题进行抽象,用数学符号表达,用逻辑推理分析问题、解决问题的能力,让学生真正做到用数学眼光观察世界、用数学思维思考世界、用数学语言表达世界,以达到提炼学生思维品质,培养学生学科核心素养的课程目标.4.克服畏惧,锻炼意志,增强信心在高考数学试卷中,本专题试题繁冗的运算、大容量的思维使得学生有畏惧心理,很多学生给自己的定位是只做解答题第(1)小题,因此纵使有些试卷的解答题不难,考查结果却差强人意.例如,全国Ⅱ卷理科第19题,仍有很多学生没有做第(2)小题.高考不仅是对知识能力的检测,也是对心理素质的检测,复习中不能根据经验或规律,让学生将圆锥曲线与方程问题定性为难题而轻易舍弃,而要以此为契机培养学生面对较繁杂问题时耐心分析、善于转化的能力与勇气,要有意识选择一些基础题和中档题,引导学生在求解的过程中磨炼意志和耐心,克服畏惧心理,以平常心对待,增强“只要有足够的时间,我一定会做出来”的信念和信心.四、模拟题欣赏1.已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左、右焦点,点M 在E 上,若△MF 1F 2是直角三角形,且sin ∠MF 1F 2=12,则双曲线E 的离心率为().(A )3-1(B )3(C )3+1(D )3或3+1答案:D.2.设F 为抛物线C :y 2=3x 的焦点,过焦点F 的动直线交C 于A ,B 两点,则 OA ⋅OB 的值为.答案:-2716.3.若F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1()a >b >0的左、右焦点,且离心率为12,若过右焦点F 2的直线与曲线C 交于A ,B 两点,求当△ABF 1面积的最大值为12时的椭圆标准方程.答案:x 216+y 212=1. 4.已知过椭圆x 24+y 2=1左顶点A 的直线l 交椭圆于另一点B ,以AB 为直径的圆过椭圆的上顶点,求直线l 的方程.答案:3x +10y +6=0.5.在平面直角坐标系xOy 中,已知1是椭圆C :x 2a 2+y 2b2=1()a >b >0的右焦点,离心率为,过点F 1且垂直于x 轴的直线交椭圆C 于P ,Q 两点,||PQ =(1)求椭圆C 的标准方程;(2)若过椭圆左焦点F 2且斜率为k ()k >0的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE 交椭圆C 于点M ,交直线x =-3于点N .求证:||OE ,||OM ,||ON 构成等比数列.答案:(1)x 23+y 22=1;(2)略.参考文献:[1]中华人民共和国教育部制定.普通高中数学课程标准(2017年版)[M ].北京:人民教育出版社,2018.[2]吴彤,徐明悦.2019年高考“圆锥曲线与方程”专题命题分析[J ].中国数学教育(高中版),2019(9):24-27.[3]任佩文,张强,霍文明.2018年高考“圆锥曲线与方程”专题命题分析[J ].中国数学教育(高中版),2018(7/8):122-128.[4]范美卿,张晓斌.2016年高考“直线和圆”专题命题分析[J ].中国数学教育(高中版),2016(9):2-8.。
圆锥曲线专题:最值与范围问题的6种常见考法一、圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:1、几何法:通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;2、代数法:把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.二、最值问题的一般解题步骤三、参数取值范围问题1、利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;2、利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;3、利用隐含的不等关系建立不等式,从而求出参数的取值范围;4、利用已知的不等关系构造不等式,从而求出参数的取值范围;5、利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.题型一距离与长度型最值范围问题【例1】已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,焦距为2,点E 在椭圆上.当线段2EF 的中垂线经过1F 时,恰有21cos EF F ∠.(1)求椭圆的标准方程;(2)直线l 与椭圆相交于A 、B 两点,且||2AB =,P 是以AB 为直径的圆上任意一点,O 为坐标原点,求||OP 的最大值.【答案】(1)2212x y +=;(2)max ||OP 【解析】(1)由焦距为2知1c =,连结1EF ,取2EF 的中点N ,线段2EF 的中垂线经过1F 时,1||22EF c ∴==,221212cos ,.1,F N EF F F N F F ∠∴∴-2122,2EF a EF EF a ∴=-∴=+=∴由所以椭圆方程为2212x y +=;(2)①当l 的斜率不存在时,AB 恰为短轴,此时||1OP =;②当l 的斜率存在时,设:l y kx m =+.联立2212x y y kx m ⎧+=⎪⎨⎪=+⎩,得到222(21)4220k x kmx m +++-=,∴△2216880k m =-+>,122421km x x k -+=+,21222221m x x k -=+.21AB x x =-=2==,化简得2222122k m k +=+.又设M 是弦AB 的中点,121222()221my y k x x m k +=++=+∴()2222222241,,||212121km m k M OM k k k m -+⎛⎫= ⎪⎝⎭+⋅++,∴()()()222222222412141||22212221k k k OM k k k k +++=⋅=++++,令2411k t += ,则244||43(1)(3)4t OM t t t t===-++++∴||1OM =- (仅当t =,又||||||||1OP OM MP OM +=+2k =时取等号).综上:max ||OP =【变式1-1】已知抛物线21:4C y x =的焦点F 也是椭圆22222:1(0)x y C a b a b+=>>的一个焦点,1C 与2C 的公共弦长为3.(1)求椭圆2C 的方程;(2)过椭圆2C 的右焦点F 作斜率为(0)k k ≠的直线l 与椭圆2C 相交于A ,B 两点,线段AB 的中点为P ,过点P 做垂直于AB 的直线交x 轴于点D ,试求||||DP AB 的取值范围.【答案】(1)22143x y +=;(2)1(0,)4【解析】(1)抛物线21:4C y x =的焦点F 为(1,0),由题意可得2221c a b =-=①由1C 与2C 关于x 轴对称,可得1C 与2C 的公共点为2,33⎛± ⎝⎭,可得2248193a b +=②由①②解得2a =,b ,即有椭圆2C 的方程为22143x y+=;(2)设:(1)l y k x =-,0k ≠,代入椭圆方程,可得2222(34)84120k x k x k +-+-=,设1(A x ,1)y ,2(B x ,2)y ,则2122834kx x k +=+,212241234k x x k -=+,即有()312122286223434k ky y k x x k k k k -+=+-=-=++,由P 为中点,可得22243()3434k kP k k -++,,又PD 的斜率为1k -,即有222314:3434k k PD y x k k k ⎛⎫--=-- ++⎝⎭,令0y =,可得2234k x k=+,即有22034k D k ⎛⎫⎪+⎝⎭可得2334PD k ==+又AB ==2212(1)34k k +=+,即有DP AB =,由211k +>,可得21011k <<+,即有104<,则有||||DP AB 的取值范围为1(0,)4.【变式1-2】已知曲线C 上任意一点(),P x y2=,(1)求曲线C 的方程;(2)若直线l 与曲线C 在y 轴左、右两侧的交点分别是,Q P ,且0OP OQ ⋅=,求22||OP OQ +的最小值.【答案】(1)2212y x -=;(2)8【解析】(1)设())12,F F ,2=,等价于12122PF PF F F -=<,∴曲线C 为以12,F F 为焦点的双曲线,且实轴长为2,焦距为故曲线C 的方程为:2212y x -=;(2)由题意可得直线OP 的斜率存在且不为0,可设直线OP 的方程为()0y kx k =≠,则直线OQ 的方程为1=-y x k ,由2212y x y kx ⎧-=⎪⎨⎪=⎩,得222222222x k k y k ⎧=⎪⎪-⎨⎪=⎪-⎩,所以()2222221||2k OP x y k+=+=-,同理可得,()2222212121||1212k k OQ k k⎛⎫+ ⎪+⎝⎭==--,所以()()()22222222211111||||22121k k k OP OQ k k -+-++===++()()22222222112222228||||OQ OP OP OQ OP OQOP OQ OP OQ ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥+=++=++≥+= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,当且仅当2OP OQ ==时取等号,所以当2OP OQ ==时,22||OP OQ +取得最小值8.【变式1-3】已知抛物线()2:20E x py p =>的焦点为F ,过点F 且倾斜角为3π的直线被E 所截得的弦长为16.(1)求抛物线E 的方程;(2)已知点C 为抛物线上的任意一点,以C 为圆心的圆过点F ,且与直线12y =-相交于,A B两点,求FA FB FC ⋅⋅的取值范围.【答案】(1)24x y =;(2)[)3,+∞【解析】(1)由抛物线方程得:0,2p F ⎛⎫ ⎪⎝⎭,可设过点F 且倾斜角为3π的直线为:2py =+,由222p y x py⎧=+⎪⎨⎪=⎩得:220x p --=,由抛物线焦点弦长公式可得:)12122816y y p x x p p ++=++==,解得:2p =,∴抛物线E 的方程为:24x y =.(2)由(1)知:()0,1F ,准线方程为:1y =-;设AFB θ∠=,圆C 的半径为r ,则2ACB θ∠=,FC CA CB r ===,1133sin 2224AFBSFA FB AB AB θ∴=⋅=⋅=,又2sin AB r θ=,3FA FB r ∴⋅=;由抛物线定义可知:11c CF y =+≥,即1r ≥,333FA FB FC r ∴⋅⋅=≥,即FA FB FC ⋅⋅的取值范围为[)3,+∞.题型二面积型最值范围问题20y -=与圆O 相切.(1)求椭圆C 的标准方程;(2)椭圆C 的上顶点为B ,EF 是圆O 的一条直径,EF不与坐标轴重合,直线BE 、BF 与椭圆C 的另一个交点分别为P 、Q ,求BPQ 的面积的最大值及此时PQ 所在的直线方程.【答案】(1)2219x y +=;(2)()max278BPQ S=,PQ 所在的直线方程为115y x =±+【解析】20y -=与圆O相切,则1b =,由椭圆的离心率223c e a ==,解得:29a =,椭圆的标准方程:2219x y +=;(2)由题意知直线BP ,BQ 的斜率存在且不为0,BP BQ ⊥,不妨设直线BP 的斜率为(0)k k >,则直线:1BP y kx =+.由22119y kx x y =+⎧⎪⎨+=⎪⎩,得22218911991k x k k y k -⎧=⎪⎪+⎨-⎪=⎪+⎩,或01x y =⎧⎨=⎩,所以2221819,9191k k P k k ⎛⎫-- ⎪++⎝⎭.用1k -代替k ,2229189,9k k Q k k ⎛⎫-+ ⎝+⎪⎭则21891k PB k ==+2189BQ k==+,22222111818162(1)22919(9)(19)BPQ k k k S PB BQ k k k k +=⋅=⋅=++++△342221162()162()99829982k k k k k k k k ++==++++,设1k k μ+=,则21621622764829(2)89BPQ S μμμμ∆==≤+-+.当且仅当649μμ=即183k k μ+==时取等号,所以()max278BPQ S=.即21128(()49k k kk-=+-=,1k k -=直线PQ的斜率222222291911191918181010919PQk k k k k k k k k k k k k ---+-⎛⎫++===-= ⎪⎝⎭--++PQ所在的直线方程:1y =+.【变式2-1】在平面直角坐标系xOy 中,ABC 的周长为12,AB ,AC 边的中点分别为()11,0F -和()21,0F ,点M 为BC 边的中点(1)求点M 的轨迹方程;(2)设点M 的轨迹为曲线Γ,直线1MF 与曲线Γ的另一个交点为N ,线段2MF 的中点为E ,记11NF O MF E S S S =+△△,求S 的最大值.【答案】(1)()221043x y y +=≠;(2)max 32S =【解析】(1)依题意有:112F F =,且211211262MF MF F F ++=⨯=,∴121242MF MF F F +=>=,故点M 的轨迹C 是以()11,0F -和()21,0F 为焦点,长轴长为4的椭圆,考虑到三个中点不可共线,故点M 不落在x 上,综上,所求轨迹方程:()221043x y y +=≠.(2)设()11,M x y ,()22,N x y ,显然直线1MF 不与x 轴重合,不妨设直线1MF 的方程为:1x ty =-,与椭圆()221043x y y +=≠方程联立整理得:()2234690t y ty +--=,()()22236363414410t t t ∆=++=+>,112634t y y t +=+,1129034y y t =-<+,11111122NF O S F y y O ==△,112122211112222MF E MF F S S F F y y ==⋅=△△,∴()()1112122111Δ22234NF O MF E S S S y y y y t =+=+=-=⋅=+△△令()2344u t u =+≥,则()S u ϕ====∵4u ≥,∴1104u <≤,当114u =,即0=t 时,∴max 32S =,∴当直线MN x ⊥轴时,∴max 32S =.【变式2-2】已知双曲线()222210x y a a a-=>的右焦点为()2,0F ,过右焦点F 作斜率为正的直线l ,直线l 交双曲线的右支于P ,Q 两点,分别交两条渐近线于,A B 两点,点,A P 在第一象限,O 为原点.(1)求直线l 斜率的取值范围;(2)设OAP △,OBP ,OPQ △的面积分别是OAP S △,OBP S △,OPQS ,求OPQ OAP OBPS S S ⋅△△△的范围.【答案】(1)()1,+∞;(2)).【解析】(1)因为双曲线()222210x y a a a-=>的右焦点为()2,0F ,故2c =,由222c a a =+得22a =,所以双曲线的方程为,22122x y -=,设直线l 的方程为2x ty =+,联立双曲线方程得,()222222121021420Δ0120t x y t y ty t x ty y y ⎧⎧-≠⎪-=⎪⇒-++=⇒>⇒<⎨⎨=+⎪⎪⋅<⎩⎩,解得01t <<,即直线l 的斜率范围为()11,k t=∈+∞;(2)设()11,P x y ,渐近线方程为y x =±,则P 到两条渐近线的距离1d ,2d 满足,22111212x yd d-⋅==而21221AAxy x tx ty yt⎧⎧=⎪⎪=⎪⎪-⇒⎨⎨=+⎪⎪=⎪⎪-⎩⎩,OA==21221BBxy x tx ty yt⎧⎧=⎪⎪=-⎪⎪+⇒⎨⎨=+-⎪⎪=⎪⎪+⎩⎩,OB==所以12122112221OAP OBPS S OA d OB d d dt⋅=⋅⋅⋅=-△△由()2222214202x y t y tyx ty⎧-=⇒-++=⎨=+⎩,12OPQ OFP OFQ P QS S S OF y y=+=-△△△所以,OPQOAP OBPSS S=⋅△△△,∵01t<<,∴)2OPQOAP OBPSS S∈⋅△△△.【变式2-3】已知抛物线()2:20E y px p=>的焦点为F,P为E上的一个动点,11,2⎛⎫⎪⎝⎭Q与F在E的同一侧,且PF PQ+的最小值为54.(1)求E的方程;(2)若A点在y轴正半轴上,点B、C为E上的另外两个不同点,B点在第四象限,且AB,OC互相垂直、平分,求四边形AOBC的面积.(人教A版专题)【答案】(1)2y x=;(2)【解析】(1)作出E的准线l,方程为2px=-,作PR l⊥于R,所以PR PF=,即PR PQ+的最小值为54,因为11,2⎛⎫⎪⎝⎭Q与F在E的同一侧,所以当且仅当P,Q,R三点共线时PR PQ+取得最小值,所以5124p+=,解得0.5p=,所以E的方程为2y x=;(2)因为AB,OC互相垂直、平分,所以四边形AOBC是菱形,所以BC x⊥轴,设点()0,2A a,所以2BC a=,由抛物线对称性知()2,B a a-,()2,C a a,由AO OB =,得2a=a =所以菱形AOBC 的边AO =23h a ==,其面积为3S AO h =⋅==题型三坐标与截距型最值范围问题【例3】已知双曲线C :()222210,0x y a b a b-=>>过点(),渐近线方程为12y x =±,直线l 是双曲线C 右支的一条切线,且与C 的渐近线交于A ,B 两点.(1)求双曲线C 的方程;(2)设点A ,B 的中点为M ,求点M 到y 轴的距离的最小值.【答案】(1)2214x y -=;(2)2【解析】(1)由题设可知2281112a b b a ⎧-=⎪⎪⎨⎪=⎪⎩,解得21a b =⎧⎨=⎩则C :2214x y -=.(2)设点M 的横坐标为0M x >当直线l 斜率不存在时,则直线l :2x =易知点M 到y 轴的距离为2M x =﹔当直线l 斜率存在时,设l :12y kx m k ⎛⎫=+≠± ⎪⎝⎭,()11,A x y ,()22,B x y ,联立2214x y y kx m ⎧-=⎪⎨⎪=+⎩,整理得()222418440k x kmx m -+++=,()()222264164110k m k m ∆=--+=,整理得2241k m =+联立2204x y y kx m ⎧-=⎪⎨⎪=+⎩,整理得()22241840k x kmx m -++=,则122288841km km k x x k m m+=-=-=--,则12402Mx x kx m +==->,即0km <则222216444Mk x m m==+>,即2M x >∴此时点M 到y 轴的距离大于2;综上所述,点M 到y 轴的最小距离为2.【变式3-1】若直线:l y =22221(0,0)x y a b a b -=>>的一个焦点,且与双曲线的一条渐近线平行.(1)求双曲线的方程;(2)若过点B (0,b )且与x 轴不平行的直线和双曲线相交于不同的两点M ,N ,MN 的垂直平分线为m ,求直线m 与y 轴上的截距的取值范围.【答案】(1)2213x y -=;(2)(4,)+∞.【解析】(1)直线323:33l y =-过x 轴上一点(2,0),由题意可得2c =,即224a b +=,双曲线的渐近线方程为b y x a=±,由两直线平行的条件可得b a =1a b ==,即有双曲线的方程为2213x y -=.(2)设直线1(0)y kx k =+≠,代入2213x y -=,可得22(13)660k x kx ---=,设1122(,),(,)M x y N x y ,则12122266,1313k x x x x k k +==--,MN 中点为2231,1313kk k ⎛⎫ --⎝⎭,可得MN 的垂直平分线方程为221131313k y x k k k ⎛⎫-=-- ⎪--⎝⎭,令0x =,可得2413y k =-,由223624(13)0k k ∆=+->,解得232k <,又26031k <-,解得231k <,综上可得,2031k <<,即有2413k -的范围是(4,)+∞,可得直线m 与y 轴上的截距的取值范围为(4,)+∞.【变式3-2】已知动圆C 过定点(2,0)A ,且在y 轴上截得的弦长为4,圆心C 的轨迹为曲线Γ.(1)求Γ的方程:(2)过点(1,0)P 的直线l 与F 相交于,M N 两点.设PN MP λ=,若[]2,3λ∈,求l 在y 轴上截距的取值范围.【答案】(1)24y x =;(2)⎡-⎣【解析】(1)设(,)C x y ,圆C 的半径为R ,则()()22222220R x x y =+=-+-整理,得24y x=所以Γ的方程为24y x =.(2)设1122(,),(,)M x y N x y ,又(1,0)P ,由PN MP λ=,得()()22111,1,x y x y λ-=--21211(1)x x y y λλ-=-⎧∴⎨=-⎩①②由②,得12222y y λ=,∵2211224,4y x y x ==∴221x x λ=③联立①、③解得2x λ=,依题意有0λ>(2,N N ∴-或,又(1,0)P ,∴直线l 的方程为())11y x λ-=-,或())11y x λ-=--,当[2,3]k ∈时,l 在y轴上的截距为21λ-或21λ--,21=[2,3]上是递减的,21λ≤≤-,21λ-≤-≤-∴直线l 在y轴上截距的取值范围为⎡--⎣.【变式3-3】已知两个定点A 、B 的坐标分别为()1,0-和()1,0,动点P 满足AP OB PB ⋅=(O 为坐标原点).(1)求动点P 的轨迹E 的方程;(2)设点(),0C a 为x 轴上一定点,求点C 与轨迹E 上点之间距离的最小值()d a ;(3)过点()0,1F 的直线l 与轨迹E 在x 轴上方部分交于M 、N 两点,线段MN 的垂直平分线与x 轴交于D 点,求D 点横坐标的取值范围.【答案】(1)24y x =;(2)(),22a a d a a ⎧<⎪=⎨≥⎪⎩;(3)()3,+∞【解析】(1)设(),P x y ,()1,AP x y =+,()1,0OB =,()1,PB x y =--,()1101AP OB x y x ⋅=+⨯+⨯=+,B P =AP OB PB ⋅=,则1x +,所以2222121x x x x y ++=-++,即24y x =.(2)设轨迹E :24y x =上任一点为()00,Q x y ,所以2004y x =,所以()()222200004CQ x a y x a x =-+=-+()()20200220x a x a x =--+≥,令()()()220000220g x x a x a x =--+≥,对称轴为:2a -,当20a -<,即2a <时,()0g x 在区间[)0,∞+单调递增,所以00x =时,()0g x 取得最小值,即2min 2CQ a =,所以min CQ a =,当20a -≥,即2a ≥时,()0g x 在区间[)0,2a -单调递减,在区间[)2,a -+∞单调递增,所以02x a =-时,()0g x 取得最小值,即()22min 2244CQ a a a =--+=-,所以minCQ =,所以(),22a a d a a ⎧<⎪=⎨≥⎪⎩(3)当直线l 的斜率不存在时,此时l :0x =与轨迹E 不会有两个交点,故不满足题意;当直线l 的斜率存在时,设l :1y kx =+,()11,M x y 、()22,N x y ,代入24y x =,得2+14y y k =⨯,即2440ky y -+=,所以124y y k +=,124y y k =,121212211242y y y y x x k k k k k--+-+=+==-,因为直线l 与轨迹E 在x 轴上方部分交于M 、N 两点,所以0∆>,得16160k ->,即1k <;又M 、N 两点在x 轴上方,所以120y y +>,120y y >,即40k>,所以0k >,又1k <,所以01k <<,所以MN 中点1212,22x x y y ++⎛⎫⎪⎝⎭,即2212,kk k ⎛⎫- ⎪⎝⎭,所以垂直平分线为22121y x k k k k ⎛⎫-=--+ ⎝⎭,令0y =,得222111152248x k k k ⎛⎫=-+=-+ ⎪⎝⎭,因为01k <<,所以11k >,所以21115248x k ⎛⎫=-+ ⎪⎝⎭在11k >时单调递增,所以22111511522134848k ⎛⎫⎛⎫-+>-+= ⎪ ⎪⎝⎭⎝⎭,即3x >,所以D 点横坐标的取值范围为:()3,+∞.题型四斜率与倾斜角最值范围问题【例4】设12F F 、分别是椭圆2214x y +=的左、右焦点.(1)若P 是该椭圆上的一个动点,求125=4PF PF ⋅-,求点P 的坐标;(2)设过定点(0,2)M 的直线l 与椭圆交于不同的两点A 、B ,且AOB ∠为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.【答案】(1)⎛ ⎝⎭;(2)2,2⎛⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭.【解析】(1)由题意知,2,1,a b c ===所以())12,F F ,设(,)(0,0)P m n m n >>,则22125(,),)34PF PF m n m n m n ⋅=-⋅-=+-=-,又2214m n +=,有222214534m n m n ⎧+=⎪⎪⎨⎪+-=-⎪⎩,解得1m n =⎧⎪⎨=⎪⎩,所以P ;(2)显然0x =不满足题意,设直线l 的方程为2y kx =+,设()()1122,,A x y B x y ,,22221(14)1612042x y k x kx y kx ⎧+=⎪⇒+++=⎨⎪=+⎩,22(16)4(41)120k k ∆=-+⨯>,解得234k >,①1212221612,4141k x x x x k k +=-=++,则212121212(2)(2)2()4y y kx kx k x x k x x =++=+++,又AOB ∠为锐角,则cos 0AOB ∠>,即0OA OB ⋅>,12120x x y y +>,所以21212121212(1)2()4x x y y y y k x x k x x +==++++2222212(1)1624(4)40414141k k k k k k k +⋅-=-+=>+++,解得204k <<,②由①②,解得322k -<<或322k <<,所以实数k的取值范围为(2,-.【变式4-1】已知椭圆:Γ22221(0x y a b a b +=>>)的左焦点为F ,其离心率22e =,过点F垂直于x 轴的直线交椭圆Γ于P ,Q两点,PQ (1)求椭圆Γ的方程;(2)若椭圆的下顶点为B ,过点D (2,0)的直线l 与椭圆Γ相交于两个不同的点M ,N ,直线BM ,BN 的斜率分别为12,k k ,求12k k +的取值范围.【答案】(1)2212x y +=;(2)()1211,,2222k k ⎛⎫⎛+∈-∞⋃-⋃+∞⎪ ⎝⎭⎝【解析】(1)由题可知2222222c e a bPQ a a b c⎧==⎪⎪⎪==⎨⎪=+⎪⎪⎩,解得11a b c ⎧=⎪=⎨⎪=⎩.所以椭圆Γ的方程为:2212x y +=.(2)由题可知,直线MN 的斜率存在,则设直线MN 的方程为(2)y k x =-,11(,)M x y ,22(,)N x y .由题可知2212(2)x y y k x ⎧+=⎪⎨⎪=-⎩,整理得2222(21)8820k x k x k +-+-=22222(8)4(21)(81)8(21)0k k k k ∆=--+-=-->,解得22k ⎛∈- ⎝⎭.由韦达定理可得2122821k x x k +=+,21228221k x x k -=+.由(1)知,点(0,1)B -设椭圆上顶点为A ,(0,1)A ∴,12DA k k ≠=-且12DB k k ≠=,∴()()1212121212211111k x k x y y k k x x x x -+-++++=+=+()()()221221228121212228212k k k x x k k k k x x k -⋅-++=+=+-+()242111212,,221212122k k k k k k ⎛⎫⎛=-==-∈+∞⋃-∞⋃ ⎪ +++⎝⎭⎝∴12k k +的取值范围为()11,,2222⎛⎫⎛-∞⋃-⋃+∞ ⎪ ⎝⎭⎝.【变式4-2】)已知椭圆1C 的方程为22143x y +=,双曲线2C 的左、右焦点分别为1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点.(1)求双曲线2C 的方程;(2)若直线:2l y kx =+与双曲线2C 恒有两个不同的交点A 和B ,且1OA OB ⋅>(其中O 为原点),求k 的取值范围.【答案】(1)2213y x -=(2)(()1,1-【解析】(1)由题,在椭圆1C 中,焦点坐标为()1,0-和()1,0;左右顶点为()2,0-和()2,0,因为双曲线2C 的左、右焦点分别为1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点,所以在双曲线2C 中,设双曲线方程为22221x ya b-=,则221,4a c ==,所以2223b c a =-=,所以双曲线2C 的方程为2213y x -=(2)由(1)联立22213y kx y x =+⎧⎪⎨-=⎪⎩,消去y ,得()223470k x kx -++=①;消去x ,得()2223121230k y y k -+-+=②设()()1122,,,A x y B x y ,则12,x x 为方程①的两根,12,y y 为方程②的两根;21212227123,33k x x y y k k -+⋅=⋅=--,21212227123133k OA OB x x y y k k -+⋅=⋅+⋅=+>--,得23k >或21k <③,又因为方程①中,()22216384k k k ∆=-4⨯7-=-12+>0,得27k <④,③④联立得k的取值范围(()1,1⋃-⋃【变式4-3】已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.【答案】(1)24y x =;(2)最大值为13.【解析】(1)抛物线2:2(0)C y px p =>的焦点,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,由题意,该抛物线焦点到准线的距离为222p p p ⎛⎫--== ⎪⎝⎭,所以该抛物线的方程为24y x =;(2)[方法一]:轨迹方程+基本不等式法设()00,Q x y ,则()00999,9PQ QF x y ==--,所以()00109,10P x y -,由P 在抛物线上可得()()200104109y x =-,即20025910y x +=,据此整理可得点Q 的轨迹方程为229525=-y x ,所以直线OQ 的斜率000220001025925910OQ y y y k y x y ===++,当00y =时,0OQ k =;当00y ≠时,0010925OQ k y y =+,当00y >时,因为0092530y y +≥,此时103OQ k <≤,当且仅当00925y y =,即035y =时,等号成立;当00y <时,0OQ k <;综上,直线OQ 的斜率的最大值为13.[方法二]:【最优解】轨迹方程+数形结合法同方法一得到点Q 的轨迹方程为229525=-y x .设直线OQ 的方程为y kx =,则当直线OQ 与抛物线229525=-y x 相切时,其斜率k 取到最值.联立2,29,525y kx y x =⎧⎪⎨=-⎪⎩得22290525k x x -+=,其判别式222940525⎛⎫∆=--⨯= ⎪⎝⎭k ,解得13k =±,所以直线OQ 斜率的最大值为13.题型五向量型最值范围问题【例5】在平面直角坐标系xOy 中,已知双曲线221:142x y C -=与椭圆222:142x y C +=,A ,B分别为1C 的左、右顶点,点P 在双曲线1C 上,且位于第一象限.(1)直线OP 与椭圆2C 相交于第一象限内的点M ,设直线PA ,PB ,MA ,MB 的斜率分别为1k ,2k ,3k ,4k ,求1234k k k k +++的值;(2)直线AP 与椭圆2C 相交于点N (异于点A ),求AP AN ⋅的取值范围.【答案】(1)0;(2)()16,+∞【解析】(1)方法1:设直线():0OP y kx k =>,联立22142y kxx y =⎧⎪⎨-=⎪⎩,消y ,得()22124k x -=,所以20120k k >⎧⎨->⎩,解得202k <<,设()()1111,0,0P x y x y >>,则11x y ⎧=⎪⎪⎨⎪=⎪⎩,所以P ⎛⎫.联立22142y kxx y =⎧⎪⎨+=⎪⎩,消y ,得()22124k x +=,设()()2222,0,0M x y x y >>,则22x y ⎧=⎪⎪⎨⎪=⎪⎩,所以M ⎛⎫.因为()2,0A -,()2,0B ,所以211111221112821124224412k y y x y k k k x x x k k-+=+===-+---,222223422222821124224412ky y x y k k k x x x k k ++=+==--+--+,所以1234110k k k k k k ⎛⎫+++=+-= ⎪⎝⎭.方法2设()()1111,0,0P x y x y >>,()()2222,0,0M x y x y >>,因为()2,0A -,()2,0B ,所以11111221112224y y x yk k x x x +=+=-+-,22223422222224y y x yk k x x x +=+=-+-.因为点P 在双曲线1C 上,所以2211142x y -=,所以221142x y -=,所以1121x k k y +=.因为点Q 在椭圆线2C 上,所以2222142x y +=,所以222242x y -=-,所以2342x k k y +=-.因为O ,P ,M 三点共线,所以1212y y x x =,所以121234120x x k k k k y y +++=-=.(2)设直线AP 的方程为2y kx k =+,联立22224y kx k x y =+⎧⎨-=⎩,消y ,得()()22222184210k x k x k -+++=,解得12x =-,2224212k x k +=-,所以点P 的坐标为222424,1212k k k k ⎛⎫+ ⎪--⎝⎭,因为点P 位于第一象限,所以222420124012k k k k ⎧+>⎪⎪-⎨⎪>⎪-⎩,解得202k <<,联立22224y kx k x y =+⎧⎨+=⎩,消y ,得()()22222184210k x k x k +++-=,解得32x =-,2422412kx k -=+,所以点N 的坐标为222244,1212k k k k ⎛⎫- ++⎝⎭,所以()22222224161422444221212121214k k k k kAP AN AP AN k k k k k +⎛⎫⎛⎫+-⋅=⋅=--+⋅= ⎪⎪-+-+-⎝⎭⎝⎭,设21t k =+,则312t <<,所以22161616314(1)48384t tAP AN t t t t t ⋅===---+-⎛⎫-+ ⎪⎝⎭.因为函数3()4f x x x=+在区间31,2⎛⎫⎪⎝⎭上单调递增,所以当312t <<时,3748t t <+<,所以30841t t ⎛⎫<-+< ⎪⎝⎭,所以1616384t t >⎛⎫-+ ⎪⎝⎭,即16AP AN ⋅>,故AP AN ⋅的取值范围为()16,+∞.【变式5-1】已知O为坐标原点,椭圆2222:1(0)x yC a ba b+=>>的离心率为3,且经过点P.(1)求椭圆C的方程;(2)直线l与椭圆C交于A,B两点,直线OA的斜率为1k,直线OB的斜率为2k,且1213k k=-,求OA OB⋅的取值范围.【答案】(1)22193x y+=;(2)[3,0)(0,3]-.【解析】(1)由题意,223611caa b⎧=⎪⎪⎨⎪+=⎪⎩,又222a b c=+,解得3,a b==所以椭圆C为22193x y+=.(2)设()()1122,,,A x yB x y,若直线l的斜率存在,设l为y kx t=+,联立22193y kx tx y=+⎧⎪⎨+=⎪⎩,消去y得:()222136390+++-=k x ktx t,22Δ390k t=+->,则12221226133913ktx xktx xk-⎧+=⎪⎪+⎨-⎪=⎪+⎩,又12k k=121213y yx x=-,故121213=-y y x x且120x x≠,即2390-≠t,则23≠t,又1122,y kx t y kx t=+=+,所以()()()222222222121212221212122691133939313-+++++-+==+=+==---+k t tkx t kx t kt x x ty y t kkk ktx x x x x x tk,整理得222933=+≥t k,则232≥t且Δ0>恒成立.221212121212222122393333133313--⎛⎫⋅=+=-==⋅=⋅=-⎪+⎝⎭t tOA OB x x y y x x x x x xk t t,又232≥t,且23≠t,故2331[3,0)(0,3)⎛⎫-∈-⎪⎝⎭t.当直线l的斜率不存在时,2121,x x y y==-,又12k k=212113-=-yx,又2211193x y+=,解得2192x=则222111233⋅=-==OA OB x y x.综上,OA OB ⋅的取值范围为[3,0)(0,3]-.【变式5-2】已知双曲线22221(00)x y C a b a b-=>>:,的离心率为2,F 为双曲线的右焦点,直线l 过F 与双曲线的右支交于P Q ,两点,且当l 垂直于x 轴时,6PQ =;(1)求双曲线的方程;(2)过点F 且垂直于l 的直线'l 与双曲线交于M N ,两点,求MP NQ MQ NP ⋅⋅+的取值范围.【答案】(1)2213y x -=;(2)(],12-∞-【解析】(1)依题意,2c a =,当l 垂直于x 轴时,226b PQ a==,即23b a =,即223c a a -=,解得1a =,b =2213y x -=;(2)设:2PQ l x my =+,联立双曲线方程2213y x -=,得:()22311290m y my -++=,当0m =时,()()()()2,3,2,3,0,1,0,1P Q M N --,12MP NQ MQ NP ⋅+⋅=-,当0m ≠时,设()()()()11223344,,,,,,,P x y Q x y M x y N x y ,因为直线PQ 与双曲线右支相交,因此1229031y y m =<-,即m ⎛⎫⎛∈⋃ ⎪ ⎝⎭⎝⎭,同理可得234293m y y m =-,依题意()()MP NQ MF FP NF FQ MF NF FP FQ =+⋅+=⋅+⋅⋅,同理可得,()()MQ NP MF FQ NF FP MF NF FP FQ =+⋅+⋅=⋅+⋅,而()212342111FP FQ MF NF m y y y y m ⎛⎫⋅+⋅=+++ ⎪⎝⎭,代入122931y y m =-,234293m y y m =-,()()()()()()222242224222919118163633133103133m m m m m FP FQ MF NF m m m m m m ++-+++⋅+⋅=+==----+--,分离参数得,2429663103m FP FQ MF NF m m ⋅+⋅=---+,因为3333m ⎛⎫⎛∈⋃ ⎪ ⎝⎭⎝⎭,当210,3m ⎛⎫∈ ⎪⎝⎭时,由22110,3m m ⎛⎫+∈+∞ ⎪⎝⎭,()22966,61310FP FQ MF NF m m ⋅+⋅=-∈-∞-⎛⎫+- ⎪⎝⎭,所以()()2,12MP NQ MQ N FP FQ MF NF P ⋅=⋅+⋅∈∞-⋅-+,综上可知,MP NQ MQ NP ⋅⋅+的取值范围为(],12-∞-.【变式5-3】已知抛物线()2:20E x py p =>的焦点为F ,直线4x =分别与x 轴交于点P ,与抛物线E 交于点Q ,且54QF PQ =.(1)求抛物线E 的方程;(2)如图,设点,,A B C 都在抛物线E 上,若ABC 是以AC 为斜边的等腰直角三角形,求AB AC ⋅uu u r uuu r的最小值.【答案】(1)24x y =;(2)32【解析】(1)设点()04,Q y ,由已知000216524py p y y =⎧⎪⎨+=⎪⎩,则8102p p p +=,即24p =.因为0p >,则2p =,所以抛物线E 的方程是24x y =.(2)设点()222312123123,,,,,444x x x A x B x C x x x x ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,直线AB 的斜率为()0k k >,因为AB BC ⊥,则直线BC 的斜率为1k-.因为AB BC =,则1223x x x x -=-,得()2312x x k x x -=-,①因为22121212444x x x x k x x -+==-,则124x x k +=,即124x k x =-,②因为223223231444x x x x k x x -+-==-,则234x x k +=-,即324x x k =--③将②③代入①,得()2242420x k k x k+--=,即()()322212120k k x k kk-+---=,则()()32211k xk k -=+,所以()()()()22222122··cos 451421AB AC AB AC AB x x k k x k ︒===-+=-+()()()()()2332222411614111k k k k k k k k ⎡⎤-+⎢⎥=-+=++⎢⎥⎣⎦因为212k k +≥,则()22214k k +≥,又()22112k k++≥,则()()3222121k k k +≥+,从而()()3222121kk k +≥+当且仅当1k =时取等号,所以AB AC 的最小值为32.题型六参数型最值范围问题【例6】已知点()()1122,,,M x y N x y 在椭圆222:1(1)xC y a a+=>上,直线,OM ON 的斜率之积是13-,且22212x x a +=.(1)求椭圆C 的方程;(2)若过点()0,2Q 的直线与椭圆C 交于点,A B ,且(1)QB t QA t =>,求t 的取值范围.【答案】(1)2213x y +=;(2)(]1,3【解析】(1)椭圆方程改写为:2222x a y a +=,点()()1122,,,M x y N x y 在椭圆上,有222211a y a x =-,222222a y a x =-,两式相乘,得:()()()222222222241142122122a a a y y a x a x x x x x --==-++,由22212x x a +=,得222212241a y y x x =,由直线,OM ON 的斜率之积是13-,得121213y y x x =-,即222212129y y x x =,∴49a =,23a =,椭圆C 的方程为:2213x y +=.(2)过点()0,2Q 的直线若斜率不存在,则有()0,1A ,()0,1B -,此时3t =;当过点()0,2Q 的直线斜率存在,设直线方程为2y kx =+,由22213y kx x y =+⎧⎪⎨+=⎪⎩,消去y ,得()22131290k x kx +++=,直线与椭圆C 交于点,A B 两点,∴()2221249(13)36360k k k ∆=-⨯⨯+=->,得21k >设()()1122,,,A x y B x y '''',(1)QB t QA t =>,21x x t '='由韦达定理12122121212(1)13913k x x t x k x x tx k ''''-⎧+==+⎪⎪+⎨⎪⋅+'='=⎪⎩,消去1x ',得()229131441t k t ⎛⎫=+ ⎪⎝⎭+,由21k >,2101k<<,∴()2311641t t <<+,由1t >,解得13t <<,综上,有13t <≤,∴t 的取值范围为(]1,3【变式6-1】已知A 、B 分别是椭圆2222:1(0)x y C a b a b+=>>的左右顶点,O 为坐标原点,=6AB ,点2,3⎛⎫⎪⎝⎭5在椭圆C 上.过点()0,3P -,且与坐标轴不垂直的直线交椭圆C 于M 、N 两个不同的点.(1)求椭圆C 的标准方程;(2)若点B 落在以线段MN 为直径的圆的外部,求直线的斜率k 的取值范围;(3)当直线的倾斜角θ为锐角时,设直线AM 、AN 分别交y 轴于点S 、T ,记PS PO λ=,PT PO μ=,求λμ+的取值范围.【答案】(1)22195x y +=;(2)227,,1,332k ⎛⎫⎛⎫⎛⎫∈-∞-⋃⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(3)4,23⎛⎫ ⎪⎝⎭【解析】(1)因为=6AB ,所以=3a ;又点2,3⎛⎫ ⎪⎝⎭5在图像C 上即()22252319b⎛⎫⎪⎝⎭+=,所以b 所以椭圆C 的方程为22195x y +=;(2)由(1)可得()3,0B ,设直线3l y kx =-:,设11(,)M x y 、22(,)N x y ,由22=-3=195y kx x y ⎧⎪⎨+⎪⎩得22(59)54360k x kx +-+=,22(54)436(59)0k k ∆=-⨯⨯+>解得23k >或23k <-①∵点()3,0B 在以线段MN 为直径的圆的外部,则0BM BN ⋅>,又12212254+=5+936=5+9k x x k x x k ⎧⎪⎪⎨⎪⎪⎩②211221212(3,)(3,)(1)3(1)()180BM BN x y x y k x x k x x ⋅=--=+-+++>,解得1k <或72k >由①②得227,,1,332k ⎛⎫⎛⎫⎛⎫∈-∞-⋃⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)设直线3l y kx =-:,又直线的倾斜角θ为锐角,由(2)可知23k >,记11(,)M x y 、22(,)N x y ,所以直线AM 的方程是:()1133y y x x =++,直线AN 的方程是:()2233y y x x =++.令=0x ,解得113+3y y x =,所以点S 坐标为1130,+3y x ⎛⎫ ⎪⎝⎭;同理点T 为2230,+3y x ⎛⎫⎪⎝⎭.所以1130,3+3y PS x ⎛⎫=+ ⎪⎝⎭,2230,3+3y PT x ⎛⎫=+ ⎪⎝⎭,()0,3PO =.由PS PO λ=,PT PO μ=,可得:11333+3y x λ+=,22333+3y x μ+=,所以1212233y yx x λμ+=++++,由(2)得1225495k x x k +=+,1223695x k x =+,所以()()()1212121212122311333338229kx x k x x kx kx x x x x x x λμ--++-+-+=++=+++++()222254231189595254936369595k k k k k k k k ⎛⎫⋅+-- ⎪++⎝⎭=+⎛⎫++ ⎪++⎝⎭21012921k k k +=-⨯+++()()2110291k k +=-⨯++101291k =-⨯++,因为23k >,所以5131,0315k k +><<+,10142,2913k ⎛⎫-⨯+∈ ⎪+⎝⎭,故λμ+的范围是4,23⎛⎫⎪⎝⎭.【变式6-2】设A ,B 为双曲线C :22221x y a b-=()00a b >>,的左、右顶点,直线l 过右焦点F 且与双曲线C 的右支交于M ,N 两点,当直线l 垂直于x 轴时,AMN 为等腰直角三角形.(1)求双曲线C 的离心率;(2)已知4AB =,若直线AM ,AN 分别交直线1x =于P ,Q 两点,若()0D t ,为x 轴上一动点,当直线l 的倾斜角变化时,若PDQ ∠为锐角,求t 的取值范围.【答案】(1)2;(2){2t t <-或}4t >【解析】(1)由双曲线C :22221x y a b-=()00a b >>,可得:右焦点(),0F c ,将x c =代入2222:1(0,0)x y C a b a b -=>>中,2by a=±,当直线l 垂直于x 轴时,AMN 为等腰直角三角形,此时AF FM =,即2b ac a+=,整理得:220a ac b +-=,因为222b c a =-,所以2220a ac c +-=,方程两边同除以2a 得:220e e +-=,解得:2e =或1-(舍去),所以双曲线C 的离心率为2;(2)因为24AB a ==,所以2a =,因为2c e a ==,解得4c =,故22212b c a =-=,所以双曲线的方程为221412x y -=,当直线l 的斜率存在时,设直线l 的方程为:()4y k x =-,与双曲线联立得:()22223816120kxk x k -+--=,设()()1122,,,M x y N x y ,则212283k x x k +=-,212216123k x x k +=-,则()()()221212121244416y y k x x k x x x x =--=-++⎡⎤⎣⎦222221612321633k k k k k ⎛⎫+=-+ ⎪--⎝⎭22363k k -=-,因为直线l 过右焦点F 且与双曲线C 的右支交于,M N 两点,所以22121222816124,433k k x x x x k k ++=>=>--,解得:23k >,直线()11:22y AM y x x =++,则1131,2y P x ⎛⎫ ⎪+⎝⎭,同理可求得:2231,2y Q x ⎛⎫⎪+⎝⎭,所以11,213y D x P t ⎪+⎛⎫=- ⎝⎭,22,213y D x Q t ⎪+⎛⎫=- ⎝⎭,因为PDQ ∠为锐角,所以()()12221192202D y y x Q t x P D t ⋅=+-+>++,即()1122122109224y y x x x t x t +-+++>+,所以22222221203693161216433k k k k t k t k -⨯-++--+++>-所以21290t t +-->即()219t ->,解得2t <-或4t >;当直线l 的斜率不存在时,将4x =代入双曲线可得6y =±,此时不妨设()()4,6,4,6M N -,此时直线:2AM y x =+,点P 坐标为()1,3,同理可得:()1,3Q -,所以()1,3DP t =-,()1,3DQ t =--,因为PDQ ∠为锐角,所以2280DP DQ t t ⋅=-->,解得2t <-或4t >;综上所述,t 的取值范围{2t t <-或}4t >【变式6-3】22122:1y x C a b-=上的动点P 到两焦点的距离之和的最小值为22:2(0)C x py p =>的焦点与双曲线1C 的上顶点重合.(1)求抛物线2C 的方程;(2)过直线:(l y a a =为负常数)上任意一点M 向抛物线2C 引两条切线,切点分别为AB ,坐标原点O 恒在以AB 为直径的圆内,求实数a 的取值范围.【答案】(1)24x y =;(2)40a -<<.【解析】(1)由已知:双曲线焦距为,则长轴长为2,故双曲线的上顶点为(0,1),即为抛物线焦点.∴抛物线2C 的方程为24x y =;(2)设(,)M m a ,2111(,)4A x x ,2221(,)4B x x ,故直线MA 的方程为211111()42y x x x x -=-,即21142y x x x =-,所以21142a x m x =-,同理可得:22242a x m x =-,∴1x ,2x 是方程242a xm x =-的两个不同的根,则124x x a =,2212121()416OA OB x x x x a a ∴⋅=+=+,由O 恒在以AB 为直径的圆内,240a a ∴+<,即40a -<<.。
高中数学圆锥曲线专题*注意事项:1、填写答题卡的内容用2B铅笔填写2、提前xx 分钟收取答题卡阅卷人一、单选题(共10题;共20分)得分1. ( 2分) 波罗尼斯(古希腊数学家,的公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k(k>0,且k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.现有椭圆=1(a>b>0),A,B为椭圆的长轴端点,C,D为椭圆的短轴端点,动点M满足=2,△MAB面积的最大值为8,△MCD面积的最小值为1,则椭圆的离心率为()A. B. C. D.2. ( 2分) 古希腊数学家阿波罗尼奥斯的著作圆锥曲线论中给出了圆的另一种定义:平面内,到两个定点A、B距离之比是常数的点M的轨迹是圆若两定点A、B的距离为3,动点M满足,则M点的轨迹围成区域的面积为A. B. C. D.3. ( 2分) 已知、为双曲线的左、右焦点,过右焦点的直线,交的左、右两支于、两点,若为线段的中点且,则双曲线的离心率为()A. B. C. D.4. ( 2分) 已知双曲线的右焦点为,点,为双曲线左支上的动点,且周长的最小值为16,则双曲线的离心率为()A. 2B.C.D.5. ( 2分) 关于曲线:性质的叙述,正确的是()A. 一定是椭圆B. 可能为抛物线C. 离心率为定值D. 焦点为定点6. ( 2分) 古希腊数学家阿波罗尼奧斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,他证明过这样一个命题:平面内与两定点距离的比为常数k(k>0,k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.在平面直角坐标系中,设A(﹣3,0),B(3,0),动点M满足=2,则动点M的轨迹方程为()A. (x﹣5)2+y2=16B. x2+(y﹣5)2=9C. (x+5)2+y2=16D. x2+(y+5)2=97. ( 2分) 已知是双曲线上一点,且在轴上方,,分别是双曲线的左、右焦点,,直线的斜率为,的面积为,则双曲线的离心率为()A. 3B. 2C.D.8. ( 2分) 在正四面体中,点为所在平面上的动点,若与所成角为定值,则动点的轨迹是()A. 圆B. 椭圆C. 双曲线D. 抛物线9. ( 2分) 已知,及抛物线方程为,点在抛物线上,则使得为直角三角形的点个数为()A. 1个B. 2个C. 3个D. 4个10. ( 2分) 已知双曲线的左、右焦点分别为,,若双曲线上存在点P使,则离心率的取值范围是()A. B. C. D.阅卷人二、填空题(共10题;共10分)得分11. ( 1分) 已知正实数是的等比中项,则圆锥曲线=1的离心率为________12. ( 1分) 设抛物线的焦点为F,过点F的直线l与抛物线交于A,B两点,且,则弦长________.13. ( 1分) 已知双曲线:(,)的左,右焦点分别为,,过右支上一点作双曲线的一条渐近线的垂线,垂足为.若的最小值为,则双曲线的离心率为________.14. ( 1分) 若椭圆的离心率为,则的短轴长为________.15. ( 1分) 从抛物线图象上一点作抛物线准线的垂线,垂足为,且,设为抛物线的焦点,则的面积为________.16. ( 1分) 设抛物线的焦点为,过点的直线与抛物线交于,两点,且,点是坐标原点,则的面积为________17. ( 1分) 已知双曲线的下焦点为,虚轴的右端点为,点在的上支,为坐标原点,直线和直线的倾斜角分别为,,若,则的最小值为________.18. ( 1分) 已知为椭圆的左焦点,过点的直线交椭圆于两点,若,则直线的斜率为________.19. ( 1分) 椭圆的左、右焦点分别为、,点P在椭圆C上,已知,则________.20. ( 1分) 已知椭圆的右顶点为A,左,右焦点为F1,F2,过点F2与x轴垂直的直线与椭圆的一个交点为B.若|F1F2|=2,|F2B| ,则点F1到直线AB的距离为________.阅卷人三、解答题(共30题;共280分)得分21. ( 10分) 已知椭圆E:=1(a>b>0)的上、下焦点分别为F1,F2,点D在椭圆上,DF2⊥F1F2,△F1F2D的面积为2 ,离心率e= ,抛物线C:x2=2py(p>0)的准线l经过D点.(1)求椭圆E与抛物线C的方程;(2)过直线l上的动点P作抛物线的两条切线,切点为A,B,直线AB交椭圆于M,N两点,当坐标原点O落在以MN为直径的圆外时,求点P的横坐标t的取值范围.22. ( 10分) 椭圆C1:+y2=1,椭圆C2:(a>b>0)的一个焦点坐标为(,0),斜率为1的直线l与椭圆C2相交于A、B两点,线段AB的中点H的坐标为(2,﹣1).(1)求椭圆C2的方程;(2)设P为椭圆C2上一点,点M、N在椭圆C1上,且,则直线OM与直线ON的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.23. ( 10分) 已知A(1,)是离心率为的椭圆E:+ =1(a>b>0)上的一点,过A作两条直线交椭圆于B、C两点,若直线AB、AC的倾斜角互补.(1)求椭圆E的方程;(2)试证明直线BC的斜率为定值,并求出这个定值;(3)△ABC的面积是否存在最大值?若存在,求出这个最大值?若不存在,说明理由.24. ( 10分) 设抛物线C1:y2=8x的准线与x轴交于点F1,焦点为F2.以F1,F2为焦点,离心率为的椭圆记为C2.(Ⅰ)求椭圆C2的方程;(Ⅱ)设N(0,﹣2),过点P(1,2)作直线l,交椭圆C2于异于N的A、B两点.(ⅰ)若直线NA、NB的斜率分别为k1、k2,证明:k1+k2为定值.(ⅱ)以B为圆心,以BF2为半径作⊙B,是否存在定⊙M,使得⊙B与⊙M恒相切?若存在,求出⊙M的方程,若不存在,请说明理由.25. ( 10分) 在平面直角坐标系xOy中,椭圆:的离心率为,y轴于椭圆相交于A、B两点,,C、D是椭圆上异于A、B的任意两点,且直线AC、BD相交于点M,直线AD、BC相交于点N.(1)求椭圆的方程;(2)求直线MN的斜率.26. ( 10分) 已知椭圆C:(a>b>0)的离心率为,左、右焦点分别为F1,F2,点G在椭圆C上,且• =0,△GF1F2的面积为2.(1)求椭圆C的方程;(2)直线l:y=k(x﹣1)(k<0)与椭圆Γ相交于A,B两点.点P(3,0),记直线PA,PB的斜率分别为k1,k2,当最大时,求直线l的方程.27. ( 10分) 已知椭圆的中心在原点,焦点在轴上,左右焦点分别为,,且,点在椭圆上.(1)求椭圆的方程;(2)过的直线与椭圆相交于两点,且的面积为,求以为圆心且与直线相切的圆的方程.28. ( 10分) 设椭圆+ =1(a>b>0)的左焦点为F,右顶点为A,离心率为.已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为.(Ⅰ)求椭圆的方程和抛物线的方程;(Ⅱ)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程.29. ( 10分) 如图,在平面直角坐标系中,已知椭圆的左、右顶点分别为,,过右焦点的直线与椭圆交于,两点(点在轴上方).(1)若,求直线的方程;(2)设直线,的斜率分别为,.是否存在常数,使得?若存在,求出的值;若不存在,请说明理由.30. ( 10分) 已知抛物线y2=2px(p>0)的焦点为F与椭圆C的一个焦点重合,且抛物线的准线与椭圆C 相交于点.(1)求抛物线的方程;(2)过点F是否存在直线l与椭圆C交于M,N两点,且以MN为对角线的正方形的第三个顶点恰在y轴上?若存在,求出直线l的方程;若不存在,请说明理由.31. ( 10分) 已知椭圆的长轴长为4,离心率为.(I)求C的方程;(II)设直线交C于A,B两点,点A在第一象限, 轴,垂足为M, 连结BM并延长交C于点N.求证:点A在以BN为直径的圆上.32. ( 10分) 已如椭圆E:()的离心率为,点在E上.(1)求E的方程:(2)斜率不为0的直线l经过点,且与E交于P,Q两点,试问:是否存在定点C,使得?若存在,求C的坐标:若不存在,请说明理由33. ( 5分) 已知点P(x,y)满足条件.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)直线l与圆O:x2+y2=1相切,与曲线C相较于A,B两点,若,求直线l的斜率.34. ( 5分) 设直线l:y=k(x+1)(k≠0)与椭圆3x2+y2=a2(a>0)相交于A、B两个不同的点,与x轴相交于点C,记O为坐标原点.(Ⅰ)证明:a2>;(Ⅱ)若,求△OAB的面积取得最大值时的椭圆方程.35. ( 15分) 已知点在抛物线上,是直线上的两个不同的点,且线段的中点都在抛物线上.(Ⅰ)求的取值范围;(Ⅱ)若的面积等于,求的值.36. ( 5分) 如图,曲线Γ由曲线C1:(a>b>0,y≤0)和曲线C2:(a>0,b>0,y>0)组成,其中点F1,F2为曲线C1所在圆锥曲线的焦点,点F3,F4为曲线C2所在圆锥曲线的焦点,(Ⅰ)若F2(2,0),F3(﹣6,0),求曲线Γ的方程;(Ⅱ)如图,作直线l平行于曲线C2的渐近线,交曲线C1于点A、B,求证:弦AB的中点M必在曲线C2的另一条渐近线上;(Ⅲ)对于(Ⅰ)中的曲线Γ,若直线l1过点F4交曲线C1于点C、D,求△CDF1面积的最大值.37. ( 5分) 已知椭圆的离心率为,,分别是椭圆的左右焦点,过点的直线交椭圆于,两点,且的周长为12.(Ⅰ)求椭圆的方程(Ⅱ)过点作斜率为的直线与椭圆交于两点,,试判断在轴上是否存在点,使得是以为底边的等腰三角形若存在,求点横坐标的取值范围,若不存在,请说明理由.38. ( 10分) 如图,已知点F为抛物线C:()的焦点,过点F的动直线l与抛物线C交于M,N两点,且当直线l的倾斜角为45°时,.(1)求抛物线C的方程.(2)试确定在x轴上是否存在点P,使得直线PM,PN关于x轴对称?若存在,求出点P的坐标;若不存在,请说明理由.39. ( 10分) 已知椭圆过点,且离心率为.(1)求椭圆的标准方程;(2)若点与点均在椭圆上,且关于原点对称,问:椭圆上是否存在点(点在一象限),使得为等边三角形?若存在,求出点的坐标;若不存在,请说明理由.40. ( 5分) 已知椭圆E: 过点(0,1)且离心率.(Ⅰ)求椭圆E的方程;(Ⅱ)设动直线l与两定直线l1:x﹣y=0和l2:x+y=0分别交于P,Q两点.若直线l总与椭圆E有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.41. ( 10分) 已知抛物线,抛物线与圆的相交弦长为4. (1)求抛物线的标准方程;(2)点为抛物线的焦点,为抛物线上两点,,若的面积为,且直线的斜率存在,求直线的方程.42. ( 10分) 设椭圆的左、右焦点分别为,、,,点在椭圆上,为原点.(1)若,,求椭圆的离心率;(2)若椭圆的右顶点为,短轴长为2,且满足为椭圆的离心率).①求椭圆的方程;②设直线:与椭圆相交于、两点,若的面积为1,求实数的值.43. ( 10分) 已知椭圆C:(a>b>0)的右焦点为F(1,0),且点P在椭圆C上,O为坐标原点.(1)求椭圆C的标准方程;(2)设过定点T(0,2)的直线l与椭圆C交于不同的两点A,B,且∠AOB为锐角,求直线l的斜率k的取值范围.44. ( 10分) 在圆上任取一点,过点作轴的垂线段,为垂足,当点在圆上运动时,点在线段上,且,点的轨迹为曲线.(1)求曲线的方程;(2)过抛物线:的焦点作直线交抛物线于,两点,过且与直线垂直的直线交曲线于另一点,求面积的最小值,以及取得最小值时直线的方程.45. ( 10分) 已知点,分别是椭圆的长轴端点、短轴端点,为坐标原点,若,.(1)求椭圆的标准方程;(2)如果斜率为的直线交椭圆于不同的两点(都不同于点),线段的中点为,设线段的垂线的斜率为,试探求与之间的数量关系.46. ( 10分) 已知椭圆E:+ =1(a>b>0)过点,且离心率e为.(1)求椭圆E的方程;(2)设直线x=my﹣1(m∈R)交椭圆E于A,B两点,判断点G 与以线段AB为直径的圆的位置关系,并说明理由.47. ( 10分) 已知椭圆C:=1(a>b>0),圆Q:(x﹣2)2+(y﹣)2=2的圆心Q在椭圆C 上,点P(0,)到椭圆C的右焦点的距离为.(1)求椭圆C的方程;(2)过点P作互相垂直的两条直线l1,l2,且l1交椭圆C于A,B两点,直线l2交圆Q于C,D两点,且M为CD的中点,求△MAB的面积的取值范围.48. ( 10分) 已知椭圆C:+ =1(a>b>0)的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.(1)求椭圆C的方程;(2)已知动直线y=k(x+1)与椭圆C相交于A、B两点.①若线段AB中点的横坐标为﹣,求斜率k的值;②若点M(﹣,0),求证:• 为定值.49. ( 10分) 已知椭圆的焦距为分别为椭圆的左、右顶点,为椭圆上的两点(异于),连结,且斜率是斜率的倍.(1)求椭圆的方程;(2)证明:直线恒过定点.50. ( 10分) 如图,中心为坐标原点O的两圆半径分别为,,射线OT与两圆分别交于A、B两点,分别过A、B作垂直于x轴、y轴的直线、,交于点P.(1)当射线OT绕点O旋转时,求P点的轨迹E的方程;(2)直线l:与曲线E交于M、N两点,两圆上共有6个点到直线l的距离为时,求的取值范围.答案解析部分一、单选题1.【答案】D【考点】椭圆的简单性质【解析】【解答】设A(-a,0),B(a,0),M(x,y).∵动点M满足=2,则 =2,化简得.∵△MAB面积的最大值为8,△MCD面积的最小值为1,∴,解得,∴椭圆的离心率为.故答案为:D.【分析】设A(-a,0),B(a,0),M(x,y).∵动点M满足=2,则利用两点距离公式得出,∵△MAB面积的最大值为8,△MCD面积的最小值为1,利用三角形面积公式求出a,b的值,再利用椭圆中a,b,c三者的关系式结合离心率公式变形求出椭圆的离心率。
专题50 圆锥曲线(多选题部分)一、题型选讲题型一 、圆锥曲线定义与性质的考查例1、(202年山东卷)已知曲线22:1C mx ny +=( ) A .若0m =,0n >,则C 是两条直线 B .若0m n =>,则CC .若0m n >>,则C 是椭圆,其焦点在x 轴上D .若0mn <,则C是双曲线,其渐近线方程为y = 【答案】AD【详解】对于A ,若0m =,0n >,则2:1C ny =即y =,为两条直线,故A 正确; 对于B ,若0m n =>,则221:C x y n +=,所以CB 错误; 对于C ,若0m n >>,则110m n<<, 所以22:1C mx ny +=即22:111x y C m n +=为椭圆,且焦点在y 轴上,故C 错误; 对于D ,若0mn <,则22:111x y C m n +=为双曲线,且其渐近线为y ==,故D 正确.例2、已知双曲线C过点(且渐近线方程为3y x =±,则下列结论正确的是( ) A .C 的方程为2213x y -=B .CC .曲线21x y e -=-经过C 的一个焦点 D.直线10x -=与C 有两个公共点【答案】AC【详解】对于A:由双曲线的渐近线方程为3y x =±,可设双曲线方程为223x y λ-=,把点代入,得923λ-=,即1λ=.∴双曲线C 的方程为2213x y -=,故A 正确; 对于B :由23a =,21b =,得2c =,∴双曲线C=,故B 错误; 对于C :取20x +=,得2x =-,0y =,曲线21x y e +=-过定点(2,0)-,故C 正确;对于D :双曲线的渐近线0x ±=,直线10x --=与双曲线的渐近线平行,直线10x -=与C 有1个公共点,故D 不正确.故选:AC .例3、(2020·山东济南外国语学校高三月考)已知双曲线的左、右焦点分别为为双曲线上一点,且,若,则对双曲线中的有关结论正确的是( ) A .B .C .D .【答案】ABCD【解析】由双曲线的定义知:, 由,在中,由余弦定理可得:,22221(0,0)x y a b a b-=>>12,,F F P122PF PF =12sin 4F PF ∠=,,,a b c e e =2e =b =b =12212,4PF PF PF a PF a -==∴=12sin F PF ∠=121cos 4F PF ∠=±12PF F △222416412244a a c a a +-=±⨯⨯解得或,, 或,又, 可得或故选:ABCD例4、已知双曲线,若的离心率最小,则此时( )A.BC .双曲线的一个焦点坐标为D【答案】AB【解析】因为,所以双曲线的焦点在轴上,所以,,所以.又双曲线的离心率,则.因为,所以,当且仅当,即时,等号成立,则双曲线的离心率最小时,,,,则双曲,故A ,B 正确;双曲线的焦点坐标为(,0),故C 错误;焦点,故D 错误.故选:AB .题型二圆锥曲线的综合性问题例5、的椭圆为“黄金椭圆”.如图,已知椭圆C :22221(0)x y a b a b +=>>,12,A A 分别为左、右顶点,1B ,2B 分别为上、下顶点,1F ,2F 分别为左、右焦点,P 为椭圆上一点,则满足下列条件能使椭圆C 为“黄金椭圆”的有( )224c a =226c a=2ce a∴==2c a ∴=c =222c a b =+b =b =()222:104x y C m m m m -=>-+C 2m =0y ±=)0m >C x 2a m =224b m m =-+224c m =+c e a =222244c m e m a m m+===+0m >244e m m =+≥=4m m=2m =C 22a =26b =28c =0y ±=±()0y +=2==A .2112212A F F A F F ⋅= B .11290F B A ∠=︒C .1PF x ⊥轴,且21//PO A BD .四边形221AB A B 的内切圆过焦点1F ,2F【答案】BD【详解】∵椭圆2222:1(0)x y C a b a b+=>>∴121212(,0),,0),(0,),(0,),(,0),(,)(0A a A a B b B b F c F c ---对于A ,若2112212A F F A F F ⋅=,则22()(2)a c c -=,∴2a c c -=,∴13e =,不满足条件,故A 不符合条件;对于B ,11290F B A ︒∠=,∴222211112A F B F B A =+ ∴2222()a c a a b +=++,∴220c ac a +-= ∴210e e +-=,解得e =e =,故B 符合条件; 对于C ,1PF x ⊥轴,且21//PO A B ,∴2,b P c a ⎛⎫- ⎪⎝⎭∵21PO A B k k =∴2b c ab a =--,解得 ∵,∴b c =222a b c =+a =∴,不满足题意,故C不符合条件;对于D,四边形的内切圆过焦点即四边形的内切圆的半径为c,∴∴,∴,解得(舍去)或,∴,故D符合条件.例6、已知椭圆()22:10x yC a ba b+=>>的左、右焦点分别为1F,2F且122F F=,点()1,1P在椭圆内部,点Q在椭圆上,则以下说法正确的是()A.1QF QP+的最小值为1B.椭圆C的短轴长可能为2C.椭圆C的离心率的取值范围为⎛⎝⎭D.若11PF FQ=,则椭圆C【答案】ACD【详解】A.因为12||2F F,所以22(1,0),||1F PF=,所以122||||||||||1QF QP QF QP PF+=+≥=,当2,,Q F P,三点共线时,取等号,故正确;B.若椭圆C的短轴长为2,则1,2b a==,所以椭圆方程为22121x y+=,11121+>,则点P在椭圆外,故错误;C.因为点(1,1)P在椭圆内部,所以111a b+<,又1a b-=,所以1b a=-,所以1111+<-a a,即2310a a-+>,解得236(1244a+++>==,12+>,所以12=<e,所以椭圆C的离心率的取值范围为,故正确;2cea===1221A B A B12,F F1221A B A B ab=422430c a c a-+=42310e e-+=235e+=235e-=51e-=D .若11PF FQ =,则1F 为线段PQ 的中点,所以(3,1)Q --,所以911+=a b,又1a b -=,即21190-+=a a ,解得a ====,所以椭圆C,故正确.例7、(2020·山东高三开学考试)已知双曲线,过其右焦点的直线与双曲线交于两点、,则( )A .若、同在双曲线的右支,则的斜率大于B .若在双曲线的右支,则最短长度为C .的最短长度为D .满足的直线有4条 【答案】BD【解析】易知双曲线的右焦点为,设点、,设直线的方程为, 当时,直线的斜率为, 联立,消去并整理得. 则,解得. 对于A 选项,当时,直线轴,则、两点都在双曲线的右支上,此时直线的斜率不存在,A 选项错误;对于B 选项,,B 选项正确; 对于C 选项,当直线与轴重合时,,C 选项错误; 对于D 选项,当直线与轴重合时,; 当直线与轴不重合时,由韦达定理得,, 22:1916x y C -=F l A B A B l 43A FA 2AB 32311AB =C ()5,0F ()11,A x y ()22,B x y l 5x my =+0m ≠l 1k m=225169144x my x y =+⎧⎨-=⎩x ()221691602560m y my -++=()()222222169016042561699610m m m m ⎧-≠⎪⎨∆=-⨯-=+>⎪⎩34m ≠0m =l x ⊥A B l min 532F c a A =-=-=l x 32263AB a ==<l x 2611AB a ==≠l x 122160169m y y m +=--122256169y y m =-由弦长公式可得,解得或.故满足的直线有条,D 选项正确. 故选:BD.例8、(2020·江苏扬州中学高二月考)已知椭圆的左、右焦点分别为,且,点在椭圆内部,点在椭圆上,则以下说法正确的是( )A .的最小值为B .椭圆的短轴长可能为2C .椭圆的离心率的取值范围为D .若,则椭圆【答案】ACD【解析】A. 因为,所以,所以,当,三点共线时,取等号,故正确;B.若椭圆的短轴长为2,则,所以椭圆方程为,,则点在椭圆外,故错误;C. 因为点在椭圆内部,所以,又,所以,所以,即,解得,所以,所以椭圆的离心率的取值范围为,故正确;()2122961169m AB y y m +=-==-()226161611169m m +==-4m =±m =11AB =4()22:10x y C a b a b+=>>1F 2F 122F F =()1,1P Q 1QF QP +21a -C C ⎛ ⎝⎭11PF FQ =C 122F F =()221,0,1=F PF 1222221+=-+≥-=-QF QP a QF QP a PF a 2,,Q F P C 1,2b a ==22121x y +=11121+>P ()1,1P 111a b+<1a b -=1b a =-1111+<-a a 2310a a -+>(2136244++>==a >12=<e C 10,2⎛⎫⎪ ⎪⎝⎭D. 若,则为线段的中点,所以,所以,又,即,解得,所以椭圆的,故正确.故选:ACD例9、(2020届山东省枣庄、滕州市高三上期末)在平面直角坐标系xOy 中,抛物线2:2C y px =(0)p >的焦点为F ,准线为l.设l 与x 轴的交点为K ,P 为C 上异于O 的任意一点,P 在l 上的射影为E ,EPF ∠的外角平分线交x 轴于点Q ,过Q 作QN PE ⊥交EP 的延长线于N ,作QM PF ⊥交线段PF 于点M ,则( )A .||||PE PF =B .||||PF QF =C .||||PN MF =D .||||PN KF =【答案】ABD 【解析】由抛物线的定义,PE PF =,A 正确;∵//PN QF ,PQ 是FPN ∠的平分线,∴FQP NPQ FPQ ∠=∠=,∴||||PF QF =,B 正确; 若||||PN MF =,由PQ 是外角平分线,QN PE ⊥,QM PF ⊥得QM QN =,从而有PM PN =,于是有PM FM =,这样就有QP QF =,PFQ ∆为等边三角形,60FPQ ∠=︒,也即有60FPE ∠=︒,11PF FQ =1F PQ ()3,1Q --911+=a b1a b -=21190-+=a a 21122244++===a =C这只是在特殊位置才有可能,因此C 错误;连接EF ,由A 、B 知PE QF =,又//PE QF ,EPQF 是平行四边形,∴EF PQ =,显然EK QN =,∴KF PN =,D 正确.二、达标训练1、(2020·山东高三其他模拟)关于双曲线与双曲线,下列说法正确的是( ).A .它们有相同的渐近线B .它们有相同的顶点C .它们的离心率不相等D .它们的焦距相等【答案】CD【解析】双曲线的顶点坐标,渐近线方程:,离心率为:,焦距为10.双曲线,即:,它的顶点坐标,渐近线方程:,离心率为:,焦距为10. 所以它们的离心率不相等,它们的焦距相等. 故选:.2、(2020届山东省滨州市高三上期末)已知双曲线C :22221(0,0)x y a b a b -=>>的左、右焦点分别为1(5,0)F -,2(5,0)F ,则能使双曲线C 的方程为221169x y -=的是( )A .离心率为54B .双曲线过点95,4⎛⎫ ⎪⎝⎭C .渐近线方程为340±=x yD .实轴长为4【答案】ABC【解析】由题意,可得:焦点在x 轴上,且5c =;A 选项,若离心率为54,则4a =,所以2229b c a =-=,此时双曲线的方程为:221169x y -=,故A 正确;221:1916x y C -=222:1916y x C -=-221:1916x y C -=(3,0)430x y ±=53222:1916y x C -=-221169x y -=(4,0)±340±=x y 54CDB 选项,若双曲线过点95,4⎛⎫ ⎪⎝⎭,则22222812516125a b a b c ⎧⎪⎪-=⎨⎪+==⎪⎩,解得:22169a b ⎧=⎨=⎩;此时双曲线的方程为:221169x y -=,故B 正确;C 选项,若双曲线的渐近线方程为340±=x y ,可设双曲线的方程为:22(0)169x y m m -=>,所以216925c m m =+=,解得:1m =,所以此时双曲线的方程为:221169x y -=,故C 正确; D 选项,若实轴长为4,则2a =,所以22221b c a =-=,此时双曲线的方程为:224121x y -=,故D 错误;故选:ABC.3、(2020届山东省德州市高三上期末)已知抛物线2:2C y px =()0p >的焦点为F经过点F ,直线l 与抛物线C 交于点A 、B 两点(点A 在第一象限),与抛物线的准线交于点D ,若8AF =,则以下结论正确的是( ) A .4p = B .DF FA =C .2BD BF =D .4BF =【答案】ABC 【解析】 如下图所示:分别过点A 、B 作抛物线C 的准线m 的垂线,垂足分别为点E 、M .抛物线C 的准线m 交x 轴于点P ,则PF p =,由于直线l 60,//AE x 轴,60EAF ∴∠=,由抛物线的定义可知,AE AF =,则AEF ∆为等边三角形,60EFP AEF ∴∠=∠=,则30PEF ∠=,228AF EF PF p ∴====,得4p =,A 选项正确;2AE EF PF ==,又//PF AE ,F ∴为AD 的中点,则DF FA =,B 选项正确;60DAE ∴∠=,30ADE ∴∠=,22BD BM BF ∴==(抛物线定义),C 选项正确; 2BD BF =,118333BF DF AF ∴===,D 选项错误. 故选:ABC.4、(2020届山东省日照市高三上期末联考)过抛物线24y x =的焦点F 作直线交抛物线于A ,B 两点,M为线段AB 的中点,则( ) A .以线段AB 为直径的圆与直线32x =-相离 B .以线段BM 为直径的圆与y 轴相切 C .当2AF FB =时,92AB = D .AB 的最小值为4【答案】ACD【解析】对于选项A ,点M 到准线1x =-的距离为()1122AF BF AB +=,于是以线段AB 为直径的圆与直线1x =-一定相切,进而与直线32x =-一定相离: 对于选项B ,显然AB 中点的横坐标与12BM 不一定相等,因此命题错误. 对于选项C ,D ,设()11,A x y ,()22,B x y ,直线AB 方程为1x my =+,联立直线与抛物线方程可得2440y my --=,124y y =-,121=x x ,若设()24,4A a a ,则211,4B aa ⎛⎫- ⎪⎝⎭,于是21221424AB x x p a a=++=++,AB 最小值为4;当2AF FB =可得122y y =-, 142a a ⎛⎫=-- ⎪⎝⎭,所212a =,92AB =.故选:ACD.5、(2020届山东省临沂市高三上期末)已知P 是椭圆C :2216x y +=上的动点,Q 是圆D :()22115x y ++=上的动点,则( )A .CB .C 的离心率为6C .圆D 在C 的内部D .PQ 【答案】BC【解析】2216x y += a ∴=,1b =c ∴===C 的焦距为c e a ===.设(), P x y (x ≤≤, 则()()22222256441111665555x x y x x PD ⎛⎫++=++-=++≥> ⎪⎝⎭=,所以圆D 在C 的内部,且PQ =. 故选:BC .6、(2020届山东省烟台市高三上期末)已知抛物线2:4C y x =的焦点为F 、准线为l ,过点F 的直线与抛物线交于两点()11,P x y ,()22,Q x y ,点P 在l 上的射影为1P ,则 ( ) A .若126x x +=,则8PQ =B .以PQ 为直径的圆与准线l 相切C .设()0,1M ,则1PM PP +≥D .过点()0,1M 与抛物线C 有且仅有一个公共点的直线至多有2条 【答案】ABC【解析】对于选项A,因为2p =,所以122x x PQ ++=,则8PQ =,故A 正确;对于选项B,设N 为PQ 中点,设点N 在l 上的射影为1N ,点Q 在l 上的射影为1Q ,则由梯形性质可得111222PP QQ PF QF PQ NN ++===,故B 正确; 对于选项C,因为()1,0F ,所以1PM PP PM PF MF +=+≥=故C 正确; 对于选项D,显然直线0x =,1y =与抛物线只有一个公共点,设过M 的直线为1y kx =+, 联立214y kx y x=+⎧⎨=⎩,可得()222410k x k x +-+=,令0∆=,则1k =,所以直线1y x =+与抛物线也只有一个公共点,此时有三条直线符合题意,故D 错误; 故选:ABC7、(2020·福清西山学校高二期中)在平面直角坐标系中,动点与两个定点和连线的斜率之积等于,记点的轨迹为曲线,直线:与交于,两点,则( ) A .的方程为B .C .的渐近线与圆相切D .满足的直线仅有1条【答案】AC【解析】设点,整理得,所以点的轨迹为曲线的方程为,故A 正确;又离心率,故B 不正确; 圆的圆心到曲线的渐近线为的距离为,又圆的半径为1,故C 正确;直线与曲线的方程联立整理得,设, ,且,xOy P ()1F)2F 13P E l ()2y k x =-E A B E 221(3x y x -=≠E E ()2221x y -+=AB =l (),P xy 13=2213x y -=P E 221(3x y x -=≠e ==()2221x y -+=()20,E y x =1d ==()2221x y -+=l E ()2221(3y k x x y x ⎧=-⎪⎨-=≠⎪⎩()222213+121230k x x k k ---=()()1122,,A B x y x y ,()()()224214441312312+1>0kk kk ∆=----=2130k -≠有,所以, 要满足,则需或或,当,此时,而曲线E 上,所以满足条件的直线有两条,故D 不正确,故选:AC .2122221212123+,1313x xx k x kk k ---==--)221+13k AB k===-AB =)221+13k k=-0k =1k =1k =-0k =)()AB ,x ≠。
高考数学复习历年压轴题归类专题讲解 圆锥曲线解答题突破(解析版)1.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为12,F F ,其离心率12e =,点P为椭圆上的一个动点,12PF F △面积的最大值为(1)求椭圆的标准方程;(2)若A ,B ,C ,D 是椭圆上不重合的四个点,AC 与BD 相交于点1F ,0AC BD ⋅=,求+AC BD 的取值范围.【答案】(1)2211612x y +=;(2)96,147⎡⎤⎢⎥⎣⎦. 解:(1)由题意得,当点P 是椭圆的上、下顶点时,12PF F △的面积取最大值此时121212PF F S F F OP bc ∆=⋅⋅=所以bc = 因为12e =,所以b =4a = 所以椭圆方程为2211612x y +=(2)由(1)得椭圆方程为2211612x y +=,则1F 的坐标为(2,0)-因为0AC BD ⋅=,所以AC BD ⊥①当直线AC 与BD 中有一条直线斜率不存在时,易得6814AC BD +=+= ②当直线AC 斜率k 存在且0k ≠,则其方程为(2)y k x =+,设11(,)A x y ,22(,)C x y则点A 、C 的坐标是方程组22(2)11612y k x x y =+⎧⎪⎨+=⎪⎩的两组解所以2222(34)1616480k x k x k +++-=所以212221221634164834k x x k k x x k ⎧+=-⎪⎪+⎨-⎪⋅=⎪+⎩所以212224(1)134k AC x k+=+-=+ 此时直线BD 的方程为()12y x k=-+ 同理由221(2)11612y x k x y ⎧=-+⎪⎪⎨⎪+=⎪⎩可得2224(1)43k BD k +=+ 2222222224(1)24(1)168(1)3443(34)(43)k k k AC BD k k k k ++++=+=++++令21(0)t k k =+≠,则1t >,2168112AC BD t t+=-+ 因为1t >,所以21104t t -<≤ 所以96[,14)7AC BD +∈ 综上96[,14]7AC BD +∈2.已知椭圆C :2212x y +=.(1)曲线D :3y x =与C 相交于A ,B 两点,H 为C 上异于A ,B 的点,若直线HA 的斜率为1,求直线HB 的斜率;(2)若C 的左焦点为F ,右顶点为E ,直线l :4x =.过F 的直线l '与C 相交于P ,Q (P 在第一象限)两点,与l 相交于M ,是否存在l '使PFE △的面积等于△MPE 的面积与QFE △的面积之和.若存在,求直线l '的方程;若不存在,请说明理由.【答案】(1)12-;(2)直线l '不存在,理由见解析(1)由已知设(),H x y ,()11,A x y ,()11,B x y --, 因为点,H A 均在椭圆C 上,所以2222x y +=,221122x y +=,两式相减得()2222112x x y y -=-,又221112211112HA HBy y y y y y k k x x x x x x -+-⋅=⋅==--+-,且1HA k =, ∴12HB k =-;(2)设()04,M y ,()33,P x y ,()44,Q x y ,则()0303111222MPE S FE y FE y FE y y =⋅⋅-⋅⋅=⋅⋅-△,312PFESFE y =⋅⋅, ()412QFESFE y =⋅⋅-, 假设存在l '使得PFE △的面积等于△MPE 的面积与QFE △的面积之和,则PFE MPE QFE S S S =+△△△,即0342y y y =+①, 设l :1x my =-,令4x =,得05y m =,∴3452y y m+=②, 把1x my =-,将之代入2212x y +=,整理得()222210m y my +--=,∴34222my y m +=+③, 34212y y m =-+④,②③联立得32522m y m m =-+,42452m y m m=-+⑤, 把⑤代入④得22252451222m m m m m m m ⎛⎫⎛⎫--=- ⎪⎪+++⎝⎭⎝⎭, 化简得4219500m m ++=,由于此方程无解,故所求直线l '不存在.3.如图,已知椭圆2214y x +=,点()1,0F 是抛物线()220y px p =>的焦点,过点F 作直线l 交抛物线于,M N 两点,延长,MO NO 分别交椭圆于,A B 两点,记OMN ,OAB 的面积分别是12,S S .(Ⅰ)求p 的值及抛物线的准线方程;(Ⅱ)求12S S 的最小值及此时直线l 的方程. 【答案】(Ⅰ)2p =,准线方程1x =-;(2)12S S 的最小值为2,此时:1l x =. (Ⅰ)因为点()1,0F 是抛物线()220y px p =>的焦点,所以12p=,即2p =,因此该抛物线的准线方程为:1x =-; (Ⅱ)由(Ⅰ)得抛物线方程为:24y x =,根据题意,不妨令点M 在第一象限,点N 在第四象限,则点A 在第三象限,点B 在第二象限;若直线l 的斜率不存在,则:1l x =,代入24y x =可得2y =±,即()1,2M ,()1,2N -,则1122OMNS SOF MN ==⋅=;2OM k =,2ON k =-, 则直线:2OM y x =,直线:2ON y x =-,由22214y x y x =⎧⎪⎨+=⎪⎩得22122AA x y ⎧=⎪⎨⎪=⎩,所以2A A x y ⎧=-⎪⎨⎪=⎩,即A ⎛ ⎝;同理:B ⎛ ⎝,则AB x ⊥轴,因此21122OABS S==⨯⨯=; 此时122S S =,:1l x =;若直线l 的斜率存在,设直线l 的方程为()1y k x =-,(1,M x,(2,N x -,由()214y k x y x⎧=-⎨=⎩得()2214k x x -=,整理得()2222240k x k x k -++=, 则212224k x x k++=,121=x x ;()224224416160k k k ∆=+-=+>,所以11sin 2OMNS SOM ON MON MON ==⋅∠=∠MON MON =∠=∠;又1OM k==,2ON k ==, 所以直线:OM y x=,:ON y x =, 由2214y x y x ⎧=⎪⎪⎨⎪+=⎪⎩得1221x x x +=,即2111A x x x =+,则2211441A y x x x ==+,所以OA ==;同理OB =,所以21sin 2OABS SOA OB AOB AOB ==∠=∠A OB ∠=又AOB MON ∠=∠,所以12S S MON ===∠2==>=; 综上,12S S 的最小值为2,此时:1l x =.4.在平面直角坐标系xOy 中,已知椭圆2222:1(0,0)x y C a ba b +=>>短轴的两个顶点与右焦点的连线构成等边三角形,两准线之间的距离为.(1)求椭圆C 的标准方程;(2)直线:(0,0)l y kx m k m =+>≠与椭圆C 交于P ,Q 两点,设直线OP ,OQ 的斜率分别为1k ,2k .已知212·k k k =. ①求k 的值;②当OPQ △的面积最大时,求直线PQ 的方程.【答案】(1)2214x y +=;(2)①12k =;②112y x =±.解:(1)设椭圆的焦距为2c ,则222c a b =-.因为短轴的两个顶点与右焦点的连线构成等边三角形,所以=c .,则22a c = 所以2a =,1b =,所以椭圆C 的标准方程为2214x y +=.(2)①设1(P x ,1)y ,2(Q x ,2)y ,联立22,1,4y kx m x y =+⎧⎪⎨+=⎪⎩消去y 得222(41)8440k x kmx m +++-=, 2222644(41)(44)0k m k m ∆=-+->,化简得2241m k <+,所以122841km x x k -+=+,212244·41m x x k -=+, 又OP 的斜率111y k x =,OQ 的斜率222y k x =,所以2221212121212121212()()()·y y kx m kx m k x x km x x m k k k x x x x x x +++++====,化简得212()0km x x m ++=,所以228·041kmkm m k -+=+.又因为0m ≠,即241k =, 又0k >,所以12k =. ②由①得12k =,直线PQ 的方程为12y x m =+, 且122x x m +=-,212·22x x m =-,22m <. 又0m ≠,所以0m <<所以12PQ x ==-== 点O 到直线PQ的距离d ==,所以221(2)·122OPQm m SPQ d +-===≤=, 当且仅当222m m =-,即1m =±时,OPQ △的面积最大, 所以,直线PQ 的方程为112y x =±. 5.已知椭圆2222:1(0)x y C a b a b+=>>的两焦点为1(F,2F ,且椭圆上一点P ,满足12|||4|PF PF +=,直线:l y kx m =+与椭圆C 交于A 、B 两点,与x 轴、y 轴分别交于点G 、H ,且OA OB OM λ+=.(1)求椭圆C 的方程;(2)若k =||2AB λ==,求||||HG HM ⋅的值;(3)当△OAB 面积取得最大值,且点M 在椭圆C 上时,求λ的值.【答案】(1)2214x y +=(2)3(3)λ=(1)由题意可得2,1a c b ==⇒=,∴椭圆方程为2214x y +=(2)由题意得,此时直线方程为y m =+,将其代入椭圆方程整理可得229440x m ++-=,其中()222212836441441609m m m m ∆=--=->⇒<设()()1122,,,A x y B x y ,则2121244,99m x x x x -+=-=∴12322AB x m =-==⇒=±,由椭圆具有对称性,∴不妨取32m =,则310,,,26H G M ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴3HG HM ⋅ (3)将直线方程y kx m =+代入椭圆方程整理可得()222418440k x kmx m +++-=,其中()()222222644414464160k m k m k m ∆=-+-=-+16>,设()()1122,,,A x y B x y ,则2121222844,4141km m x x x x k k -+=-=++,∴12AB x=-=原点到直线的距离d=,∴()222241141ABCm k mSk∆++-=≤=+,当且仅当22412k m+=时等号成立,又()()121211,M x x y yλλ⎛⎫++⎪⎝⎭代入椭圆方程可得()()2212122214x x y yλλ+++=,其中221114xy+=,222214xy+=,∴整理得212128284x x y yλ++=再将1122,kx m y kx my=+=+代入,()()122128284kx mx m kxxλ+=+++整理得()()2221212828884k x x km x x mλ+++++=,()2222224488288844141m kmk km mk kλ-⎛⎫++-++=⎪++⎝⎭,整理得22λ=,λ=6.已知椭圆2222:1(0)x yC a ba b+=>>的焦距为2,过点(-.(1)求椭圆C的标准方程;(2)设椭圆的右焦点为F,定点()2,0P,过点F且斜率不为零的直线l与椭圆交于A,B两点,以线段AP为直径的圆与直线2x=的另一个交点为Q,证明:直线BQ恒过一定点,并求出该定点的坐标.【答案】(1)2212x y +=;(2)证明见解析,3(,0)2.(1)由题知2211112c a b =⎧⎪⎨+=⎪⎩ , 解得22a =,21b =, 所以椭圆C 的方程为2212x y +=;(2)设11(,)A x y ,22(,)B x y 因为直线l 的斜率不为零,令l 的方程为:1x my =+,由22112x my x y =+⎧⎪⎨+=⎪⎩ 得22(2)210m y my ++-=, 则12222m y y m +=-+,12212y y m ⋅=-+, 因为以AP 为直径的圆与直线2x =的另一个交点为Q ,所以AQ PQ ⊥,则1(2,)Q y ,则2122BQ y y k x -=-,故BQ 的方程为:2112(2)2y y y y x x --=-- , 由椭圆的对称性,则定点必在x 轴上,所以令0y =,则1212121212121(2)(1)222y x y my my y y x y y y y y y -----+=+=+=+---,而12222m y y m +=-+,12212y y m ⋅=-+,12122y y my y +-=-, 所以121211322222y y y x y y +-+=+=-+=-,故直线BQ 恒过定点,且定点为3(,0)2.7.已知()()1122,,,A x y B x y 是抛物线()2:20C x py p =>上不同两点.(1)设直线:4p l y =与y轴交于点M ,若,A B 两点所在的直线方程为1y x =-,且直线:4pl y =恰好平分AMB ∠,求抛物线C 的标准方程. (2)若直线AB 与x 轴交于点P ,与y 轴的正半轴交于点Q ,且2124p y y =,是否存在直线AB ,使得113PA PB PQ+=?若存在,求出直线AB 的方程;若不存在,请说明理由. 【答案】(1)28x y =(2)AB 方程为122py x =±+.(1)设()()1122p A x ,y ,B x ,y ,M 0,4⎛⎫⎪⎝⎭,由2x 2{1py y x ==-,消去y 整理得2x 2px 2p 0-+=,则212124p 80{x x 2x x 2p pp∆=->+==, ∵直线py 4=平分AMB ∠, ∴k k 0AM BM +=, ∴1212p p y y 440x x --+=,即:12121212p px 1x 1x x p 44210x x 4x x ----+⎛⎫+=-+= ⎪⎝⎭,∴p 4=,满足Δ0>,∴抛物线C 标准方程为2x 8y =. (2)由题意知,直线AB 的斜率存在,且不为零, 设直线AB 的方程为:y kx b(k 0b 0)=+≠>,,由2{x 2y kx bpy=+=,得2x 2pkx 2pb 0--=, ∴2212124p k 80{x x 2x x 2pb pkpb∆=+>+==-,∴()2222121222pb x x y y ?b 2p 2p 4p -===, ∵212p y y 4=, ∴22p b 4=, ∵b 0>, ∴p b 2=.∴直线AB 的方程为:p y kx 2=+. 假设存在直线AB ,使得113PA PB PQ +=,即PQ PQ 3PA PB+=, 作AA x '⊥轴,BB x '⊥轴,垂足为A B ''、,∴121212p pPQ PQ OQ OQ y y p 22·PA PB AA BB y y 2y y ++=+'=+=', ∵()21212y y k x x p 2pk p +=++=+,212p y y 4=,∴222PQ PQp 2pk p·4k 2pPA PB 24++==+,由24k 23+=,得1k 2=±, 故存在直线AB ,使得113PA PB PQ +=,直线AB 方程为1p y x 22=±+. 8.已知椭圆E :22221(0)x y a b a b +=>>的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l :3y x =-+与椭圆E 有且只有一个公共点T .(Ⅰ)求椭圆E 的方程及点T 的坐标;(Ⅱ)设O 是坐标原点,直线l '平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P ,证明:存在常数λ,使得2||||||PT PA PB λ=⋅,并求λ的值.【答案】(Ⅰ)22163x y +=,点T 坐标为(2,1);(Ⅱ)45λ=. 【解析】(Ⅰ)由已知,a =,则椭圆E 的方程为222212x y b b+=.由方程组得22312(182)0x x b -+-=.①方程①的判别式为2=24(3)b ∆-,由=0∆,得2=3b , 此时方程①的解为=2x ,所以椭圆E 的方程为22163x y +=.点T 坐标为(2,1).(Ⅱ)由已知可设直线l '的方程为1(0)2y x m m =+≠, 由方程组1{23y x m y x =+=-+,, 可得223{21.3mx my =-=+, 所以P 点坐标为(222,133m m -+),2289PT m =. 设点A ,B 的坐标分别为1122(,)(,)A x y B x y ,.由方程组22163{12x y y x m +==+,,可得2234(412)0x mx m ++-=.②方程②的判别式为2=16(92)m ∆-,由>0∆,解得m <<. 由②得212124412=,33m m x x x x -+-=.所以123m PA x ==--,同理223m PB x =--, 所以12522(2)(2)433m mPA PB x x ⋅=---- 21212522(2)(2)()433m mx x x x =---++ 225224412(2)(2)()43333m m m m -=----+ 2109m =. 故存在常数45λ=,使得2PT PA PB λ=⋅. 9.已知椭圆()2222:10x y C a b a b+=>>的左,右焦点分别为1F ,2F ,若椭圆经过点)1P-,且12PF F △的面积为2.(1)求椭圆C 的标准方程;(2)设斜率为1的直线l 与圆22:O x y b +=交于A ,B 两点,与椭圆C 交于C ,D 两点,且()R CD AB λλ=∈,当λ取得最小值时,求直线l 的方程并求此时λ的值.【答案】(1)22184x y +=;(2)3,y x =. 解:(1)由12PF F △的面积可得12122c ⨯⨯=.即2c =,∴224a b -=.①又椭圆C 过点)1P,∴22611a b +=.②由①②解得a =2b =.故椭圆C 的标准方程为22184x y +=.(2)由题知圆221:2O x y +=,设直线l 的方程为y x m =+,则原点到直线l的距离d =,由弦长公式可得AB ==.将y x m =+代入椭圆方程22184x y+=,得2234280x mx m ++-=,由判别式()221612280m m ∆=-->,解得m -<由直线和圆相交的条件可得d r <<,也即22m -<<,综上可得m 的取值范围是()2,2-. 设()11,C x y ,()22,D x y ,则1243m x x +=-,212283m x x -=,由弦长公式,得CD === 由CD AB λ=,得CD AB λ===∵22m -<<,∴2044m <-≤,则当0m =时,λ取得最小值3,此时直线l 的方程为y x =.10.在平面直角坐标系中,已知椭圆()2222:10x y C a b a b +=>>,直线():,R,0l y kx t k t k =+∈≠.(1)若椭圆C 的一条准线方程为4x =,且焦距为2,求椭圆C 的方程;(2)设椭圆C 的左焦点为F ,上顶点为A ,直线l 过点F ,且与FA 垂直,交椭圆C 于M ,N (M 在x 轴上方),若2NF FM =,求椭圆C 的离心率;(3)在(1)的条件下,若椭圆C 上存在相异两点P ,Q 关于直线l 对称,求2t 的取值范围(用k 表示).【答案】(1)22143x y +=;(2)e =(3)220,34k k ⎡⎫⎪⎢+⎣⎭.(1)设椭圆C 的半焦距为c ,因为椭圆C 的一条准线方程为4x =,且焦距为2,所以22224,22a c c a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得2,1a b c =⎧⎪=⎨⎪=⎩C 的方程为22143x y +=.(2)如图,因为()0,A b ,(),0F c -,所以AF b k c=, 因为直线l 过点F ,且与FA 垂直,所以直线l 的方程为bx y c c=--,与椭圆C 的方程联立得()4222324220b a c y b c y b c ++-=,因为l 过左焦点F , 所以>0∆恒成立,设()11,M x y ,()22,N x y ,则321242242124222,b c y y b a cb c y y b a c ⎧+=-⎪⎪+⎨⎪=-⎪+⎩(*), 因为2NF FM =, 所以212y y =-,代入(*)得32142242214222,2b c y b a cb cy b a c ⎧-=-⎪⎪+⎨⎪-=-⎪+⎩, 消去1y 并化简得4222280b a c b c +-=, 因为222b a c =-, 所以()()2222222280a ca c a a c c -+--=,即4224990c a c a -+=, 因为c e a=,所以429910e e -+=,解得2e =,所以6e ==.(3)如图,设()11,P x y ,()22,Q x y ,PQ 的中点()00,x y ,则221122221,43143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减并化简得 2121212134y y y y x x x x -+⋅=--+,即0034PQ y k x ⋅=-,因为1PQ k k=-,所以0034ky x =, 又00y kx t =+,所以004,3t x k y t⎧=-⎪⎨⎪=-⎩, 因为点()00,x y 在椭圆C 的内部,所以()2243143t t k ⎛⎫- ⎪-⎝⎭+<,化简得22234k t k <+.故2t 的取值范围为220,34kk ⎡⎫⎪⎢+⎣⎭.11.已知椭圆22221(0)x y a b a b +=>>的左、右焦点分别为12,F F,离心率为2,P 是椭圆上一点,且△12PF F 面积的最大值为1.(1)求椭圆C 的方程;(2)过2F 且不垂直坐标轴的直线l 交椭圆C 于A ,B 两点,在x 轴上是否存在一点(,0)N n ,使得22||:||:AN BN AF BF =,若存在,求出点(,0)N n ,若不存在,说明理由.【答案】(1)2212x y +=;(2)(1,0)N ,过程见解析(1)121212PF F P SF F y =,由椭圆性质知当=P y b 时,△12PF F 面积最大. 由题得:22212122c b c a a b c ⎧⨯⨯=⎪⎪⎪=⎨⎪⎪=+⎪⎩解得1a b ⎧=⎪⎨=⎪⎩所以椭圆方程为:2212x y +=(2)设直线方程为(1)y k x =-,1122(,),(,)A x y B x y22(1)21y x x y k =-+=⎧⎪⎨⎪⎩ 化简得2222(21)4220k x k x k +-+-= 22121222422,2121k k x x x x k k -+==++ 22||:||:AN BN AF BF =,如图,作//AM BN 交2NF 延长线与M 点, 易证得22||||AF AM BN BF =,22||:||:AN BN AF BF = AM AN ∴= 22ANF BNF ∴∠=∠所以2F N 是ANB ∠的角平分线,则有0NB NA k k +=12120y yx n x n+=-- ,1221(1)(1)0y x y x ∴-+-= 1122,y kx k y kx k =-=-1221()(1)()(1)0kx k x kx k x ∴--+--= 12212()(+)20kx x kn k x x kn ∴+++=22222242()202121k k k kn k kn k k -∴⨯+++=++ 化简得1n =所以存在点(1,0)N 满足题意.12.已知椭圆()2222:10x y E a b a b +=>>的上顶点为P ,4,33b Q ⎛⎫ ⎪⎝⎭是椭圆E 上的一点,以PQ 为直径的圆经过椭圆E 的右焦点F .(1)求椭圆E 的方程;(2)过椭圆E 右焦点F 且与坐标轴不垂直的直线l 与椭圆E 交于A ,B 两点,在直线2x =上是否存在一点D ,使得ABD △为等边三角形?若存在,求出等边三角形ABD △的面积;若不存在,请说明理由.【答案】(1)2212x y +=;(2.解:依据题意得22224331b a b⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭+=,得22a =,()0,P b ,(),0F c 又2220a b c PF QF ⎧=+⎨⋅=⎩, 22224033b cb c c ⎧=+⎪⎨⎛⎫---= ⎪⎪⎝⎭⎩, 1b c ∴==, ∴椭圆的方程为2212x y +=.(2)假设在直线2x =上存在一点D 使得ABD ∆为等边三角形,设直线():1l y k x =-由()22112y k x x y ⎧=-⎪⎨+=⎪⎩得,()2222214220k x k x k +-+-= ()()()42221642122810k k k k ∆=-+-=+>,设()11,A x y ,()22,B x y ,AB 的中点为()00,M x y则2122421k x x k ,21222221k x x k -=+ 202221k x k =+,()002121k y k x k -=-=+ )22121k AB k +∴=+.DBA △为等边三角形,所以MD 的斜率为1k-,又D 点的横坐标为2,2022221D k x k MD +∴=-=+DBA △为等边三角形,DM B ∴=)222212221221k k k k ++=++,得22k =.AB ∴=,DBA ∴△的面积为2513.已知椭圆()2222:10x y C a b a b+=>>的短轴长为13.(1)求椭圆C 的标准方程;(2)设椭圆C 的左,右焦点分别为1F ,2F 左,右顶点分别为A ,B ,点M ,N ,为椭圆C 上位于x 轴上方的两点,且12//F M F N ,记直线AM ,BN 的斜率分别为1k ,2k ,若12320k k +=,求直线1F M 的方程.【答案】(1)22198x y (2)0y -+=(1)由题意,得2b =c 1a 3=.又222a c b -=,∴a 3=,b =c 1=.∴椭圆C 的标准方程为22x y 198+=(2)由(1),可知()A 3,0-,()B 3,0,()1F 1,0-. 据题意,直线1F M 的方程为x my 1=-记直线1F M 与椭圆的另一交点为M ',设()()111M x ,y y 0>,()22M x ,y '.∵12FM //F N ,根据对称性,得()22N x ,y --. 联立228x 9y 721x my ⎧+=⎨=-⎩,消去x ,得()228m 9y 16my 640+--=,其判别式Δ0>,∴12216m y y 8m 9+=+,12264y y 8m 9=-+.① 由123k 2k 0+=,得12123y 2y 0my 2my 2+=++,即12125my y 6y 4y 0++=.② 由①②,解得12128m y 8m 9=+,22112my 8m 9-=+ ∵1y 0>,∴m 0>.∴()()12222128m?112m 64y y 8m 98m 9--==++.∴m = ∴直线1F M的方程为x y 1=-,即y 0-+=. 14.已知椭圆22221(0)x y a b a b +=>>的右焦点为F ,T 为椭圆上一点,O 为坐标原点,椭圆的离心率为,且TFO △面积的最大值为12.(1)求椭圆的方程;(2)设点()0,1A ,直线l :(1)y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ;直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若2OM ON ⋅=,求证:直线l 经过定点.【答案】(1)2212x y +=;(2)证明见解析.(1)设()00,T x y ,(c,0)F,由2c a =,可得222a c =, 依题意max 1122S cb =⋅=,所以a =1b =,所以椭圆C 的方程为2212x y +=.(2)设()11,P x y ,()22,Q x y .联立2212(1)x y y kx t t ⎧+=⎪⎨⎪=+≠⎩得()222124220k x ktx t +++-=,>0∆,122412kt x x k +=-+,21222212t x x k -=+,直线AP :1111y y x x --=,令0y =得111x x y -=-,即111x OM y -=-;同理可得221x ON y -=-. 因为2OM ON =,所以()12121212122111x x x x y y y y y y --==---++化简得221121t t t -=-+,解得只有0t =满足题意, 所以直线方程为y kx =,所以直线l 恒过定点(0,0).15.已知抛物线C :24y x =的焦点为F ,过F 的直线l 与抛物线C 交于A ,B 两点,其中点A 在第一象限,AD DB =.(1)若49OD k =(O 为坐标原点),求直线l 的方程; (2)点P 在x 轴上运动,若0,2FAP π⎛⎫∠∈ ⎪⎝⎭,求点P 横坐标的取值范围.【答案】(1) 210x y --=或440x y --=;(2) [)()0,11,9;解:(1)由题意得(1,0)F ,设直线l 的方程为:1x ty =+,设()()1122,,,A x y B x y ,线段MN 的中点()00,D x y ,联立直线与抛物线的方程:214x ty y x=+⎧⎨=⎩,整理可得:2440y ty --=,可得124y y t +=,124y y =-,所以02y t =,200121x ty t =+=+,即()221,2D t t +,所以2221OD t k t =+,由题意可得224219t t =+,解得2t =或14t =, 所以直线l 的方程为:210x y --=或440x y --=;(2)0,2FAP π⎛⎫∠∈ ⎪⎝⎭,即FAP ∠恒为锐角,等价于0AF AP ⋅>,设()2110,,(1,0),,0,4y A y F P x ⎛⎫⎪⎝⎭2211011,,1,44y y AP x y AF y ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭,则224222111101103110441644y y y y AP AF x y y x ⎛⎫⎛⎫⎛⎫⋅=--+=++-> ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭恒成立, 令214y t =,则0t >,原式等价于203(1)0t t t x ++->,对任意的0t >恒成立,令200()(3)h t t x t x =+-+,①△220000(3)41090x x x x =--=-+<,解得:019x <<,②00302(0)0x h ⎧⎪-⎪⎨⎪⎪⎩,解得:001x , 又01x ≠,故001x <, 综上所述:0x 的取值范围[)()0,11,9.16.已知()1,0F -,Q 是圆K :222150x x y -+-=上的任意一点,线段FQ 的垂直平分线交QK 于点P .(1)求动点P 的轨迹E 的方程;(2)过F 作E 的不垂直于y 轴的弦AB ,M 为AB 的中点,O 为坐标原点,直线OM 与E 交于点C 、D ,求四边形ABCD 面积的取值范围.【答案】(1)22143x y +=;(2)6S ≤< (1)由题意可知42PF PK PQ PK FK +=+=>=, 所以动点P 的轨迹是以F 、K 为焦点且长轴长为4的椭圆.因此E 的方程为22143x y +=.(2)由题意可设AB 的方程为1x ky =-,代入2234120x y +-=,得()2234690k y ky +--=,设()11,A x y ,()22,B x y , 则122634k y y k +=+,122934y y k =-+.设1200023(,),234y y kM x y y k +==+, 2002234113434k x ky k k =-=-=-++, 所以2243,3434k M k k ⎛⎫- ⎪++⎝⎭,OM 的斜率为34k -. 直线OM 的方程为34ky x =-, 代入2234120x y +-=,解得221634x k =+,所以CD ==, 设点A ,B 到OM 的距离分别为1d ,2d ,则1d =,2d =()1212ACBDS CD d d =+===12y =-==== 所以,6S ≤<(当且仅当0k =等号成立).17.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,且12F F =过椭圆的右焦点2F 作长轴的垂线与椭圆,在第一象限交于点P ,且满足127PF PF =.(1)求椭圆的标准方程;(2)若矩形ABCD 的四条边均与椭圆相切,求该矩形面积的取值范围.【答案】(1)2214x y +=(2)[]8,10(1)由12F F =c =设2PF x =,因为127PF PF =,所以17PF x =,在Rt △12PF F 中,2221212PF PF F F =+,即224912x x =+,所以12x =, 所以284a x ==,解得2222,1a b a c ==-=,所以椭圆的标准方程为2214x y +=.(2)记矩形面积为S ,当矩形一边与坐标轴平行时,易知8S =.当矩形的边与坐标轴不平行时,根据对称性,设其中一边所在直线方程为y kx m =+,则对边所在直线方程为y kx m =-,另一边所在的直线方程为1y x n k =-+,则对边所在直线方程为1y x n k=--, 联立2244x y y kx m⎧+=⎨=+⎩,得()()222148410k x kmx m +++-=,由题意知()()222264161140k m m k ∆=--+=,整理得2241k m +=,矩形的一边长为1d =,同理2241n k +=,矩形的另一边长为2d =,122|4|1mnkS d dk=⋅==+44==44==因为0k≠,所以20k>,所以2212kk+≥(当且仅当21k=时等号成立),所以22990,142kk⎛⎤∈ ⎥⎝⎦++52,2⎛⎤⎥⎝⎦,所以(8,10]S∈.综上所述,该矩形面积的取值范围为[]8,10.18.已知椭圆2214yx+=,直线1l y kx=+:分别与x轴y轴交于,M N两点,与椭圆交于,A B两点.(1)若AM NB=,求直线l的方程;(2)若点P的坐标为()0,2,-求PAB△面积的最大值.【答案】(1)21y x=±+;(2(1)设()()1122,,,A x yB x y联立直线方程与椭圆方程有22141yxy kx⎧+=⎪⎨⎪=+⎩有()224230,k x kx++-=有12224x x kk+=-+,()1212224224k x xy yk+++==+,所以AB 中点坐标为224,44k k k ⎛⎫- ⎪++⎝⎭,(0)k ≠ 由1,0M k ⎛⎫- ⎪⎝⎭,()0,1N ,MN 中点坐标为11,22k ⎛⎫- ⎪⎝⎭.因为AM NB =,所以线段MN 的中点与AB 的中点重合,有221241424k k k k ⎧-=-⎪⎪+⎨⎪=⎪+⎩ 解得:2k =± (2)12|3|21PABSx x =⨯⨯-=由(1)中可知12224kx x k +=-+,12243x x k =-+⋅故PABS=661==因为3,43所以6331PAB S ∆=,当0k =时PAB △面积最大.19.如图所示,椭圆()222210x y a b a b +=>>的左、右顶点分别为1A 、2A ,上、下顶点分别为1B 、2B ,右焦点为F ,13A F =,离心率为12.(1)求椭圆的方程;(2)过点()0,1E 作不与y 轴重合的直线l 与椭圆交于点M 、N ,直线1MB 与直线2NB 交于点T ,试讨论点T 是否在某条定直线上,若存在,求出该直线方程,若不存在,请说明理由.【答案】(1)22143x y +=;(2)存在,且定直线方程为3y =. (1)由题意可得1123c e a A F a c ⎧==⎪⎨⎪=+=⎩,解得2a =,1c =,b ∴==因此,椭圆的标准方程为22143x y +=;(2)由题意可知直线l 的斜率存在,设直线l 的方程为1y kx =+,设点()11,M x y 、()22,N x y ,联立2213412y kx x y =+⎧⎨+=⎩,消去x 并整理得()2243880k x kx ++-=, ()()22264324396210k k k ∆=++=+>, 由韦达定理得122843k x x k +=-+,122843x x k =-+.易知点(1B、(20,B ,直线1MB的斜率为(11111kx k x +==,直线1MB的方程为1y k x = 直线2NB的斜率为(222221kx y k x x ++==,直线2NB的方程为2y k x =由1y k x =,2y k x =(112212211kx kx x x k k x ++-===,其中12122843kkx x x x k =-=++,((121221222122x x x x x x x ⎡⎤-+++++====解得3y =.因此,点T 在定直线3y =上.20.如图,焦点在x 轴上的椭圆1C 与焦点在y 轴上的椭圆2C 都过点(0,1)M ,中心都在坐标原点,且椭圆1C 与2C.(1)求椭圆1C 与椭圆2C 的标准方程;(2)过点M 且互相垂直的两直线分别与椭圆1C ,2C 交于点A ,B (点A 、B 不同于点M ),当MAB △的面积取最大值时,求直线MA ,MB 斜率的比值.【答案】(1)2213x y +=,22+31y x =;(2.(1)设椭圆2212211:1x y C a b +=,2222222:1y x C a b +=,依题意得对1C :11b =,222112123a b e e a -=⇒==,得213a ,1C ∴:2213x y +=,同理对2C :21a =,2222222233a b e e a -=⇒==,得2213b , 2C ∴:22+311x y =,即22+31y x=;(2)设直线MA MB ,的斜率分别为12k k ,, 则MA :11y k x =+,与椭圆方程联立得:2222111313031x y x k x y k x ⎧+=⎪⇒++-=⎨⎪=+⎩(), 得22113160k x k x ()++=,得1216=31A k x k -+,212131=31A k y k -++,所以2112211631(,)3131k k A k k -+-++,同理可得222222223,33k k B k k ⎛⎫-- ⎪++⎝⎭, 所以221122222211226622=(,),,313133k k k k MA MB k k k k ⎛⎫----= ⎪++++⎝⎭,MA MB ⊥,从而可以求得611=22S MA MB ⎛⋅=- 112222222242436412334163k k k k k k 121=2313k k ++, 因为121k k =-,所以()()3112216+=31k k S k+,不妨设()()31111221+031k k k f k k >=+,,()()2341112136131k k f kk'--+=+,令()0f k '=,即4211361=0k k --+,解得2113=,3k k -=当1111()0,),(0)k f k k f k ∈'>∈+∞'<,当1k =时,1()f k 取得极大值也是最大值,即S 取得最大值, 此时两直线MA ,MB斜率的比值21123==3k k k --. 21.已知椭圆D :22221x y a b +=(0a b >>)的短轴长为2(1)求椭圆D 的方程;(2)点()0,2E ,轨迹D 上的点A ,B 满足EA EB λ=,求实数λ的取值范围.【答案】(1)2214x y +=(2)1,33⎡⎤⎢⎥⎣⎦(1)由已知2221a b c b c a⎧⎪=+⎪⎪=⇒⎨⎪⎪=⎪⎩ 2a =,1b =,c =所以D 的方程为2214x y +=(2)过()0,2E 的直线若斜率不存在,则13λ=或3.设直线斜率k 存在()11,A x y ,()22,B x y222440y kx x y =+⎧⇒⎨+-=⎩ ()221416120k x kx +++=则()()()()122122120,116,21412,314,4k x x k x x kx x λ⎧∆≥⎪-⎪+=⎪+⎨⎪=⎪+⎪=⎩由(2)(4)解得1x ,2x 代入(3)式得()2222161214141k k k λλ-⎛⎫⋅= ⎪++⎝⎭+ 化简得()22314641k λλ⎛⎫=+ ⎪⎝⎭+ 由(1)0∆≥解得234k ≥代入上式右端得 ()2311641λλ<≤+ 解得133λ<<综上实数λ的取值范围是1,33⎡⎤⎢⎥⎣⎦.点睛:解析中出现EA EB λ=属于 λ问题,由EA EB λ=得出12x x λ=,结合韦达定理找到λ与k的关系,再利用0∆≥建立不等关系即得解.22.已知点F 是抛物线2:2(0)C x py p =>的焦点,点00(3,)(1)P y y >是抛物线C 上一点,且134PF =,Q 的方程为22(3)6x y +-=,过点F 作直线l ,与抛物线C 和Q 依次交于.(如图所示)(1)求抛物线C 的方程; (2)求()MB NA AB +的最小值.【答案】(1);(2).由在抛物线上得,又由得,解得,,又,故.所以抛物线的方程为.由题知直线的斜率一定存在,设直线的方程为.则圆心到直线的距离为,.设,,由得,则,由抛物线定义知,.设,则,,函数在上都是单调递增函数,当时即时,有最小值.23.已知椭圆方程为22163x y +=.(1)设椭圆的左右焦点分别为1F 、2F ,点P 在椭圆上运动,求1122PF PF PF PF +⋅的值;(2)设直线l 和圆222x y +=相切,和椭圆交于A 、B 两点,O 为原点,线段OA 、OB 分别和圆222x y +=交于C 、D 两点,设AOB ∆、COD ∆的面积分别为1S 、2S ,求12S S 的取值范围.【答案】(1)6;(2)2,2⎡⎢⎣⎦.(1)由已知,())12,F F ,设(),P x y ,由1PF x ⎫===⎪⎪⎭,同理22PF x ⎫=⎪⎪⎭,可得21216222PF PF x x x ⎫⋅==-⎪⎪⎭,())2212,,3x y x y x PF y PF ⋅=--⋅-=+-.结合22163x y +=,得22132y x =-,故221212116622PF PF PF PF x x ⋅+⋅=-+=;(2)当直线l 的斜率不存在时,其方程为x=由对称性,不妨设x =,此时()(),,1,1,1,1ABC D -,故12221S S ==. 若直线l 的斜率存在,设其方程为y kx m =+,由已知可得=()2221m k =+,设()11,A x y 、()22,B x y ,将直线l 与椭圆方程联立,得()222214260k x kmx m +++-=,由韦达定理得122421km x x k +=-+,21222621m x x k -=+.结合OC OD ==22221122113,322x y y x =-=-,可知121sin 1212sin 2OA OB AOBS OA OB S OC OD COD ⋅⋅∠==⋅=⋅⋅∠==将根与系数的关系代入整理得:12S S = 结合()2221m k =+,得12S S = 设2211t k =+≥,(]10,1u t=∈,则122,2S S ⎡===⎢⎣⎦. 12S S ∴的取值范围是⎡⎢⎣⎦..24.如图在平面直角坐标系xOy 中,已知椭圆22122:1x y C a b+=,()22222:1044x y C a b a b+=>>,椭圆2C 的右顶点和上顶点分别为A 和B ,过A ,B 分别引椭圆1C 的切线1l,2l ,切点为C ,D .(1)若2a =,1b =,求直线1l 的方程; (2)若直线1l 与2l 的斜率之积为916-,求椭圆1C 的离心率. 【答案】(1))4y x =±-;(2(1)当2a =,1b =,221:14x C y +=,222:1164x y C +=.()4,0A , 设过()4,0A 处的切线方程为()4y k x =-,代入1C ,得()222214326440k x k x k +-+-=.令()()()2222324146440k k k ∆=-+-=,得2112k =,k =, 所以1l的方程为:)4y x =-. (2)设1l ,2l 的斜率分别为1k ,2k ,则12916k k =-, 1l ,2l 的方程分别:()12y k x a =-,22y b k x -=.联立()1222221y k x a x y ab ⎧=-⎪⎨+=⎪⎩,消去y ,得()2222324222111440b a k x a k x a k a b +-+-=. 由()()64222422211116440a k b a k a k a b ∆=-+-=,得22213a k b =.联立2222221y b k x x y ab -=⎧⎪⎨+=⎪⎩,消去y ,得()222222222430b a k x a bk x a b +++=.由()422222222216120a b k b a k a b '∆=-+=,得22223a k b =.故422412a k k b =,344a b e ⇒=⇒=.25.已知椭圆()2222:10x y C a b a b +=>>1)2M -是椭圆C 上的一点.(1)求椭圆C 的方程;(2)过点(4,0)P -作直线l 与椭圆C 交于不同两点A 、B ,A 点关于x 轴的对称点为D ,问直线BD 是否过定点?若是,求出该定点的坐标;若不是,请说明理由.【答案】(1)2214x y +=;(2)是,(1,0)-.(1)∵c a =,222a b c =+,∴224a b =,∴222214x y b b+=,将1)2M -代入椭圆C ,∴21b =,∴22:14xC y +=.(2)显然AB 斜率存在,设AB 方程 为:(4)y k x =+,2222221(14)3264404(4)x y k x k x k y k x ⎧+=⎪⇒+++-=⎨⎪=+⎩, 2161920k ∆=->,∴2112k <. 设11(,)A x y ,22(,)B x y ,11(,)D x y -,∴21223214k x x k +=-+,212264414k x x k -=+,∵()211121:y y BD y y x x x x ++=--,∴0y =时211112*********()()8x y x y kx x k x x x x y y k x x k -++=+=+++2233222332644322()4()1288128141413232832()814k k k k k k k k k k k k k k kk -+---++===--++-++,∴直线BD 过定点(1,0)-.26.已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为1F ,2F,离心率为2,过2F 且与x 轴不重合的直线l 交椭圆C 于A ,B 两点,1ABF ∆的周长为8.(1)求椭圆C 的方程;(2)已知直线1l 的方程为y kx m =+,直线2l 的方程为2()y kx m =+,其中01m <<.设1l 与椭圆C 交于M ,N 两点,2l 与圆22:4O x y +=交于P ,Q 两点,求MONPOQS S ∆∆的值.【答案】(1)2214x y +=;(2)12.(1)由题意,椭圆2222:1(0)x y C a b a b+=>>,且1ABF 的周长为8,根据椭圆的定义,可得1ABF 的周长为12124AF AF BF BF a ,即48a =,即2a =,又因为c e a ==c =1b ==, 所以椭圆C 的标准方程为2214x y +=.(2)设()11,M x y ,()22,N x y ,联立方程组2214x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得()()222418410k x kmx m +++-=.由()()222264164110k m k m ∆=-+->,可得2241k m +>,且2121222844,1414km m x x x x k k-+=-+=++由弦长公式,可得12214MN x k=-=⋅+ 又因为点O 到直线1l的距离1d ==所以112MONS MN d =⋅=△.因为圆O 的方程为224x y +=,所以圆O 的圆心到直线2l的距离2d =所以PQ ==,所以212POQS PQ d =⋅=△,所以12MON POQ S S =△△. 27.已知椭圆C :22221x y a b +=(0a b >>)的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:||||AN BM ⋅为定值.【答案】(1)2214x y +=;(2)证明见解析.(Ⅰ)由题意得解得.所以椭圆的方程为.(Ⅱ)由(Ⅰ)知,,设,则.当时,直线的方程为.令,得,从而.直线的方程为.令,得,从而.所以. 当时,,所以. 综上,为定值.28.已知椭圆C :()222210x y a b a b +=>>的左焦点()1F ,点1,2Q ⎛⎫ ⎪ ⎪⎝⎭在椭圆C 上. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)经过圆O :225x y +=上一动点P 作椭圆C 的两条切线,切点分别记为A ,B ,直线PA ,PB 分别与圆O 相交于异于点P 的M ,N 两点.(i )当直线PA ,PB 的斜率都存在时,记直线PA ,PB 的斜率分别为1k ,2k .求证:121k k =-;(ii )求ABMN的取值范围.。
高考数学《圆锥曲线》解答题专题复习题1.已知双曲线22221(00)y x a b a b-=>>,与双曲线22142x y -=有相同的渐近线,且经过点M.(1)求双曲线C 的标准方程.(2)已知直线0x y m -+=与曲线C 交于不同的两点A ,B ,且线段AB 的中点在圆2220x y +=上,求实数m 的值.2.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,1A 、2A 分别为椭圆C 的左、右顶点,1F 、2F 分别为椭圆C 的左、右焦点,112A F =.(1)求椭圆C 的方程;(2)设与x 轴不垂直的直线l 交椭圆C 于P 、Q 两点(P 、Q 在x 轴的两侧),记直线1A P ,2A P ,2A Q ,1A Q 的斜率分别为1k ,2k ,3k ,4k .(i )求12k k 的值;(ii )若()142353k k k k +=+,求2F PQ △面积的取值范围.3.已知双曲线()2222Γ:10,0x y a b a b-=>>的左右顶点分别为点,A B ,其中2AB =,且双曲线过点()2,3C .(1)求双曲线Γ的方程;(2)设过点()1,1P 的直线分别交Γ的左、右支于,D E 两点,过点E 作垂直于x 轴的直线l ,交线段BC 于点F ,点G 满足EF FG =.证明:直线DG 过定点,并求出该定点.4.已知双曲线C 的渐近线方程是y =,点()2,3M在双曲线C 上.(1)求双曲线C 的离心率e 的值;(2)若动直线l :1y kx =+与双曲线C 交于A ,B 两点,问直线MA ,MB 的斜率之和是否为定值?若是,求出该定值;若不是,请说明理由.5.已知椭圆C 的中心在原点,一个焦点为()10F ,(1)求椭圆C 的标准方程;(2)设过焦点F 的直线l 与椭圆C 交于A 、B 两点,1F 是椭圆的另一个焦点,若1ABF 内切圆的半径r =l 的方程.6.已知椭圆2222:1(0)x y C a b a b +=>>的离心率e =C经过点2⎛ ⎝⎭.(1)求椭圆C 的标准方程;(2)过点()2,0P 且斜率不为零的直线与椭圆C 交于,B D 两点,B 关于x 轴的对称点为A ,求证:直线AD 与x 轴交于定点Q .7.已知椭圆221:4T x y +=,1F 、2F 为椭圆的左右焦点,C 、D 为椭圆的左、右顶点,直线1:2l y x m =+与椭圆T 交于A 、B 两点.(1)若12m =-,求AB ;(2)设直线AD 和直线BC 的斜率分别为1k 、2k ,且直线l 与线段12F F 交于点M ,求12k k 的取值范围.8.已知椭圆()2222:10x y C a b a b +=>>12D ⎫⎪⎭,点,A B 分别是椭圆C 的左、右顶点.(1)求椭圆C 的方程;(2)过点()4,0E 的直线l 与椭圆C 交于,P Q 两点(P 在,E Q 之间),直线,AP BQ 交于点M ,记,ABM PQM 的面积分别为12,S S ,求12S S的取值范围.第8题图第9题图9.如图,已知椭圆C 的焦点为()11,0F -,()21,0F,椭圆C 的上、下顶点分别为,A B ,右顶点为D ,直线l 过点D 且垂直于x 轴,点Q 在椭圆C 上(且在第一象限),直线AQ 与l 交于点N ,直线BQ 与x 轴交于点M .(1)求椭圆C 的标准方程;(2)判定AOM (O 为坐标原点)与ADN △的面积之和是否为定值?若是,请求出该定值;若不是,请说明理由.10.已知双曲线过点(A ,它的渐近线方程是20x y ±=.(1)求双曲线的标准方程;(2)若直线l 交C 于,P Q 两点,直线,AP AQ 的倾斜角互补,求直线l 的斜率.11.已知点(2,0)A -,(2,0)B ,平面内一动点M 满足直线AM 与BM 的斜率乘积为14-.(1)求动点M 的轨迹C 的方程;(2)直线l 交轨迹C 于,P Q 两点,若直线AP 的斜率是直线BQ 的斜率的4倍,求坐标原点O 到直线l 的距离的取值范围.12.若双曲线E :2221(0)x y a a-=>y =kx -1与双曲线E 的右支交于A ,B 两点.(1)求k 的取值范围;(2)若AB =,点C 是双曲线上一点,且()OC m OA OB =+,求k ,m 的值.13.已知1F ,2F 分别是椭圆G22+22=1>>0的左、右焦点,且焦距为MN 平行于x 轴,且114F M F N +=.(1)求椭圆E 的方程;(2)设A ,B 为椭圆E 的左右顶点,P 为直线:4l x =上的一动点(点P 不在x 轴上),连AP 交椭圆于C 点,连PB 并延长交椭圆于D 点,试问是否存在λ,使得ACD BCD S S λ= 成立,若存在,求出λ的值;若不存在,说明理由.14.平面上的动点(,)P x y 到定点(0,1)F 的距离等于点P 到直线1y =-的距离,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)直线:l y x m =+与曲线C 相交于A ,B 两点,线段AB 的中点为M .是否存在这样的直线l ,使得MF AB ⊥,若存在,求实数m 的值,若不存在,请说明理由.15.已知双曲线()22:1,,24x C y M m -=,斜率为k 的直线l 过点M .(1)若0m =,且直线l 与双曲线C 只有一个交点,求k 的值;(2)已知点(2,0)T ,直线l 与双曲线C 有两个不同的交点A ,B ,直线,TA TB 的斜率分别为12,k k ,若12k k +为定值,求实数m 的值.16.已知椭圆(2222:10)x y C a b a b+=>>的离心率为12,左焦点F 与原点O 的距离为1,正方形PQMN 的边PQ ,MN 与x 轴平行,边PN ,QM 与y 轴平行,2112,,,7777P M ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,过F 的直线与椭圆C 交于A ,B 两点,线段AB 的中垂线为l .已知直线AB 的斜率为k ,且0k >.(1)若直线l 过点P ,求k 的值;(2)若直线l 与正方形PQMN 的交点在边PN ,QM 上,l 在正方形PQMN 内的线段长度为s ,求sAB的取值范围.17.已知F 是椭圆C :2222+1(0)x y a b a b=>>的一个焦点,点13,2M 在椭圆C 上.(1)求椭圆C 的方程;(2)若直线l 与椭圆C 分别相交于A ,B 两点,且12OA OB k k +=-(O 为坐标原点),求直线l 的斜率的取值范围.参考答案1.(1)2212x y -=(2)2m =±2.(1)2211612x y +=(2)(i )34-;(ii )950,2⎛ ⎝⎭3.(1)2213y x -=(2)证明略,(1,0)B 4.(1)2(2)是,35.(1)2212x y +=(2)1x y =±+6.(1)2212x y +=(2)证明略7.(1(2)7⎡-+⎣8.(1)2214x y +=(2)()0,19.(1)2212x y +=(2210.(1)2214x y -=(2)11.(1)2214x y +=(0)y ≠(2)6(0,)512.(1)((2)51,24k m ==±13.(1)2214x y +=(2)存在,314.(1)24x y =;(2)不存在15.(1)12k =±或k =(2)2m =.16.(1)1k =(2)12,78⎛ ⎝⎦17.(1)2214x y +=(2)1[,0)(1,)4-+∞。
高考数学专题复习-完美版圆锥曲线知识点总结1.椭圆的概念椭圆是平面内与两个定点F1、F2的距离的和等于常数2a (大于|F1F2|)的点的轨迹。
这两个定点叫做椭圆的焦点,两焦点的距离2c叫椭圆的焦距。
若M为椭圆上任意一点,则有|MF1|+|MF2|=2a。
椭圆的标准方程为:x^2/a^2+y^2/b^2=1(a>b>0,焦点在x轴上)或x^2/b^2+y^2/a^2=1(a>b>0,焦点在y轴上)。
2.椭圆的性质①范围:由标准方程得知,椭圆位于直线x=±a,y=±b所围成的矩形里。
②对称性:椭圆关于x轴、y轴和原点对称。
这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心。
③顶点:椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。
同时,线段A1A2、B1B2分别叫做椭圆的长轴和短轴,它们的长分别为2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长。
④离心率:椭圆的焦距与长轴的比e=c/a。
其中,c表示焦距,a表示长半轴长。
椭圆的离心率可以通过长轴和短轴的长度计算得出。
由于长轴大于短轴,因此离心率e的值介于0和1之间。
当离心率接近1时,短轴b的长度会越来越小,导致椭圆变得越扁;反之,当离心率接近0时,短轴b的长度会越来越接近长轴a的长度,此时椭圆会趋向于圆形。
当长轴和短轴的长度相等时,椭圆的两个焦点重合,这时椭圆就变成了圆形,其方程为x+y=a。
双曲线是平面上距离两个定点距离之差绝对值等于常数2a的动点轨迹。
需要注意的是,这里的距离差的绝对值是小于焦距F1F2的。
当距离差等于2a时,得到的是双曲线的一支;当距离差等于-2a时,得到的是双曲线的另一支(含F1的一支)。
当距离差等于0时,得到的是两条射线;当距离差大于2a时,得不到任何图形。
双曲线的焦点是F1和F2,焦距为F1F2.双曲线的标准方程为x^2/a^2 - y^2/b^2 = 1.由此可以看出,双曲线在坐标系中的范围为两条直线x=±a的外侧。
专题10 圆锥曲线的方程(多选题)1.椭圆2219x y m +=的焦距是4,则实数m 的值可以为.A .5B .8C .13D .16【试题来源】湖北省襄阳市宜城市第三中学2020-2021学年高二上学期10月月考 【答案】AC【分析】计算得到2c =,讨论9m >和09m <<两种情况得解.【解析】椭圆2219x y m +=的焦距是4,故24c =,2c =.当9m >时,94m -=,解得13m =;当09m <<时,94m -=,解得5m =.故选AC . 2.已知12,F F 为椭圆22143x y +=的左、右焦点,M 为椭圆上的动点,则下面四个结论正确的是A .2MF 的最大值大于3B .12MF MF ⋅的最大值为4C .12F MF ∠的最大值为60°D .若动直线l 垂直于y 轴,且交椭圆于A B 、两点,P 为l 上满足||||2PA PB ⋅=的点,则点P 的轨迹方程为222123x y +=或222169x y +=【试题来源】人教A 版(2019) 选择性必修第一册 过关斩将 第三章 圆锥曲线的方程 【答案】BCD【解析】由椭圆方程得2224,3,1a b c ==∴=,因此12(1,0),(1,0)F F -. 选项A 中,2max3=+=MF a c ,A 错误;选项B 中,2121242⎛+⎫⋅= ⎪⎝⎭MF MF MF MF ,当且仅当12MFMF =时取等号,B 正确;选项C 中,当点M 为短轴的端点时,12F MF ∠取得最大值,取M ,则1212tan30232∠∠=∴=F MF F MF ,12F MF ∴∠的最大值为60°,C 正确; 选项D 中,设()()11(,),,,,-P x y A x y B x y .11||||2,2⋅=∴-⋅+=PA PB x x x x ,2212∴-=x x ,即2212=+x x 或2212=-x x .又由题意知221143+=x y ,222143-∴+=x y 或222143++=x y ,化简得222169x y +=或222123x y +=,D 正确.故选BCD .3.把方程||||14x x y y +=表示的曲线作为函数()y f x =的图象,则下列结论正确的有 A .函数()f x 的图象不经过第三象限 B .函数()f x 在R 上单调递增C .函数()f x 的图象上的点到坐标原点的距离的最小值为1D .函数()()2g x f x x =+不存在零点【试题来源】江苏省苏州市相城区2020-2021学年高三上学期阶段性诊断测试 【答案】ACD 【解析】由题意,方程||||14x x y y +=, 当0,0x y ≥≥时,2214x y +=,表示椭圆在第一象限的部分;当0,0x y ><时,2214x y -=,表示双曲线在第四象限的部分;当0,0x y <>时,2214x y -+=,表示双曲线在第二象限的部分;当0,0x y <<时,2214x y --=,此时不成立,舍去,其图象如图所示,可得该函数的图象不经过第三象限,所以A 是正确的; 由函数的图象可得,该函数在R 为单调递减函数,所以B 不正确;由图象可得,函数()f x 的图象上的点P 到原点的距离的最小的点在0,0x y ≥≥的图象上,设点(,)P x y ,则点P 满足0,0x y ≥≥时,2214x y +=,即2214x y =-则PO ===0x =时,min 1PO =,所以C 正确;令()0g x =,可得()20f x x +=,即()12f x x =-,则函数()()2g x f x x =+的零点,即为函数()y f x =与12y x =-的交点,又由直线12y x =-为双曲线2214x y -=和2214x y -+=渐近线,所以直线12y x =-与函数()y f x =没有交点,即函数()()2g x f x x =+不存在零点,所以D 是正确的.故选ACD .4.已知双曲线E 的一条渐近线方程为y =,则该双曲线的标准方程可以是A .22124x y -=B .22124y x -=C .2212y x -=D .2212y x -=【试题来源】广东省湛江市第二十一中学2021届高三上学期9月月考 【答案】ACD【分析】分别求出四个选项中双曲线的渐近线方程可得结果.【解析】选项A 中,a =2b =,所以双曲线有一条渐近线方程为by x a==,选项C 中,a =1b =,所以双曲线有一条渐近线方程为ay x b ==,选项D 中,1a =,b =by x a==,选项B 中,a =2b =,所以双曲线的渐近线方程都是a y x x b =±=.故选ACD . 5.已知双曲线()2222:10,0x y E a b a b-=>>的一条渐近线为12:l y x =,则下列结论正确的是 A .a b >B .2a b =C .双曲线ED .双曲线E 的焦点在x 轴上【试题来源】重庆市万州沙河中学2020-2021学年高二上学期10月月考 【答案】CD【分析】由双曲线标准方程,结合已知渐近线即可知焦点位置、参数关系、离心率. 【解析】由双曲线渐近线by x a=±,知2b a =,又222+=a b c ,所以e ==综上,有:2b a a =>,x 轴上,故选CD . 6.下列双曲线中,以2y x =±为渐近线的双曲线的标准方程为A .2214y x -=B .221416x y -=C .2214x y -=D .221164y x -=【试题来源】江苏省扬州市邗江中学2020-2021学年高二(2019级新疆班)上学期期中 【答案】ABD【分析】根据双曲线的几何性质之求渐近线的方法可得选项.【解析】2214y x -=的渐近线方程为2y x =±,所以A 正确;221416x y -=的渐近线方程为2y x =±,所以B 正确; 2214x y -=的渐近线方程为12y x =±,所以C 不正确;221164y x -=的渐近线方程为2y x =±,所以D 正确,故选ABD . 7.已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2,过点F 的直线与抛物线交于,P Q 两点,M 为线段PQ 的中点,O 为坐标原点,则 A .C 的准线方程为1y =- B .线段PQ 长度的最小值为4 C .2OPQS≥D .3OP OQ ⋅=-【试题来源】江苏省盐城市响水中学2020-2021学年高二上学期期中 【答案】BCD【解析】焦点F 到准线的距离为p =2,所以抛物线C 的焦点为(1,0), 准线方程为x=-1,则选项A 错误;当PQ 垂直于x 轴时长度最小,此时P (1,2),Q (1,-2),所以|PQ|=4,则选项B 正确; 设P (x 1,y 1),Q (x 2,y 2),直线PQ 的方程为x =my +1,联立x =my +1,y 2=2px , 消去y 可得x 2-(4m 2+2)x+1=0,消去x 可得y 2-4my -4=0, 所以x 1+x 2=4m 2+2,y 1+y 2=4m ,124y y =-1211112222OPQSOF y y =-=⨯=, 当0m =时成立, 则选项C 正确;又x 1x 2=1,y 1y 2=-4,所以OP OQ =x 1x 2+y 1y 2=-3,则选项D 正确;故选BCD.8.已知双曲线C :22221x y a b-=(0,0)a b >>的焦点与抛物线24x y =的焦点之间的距离为2,且CA .C的渐近线方程为y = B .C 的标准方程为2212y x -=C .C的顶点到渐近线的距离为3D.曲线1x y e =-经过C 的一个焦点【试题来源】湖北省荆州中学2020-2021学年高三上学期8月月考 【答案】ABD【解析】设抛物线24x y =的焦点为(0,1)F ,双曲线C 的一个焦点坐标为1(,0)(0)F c c >, 由题意可知12FF =2c =⇒=c =(舍去), 因为C1ce a b a===⇒=== 选项A:因为1,a b ==,所以C的渐近线方程为y =,故本选项说法正确;选项B:因为1,a b ==C 的标准方程为2212y x -=,故本选项说法正确;选项C :设C 的一个顶点坐标为(1,0)0y -=的距离为=,根据双曲线和渐近线的对称性可知C的顶点到渐近线的距离为,故本选项的说法不正确. 选项D:当x =10y e =-=,而(恰好是双曲线的一个焦点,因此本选项的说法正确.故选ABD.9.已知双曲线的方程为221169x y -=,则下列说法正确的是A.焦点为(0) B .渐近线方程为3x ±4y =0 C .离心率5e 4=D .焦点到渐近线的距离为4【试题来源】广东省佛山市顺德区2021届高三上学期第二次教学质量检测 【答案】BC【分析】根据双曲线的方程依次求出焦点、渐近线方程、离心率等,即可得答案;【解析】对A ,焦点为(5,0)±,故A 错误;对B ,渐近线方程为220340169x y x y -=⇒±=,故B 正确;对C ,54c e a ==,故C 正确;对D ,焦点到渐近线的距离为3b =,故D 错误;故选BC .10.已知,A B 两监测点间距离为800米,且A 监测点听到爆炸声的时间比B 监测点迟2秒,设声速为340米/秒,下列说法正确的是 A .爆炸点在以,A B 为焦点的椭圆上 B .爆炸点在以,A B 为焦点的双曲线的一支上C .若B 监测点的声强是A 监测点的4倍(声强与距离的平方成反比),则爆炸点到B 监测点的距离为6803米 D .若B 监测点的声强是A 监测点的4倍(声强与距离的平方成反比),则爆炸点到B 监测点的距离为680米【试题来源】江苏省无锡市第一中学2020-2021学年高二上学期期中 【答案】BD【解析】依题意,,A B 两监测点间距离为800米,且A 监测点听到爆炸声的时间比B 监测点迟2秒,设爆炸点为C ,则3402680800CA CB -=⨯=<,所以爆炸点在以,A B 为焦点的双曲线的一支上.所以A 选项错误,B 选项正确.若B 监测点的声强是A 监测点的4倍(声强与距离的平方成反比),所以224CA CB=,即2CA CB =,结合680CA CB -=可得680CB =. 所以C 选项错误,D 选项正确.故选BD.11.在平面直角坐标系xOy 中,已知双曲线C :22221x y a b-=(a >0,b >0),抛物线2y =的准线过双曲线的左焦点,A ,B 分别是双曲线C 的左,右顶点,点P 是双曲线C 的右支上位于第一象限的动点,记P A ,PB 的斜率分别为1k ,2k ,则下列说法正确的是A .双曲线C 的渐近线方程为y =±2xB .双曲线C 的方程为2214x y -=C .1k 2k 为定值14D .存在点P ,使得1k +2k =2【试题来源】福建省福州市八县(市)一中2020-2021学年高二上学期期中联考 【答案】BCD【解析】因为双曲线C :22221x y a b-=(a >0,b >0),所以2c e a ==,12b a ==,渐近线方程为12y x =±,故A 错误;又c =22,1a b ==,所以双曲线方程为2214x y -=,故B 正确;因为()()2,0,2,0A B -,设(),P x y ,则1k 22212244y y y x x k x =⋅==+--⋅,故C 正确;2212222122442y y xy y x xx x x y yk k x =+==⋅=⋅+---+,因为点P 在第一象限,渐近线方程为12y x =±,所以102OP k <<,则 2x y >,所以121k k +>,所以存在点P ,使得1k +2k =2,故正确;故选BCD12.椭圆22116x y m+=的焦距为m 的值为A .9B .23C .16D .16+【试题来源】江苏省南航附中2020-2021学年高二(9月份)月考 【答案】AB【解析】椭圆22116x y m+=的焦距为2c =得c =依题意当焦点在x 轴上时,则167m -=,解得9m =;当焦点在y 轴上时,则 167m -=,解得 23m =, 所以m 的值为9或23.故选AB . 13.下列说法正确的是A .平面内到两个定点12,F F 的距离之和等于常数的点的轨迹为椭圆;B .在ABC 中,角、、A B C 的对边分别为,,a b c ,若A B >则a b >; C .若数列{}n a 为等比数列,则{}1n n a a ++也为等比数列;D .垂直于同一个平面的两条直线平行.【试题来源】湖北省四地六校2020-2021学年高二上学期10月联考【答案】BD【解析】若距离之和等于12F F ,则轨迹是线段12F F ,不是椭圆,A 错; 三角形中大边对大角,大角对大边,B 正确;{}n a 的公比1q =-时,10n n a a ++=,{}1n n a a ++不是等比数列,C 错;由线面垂直的性质定理知D 正确.故选BD .14.点1F ,2F 为椭圆C 的两个焦点,椭圆C 上存在点P ,使得1290F PF ∠=︒,则椭圆C 的方程可以是A .221259x y +=B .2212516x y +=C .221189x y +=D .221168x y +=【试题来源】山东省济南市商河县第一中学2020-2021学年高二10月月考 【答案】ACD【解析】设椭圆方程为22221x y a b+=()0a b >>,设椭圆上顶点为B ,椭圆C 上存在点P ,使得1290F PF ∠=︒,则需1290F BF ∠≥︒,221212BF BF F F ∴+≤,即2224a a c +≤,222c a b =-,则222a b ≥,所以选项ACD 满足.故选ACD .15.在平面直角坐标系xoy 中,F 1,F 2分别为椭圆 22142x y +=的左、右焦点,点A 在椭圆上.若△AF 1F 2为直角三角形,则AF 1的长度可以为 A .1 B .2 C .3D .4【试题来源】江苏省南京市2020-2021学年高二上学期期中调研测试 【答案】ABC【解析】由椭圆 22142x y +=可知,2,a b c ===焦点坐标为(,通径为222b a=,因为△AF 1F 2为直角三角形,所以A 为直角顶点时,A 在短轴端点,此时AF 1的长为2;1F 为直角顶点时,A 在y 轴左侧,此时AF 1的长为1;2F 为直角顶点时,A 在y 轴右侧,此时AF 1的长为3;故选ABC .16.已知椭圆()222210x y a b a b +=>>的两个焦点分别为1F ,2F ,若椭圆上存在点P 使得12F PF ∠是直角,则满足条件的一个e 的值可以是A .12BC.3D .45【试题来源】江苏省南京市六合区大厂高级中学2020-2021学年高二上学期10月学情调研 【答案】BD【解析】1F ,2F 是椭圆()222210x y a b a b+=>>的两个焦点,∴()1,0F c -,()2,0F c ,222c a b =-,设点(),P x y ,因为椭圆上存在点P 使得12F PF ∠是直角,所以12PF PF ⊥, 所以()(),,0x c y x c y -⋅+=,化简得222x y c +=,联立方程组22222221x y c x yab ⎧+=⎪⎨+=⎪⎩,整理,得()2222220a xc a c =-⋅≥,所以2220c a -≥,解得2e ≥,又01e <<,12e ∴≤<.故选BD .17.设椭圆22193x y +=的右焦点为F,直线(0y m m =<<与椭圆交于A , B 两点,则下述结论正确的是 A .AF +BF 为定值 B .△ABF 的周长的取值范围是[6,12] C.当m =时,△ABF 为直角三角形D .当m =1时,△ABF【试题来源】江苏省南通中学2020-2021学年高二上学期期中 【答案】AD【解析】设椭圆的左焦点为F ',则AF BF '=, 所以=6AF BF AF AF '+=+为定值,A 正确;ABF 的周长为AB AF BF ++,因为AF BF +为定值6,所以AB 的范围是()0,6,所以ABF 的周长的范围是()6,12,B 错误;将y =(A ,B,因为)F,所以(60BA BF ⋅=-=-,所以ABF 不是直角三角形,C 不正确;将1y =与椭圆方程联立,解得()A -,)B ,所以112ABFS=⨯=D 正确.故选AD. 18.下列判断正确的是A .抛物线2y x =与直线0x y +-=仅有一个公共点B .双曲线221x y -=与直线0x y +-=仅有一个公共点C .若方程22141x y t t +=--表示焦点在x 轴上的椭圆,则542t <<D .若方程22141x y t t +=--表示焦点在y 轴上的双曲线,则t >4【试题来源】江苏省南京市五校2020-2021学年高二上学期10月联合调研考试 【答案】BD【解析】对于A ,抛物线2y x =与直线方程0x y +=,联立方程,消去x ,可得20y y +=,10∆=+>,所以抛物线2y x =与直线0x y +=有两个个公共点,故A 错误;对于B ,双曲线221x y -=的渐近线方程为y x =±,直线0x y +=与渐近线y x =-平行,故双曲线221x y -=与直线0x y +-=仅有一个公共点,故B 正确;对于C ,若方程22141x y t t +=--表示焦点在x 轴上的椭圆,则410t t ->->,解得512t <<,故C 错误;对于D ,若方程22141x y t t +=--表示焦点在y 轴上的双曲线,则4010t t -<⎧⎨->⎩,解得4t >,故D 正确.故选BD .19.在平面直角坐标系中,有两个圆22211:(2)++=C x y r 和22222:(2)-+=C x y r ,其中常数12,r r 为正数满足124r r +<,一个动圆P 与两圆都相切,则动圆圆心的轨迹可以是 A .两个椭圆B .两个双曲线C .一个双曲线和一条直线D .一个椭圆和一个双曲线【试题来源】人教A 版(2019) 选择性必修第一册 过关斩将 全书综合测评 【答案】BC【解析】由题意得,圆1C 的圆心为1(2,0)C -,半径为1r ,圆2C 的圆心为2(2,0)C ,半径为2r ,所以124C C =,设动圆P 的半径为r .当124r r +<时,两圆相离,动圆P 可能与两圆均内切或均外切或一个外切一个内切. ①若均内切,则1122,PC r r PC r r =-=-, 此时1212PC PC r r -=-,当12r r ≠时,点P 的轨迹是以12,C C 为焦点的双曲线, 当12r r =时,点P 在线段12C C 的垂直平分线上. ②若均外切,则1122,PC r r PC r r =+=+, 此时1212PC PC r r -=-,则点P 的轨迹与①相同.③若一个外切,一个内切,不妨设与圆1C 内切,与圆2C 外切,则11222112,,PC r r PC r r PC PC r r =-=+-=+.同理,当与圆2C 内切,与圆1C 外切时,1212PC PC r r -=+.此时点P 的轨迹是以12,C C 为焦点的双曲线,与①中双曲线不一样.故选BC . 20.已知曲线22:1C mx ny += A .若0m =,0n >,则C 是两条直线B .若0m n =>,则C C .若0m n >>,则C 是椭圆,其焦点在x 轴上D .若0mn <,则C是双曲线,其渐近线方程为y = 【试题来源】重庆市第八中学2020-2021学年高二上学期(期中)半期 【答案】AD【分析】由曲线方程及圆锥曲线的性质逐项判断即可得解. 【解析】对于A ,若0m =,0n >,则2:1C ny =即y =A 正确; 对于B ,若0m n =>,则221:C x y n +=,所以CB 错误; 对于C ,若0m n >>,则110m n <<, 所以22:1C mx ny +=即22:111x y C m n +=为椭圆,且焦点在y 轴上,故C 错误; 对于D ,若0mn <,则22:111x y C m n +=为双曲线,且其渐近线为y ==,故D 正确.故选AD .21.在平面直角坐标系xOy 中,下列结论正确的是A .椭圆2212516x y +=上一点P 到右焦点的距离的最小值为2;B .若动圆M 过点(2,0)且与直线2x =-相切,则圆心M 的轨迹是抛物线; C6=表示的曲线是双曲线的右支;D .若椭圆22112x y m+=的离心率为12,则实数9m =.【试题来源】江苏省盐城市一中、射阳中学等五校2020-2021学年高二上学期期中联考 【答案】ABC【解析】对于A ,椭圆2212516x y +=的长半轴长5a =,半焦距3c ==,∴椭圆的右顶点到右焦点的距离最小为2a c -=,故A 正确;对于B ,若动圆M 过点(2,0)且与直线2x =-相切,则圆心M 到(2,0)的距离等于到直线2x =-的距离,则圆心M 的轨迹是抛物线,故B 正确;对于C6=的几何意义是平面内动点(,)x y 到两个定点(4,0)-,(4,0)距离差等于6的点的轨迹,表示以(4,0)-,(4,0)为焦点,实轴长为6的双曲线的右支,故C 正确;对于D ,椭圆22112x y m+=的离心率为12,当焦点在y 轴上时,2a m =,212b =,则c =12e ==,解得16m =,故D 错误.故选ABC . 22.已知抛物线22(0)x py p =>的焦点为F ,过点F 的直线l 交抛物线于A ,B 两点,以线段AB 为直径的圆交x 轴于M ,N 两点,设线段AB 的中点为Q .若抛物线C 上存在一点(,2)E t 到焦点F 的距离等于3.则下列说法正确的是 A .抛物线的方程是22x y = B .抛物线的准线是1y =- C .sin QMN ∠的最小值是12D .线段AB 的最小值是6【试题来源】江苏省镇江中学2020-2021学年高二上学期期初 【答案】BC【解析】抛物线()2:20C x py p =>的焦点为02p F ⎛⎫ ⎪⎝⎭,,得抛物线的准线方程为2p y =-, 点()2E t ,到焦点F 的距离等于3,可得232p+=,解得2p =, 则抛物线C 的方程为24x y =,准线为1y =-,故A 错误,B 正确;由题知直线l 的斜率存在,()0F ,1,设()11,A x y ,()22,B x y ,直线l 的方程为1y kx =+,由21 4y kx x y=+⎧⎨=⎩,消去y 得2440x kx --=,所以124x x k +=,124x x =-, 所以()21212242y y k x x k +=++=+,所以AB 的中点Q 的坐标为()2221k k +,, 221242244AB y y p k k =++=++=+,故线段AB 的最小值是4,即D 错误;所以圆Q 的半径为222r k =+, 在等腰QMN 中,22221111sin 11222222Qy k QMN r k k +∠===-≥-=++,当且仅当0k =时取等号,所以sin QMN ∠的最小值为12,即C 正确,故选BC . 23.已知抛物线()220y px p =>的焦点为F ,过点F 的直线l 交抛物线于A 、B 两点,以线段AB 为直径的圆交y 轴于M 、N 两点,则A .若抛物线上存在一点()2,E t 到焦点F 的距离等于3,则抛物线的方程为24y x =B .若2AF BF =,则直线l的斜率为C .若直线l43p AB =D .设线段AB 的中点为P ,若点F 到抛物线准线的距离为2,则sin PMN ∠的最小值为12【试题来源】重庆市育才中学2020-2021学年高二上学期10月月考 【答案】AD【解析】对于A 选项,由抛物线的定义可得232pEF =+=,解得2p =, 所以,抛物线的标准方程为24y x =,A 选项正确;对于B 选项,如下图所示: 抛物线的焦点为,02p F ⎛⎫⎪⎝⎭,设点()11,A x y 、()22,B x y ,设直线AB 的方程为2p x my =+,联立222p x my y px⎧=+⎪⎨⎪=⎩,消去x 并整理得2220y mpy p --=,222440m p p ∆=+>恒成立,由根与系数关系可得122y y mp +=,212y y p =-,由于2AF BF =,由图象可得2AF FB =,即1122,2,22p p x y x y ⎛⎫⎛⎫--=-⎪ ⎪⎝⎭⎝⎭,所以,122y y =-,可得121221222y y y y mp y y p =-⎧⎪+=⎨⎪=-⎩,解得4m =±,所以,直线l的斜率为1m=±B 选项错误; 对于C 选项,当直线lB选项可知,3m =,123y y p +=, 由抛物线的焦点弦长公式可得)12128223AB x x p y y p p p p =++=++=+=,C 选项错误;对于D 选项,抛物线的焦点F 到准线的距离为2p =,则该抛物线的方程为24y x =.设直线l 的方程为1x my =+,设点()11,A x y 、()22,B x y , 联立214x my y x=+⎧⎨=⎩,消去x 可得2440y my --=,216160m ∆=+>, 则124y y m +=,()21212242x x m y y m ∴+=++=+,()212241AB x x m =++=+,点P 到y 轴的距离为212212x x d m +==+, 所以,()22221111sin 1112222212d m PMN m m AB+∠===-≥-=++, 当且仅当0m =时,等号成立,D 选项正确.故选AD . 24.设A ,B 是抛物线2yx 上的两点,O 是坐标原点,下列结论成立的是A .若OA OB ⊥,则2OA OB ≥ B .若OA OB ⊥,直线AB 过定点(1,0)C .若OA OB ⊥,O 到直线AB 的距离不大于1D .若直线AB 过抛物线的焦点F ,且13AF =,则||1BF = 【试题来源】江苏省南通市2020-2021学年高三上学期期中模拟 【答案】ACD【解析】B .设直线AB 方程为y kx b =+,1(A x ,1)y ,2(B x ,2)y , 将直线AB 方程代入抛物线方程2y x ,得20x kx b --=,则12x x k +=,12x x b =-,OA OB ⊥,1OA OB k k b ∴=-=-,1b =.于是直线AB 方程为1y kx =+,该直线过定点(0,1).故B 不正确; C .O 到直线AB的距离1d ,即C 正确;A.||||OA OB =.||||2OA OB ∴正确; D .由题得11111,4312y y +=∴=,所以211==12x x ∴,x =.所以113k-==-,所以直线AB的方程为14y x=+,所以14b=.由题得212121211111 ||()2244222 AB y y y y k x x b k b=+++=++=+++=++=1114++=3223.所以41||133BF=-=.所以D正确.故选ACD.25.已知1F,2F是双曲线()2222:10,0x yE a ba b-=>>的左、右焦点,过1F作倾斜角为30的直线分别交y轴与双曲线右支于点M,P,1PM MF=,下列判断正确的是A.21π3PF F B.2112MF PF=C.ED.E的渐近线方程为y=【试题来源】福建省厦门市2019-2020学年高二下学期期末【答案】BCD【解析】如右图,由1PM MF=,可得M为1PF的中点,又O为12F F的中点,可得2//OM PF,2190PF F∠=︒,1230PF F∠=︒,2112MF PF=,故A错误,B正确;设122F F c=,则12cos30cPF==︒,22tan30PF c=︒=,则1223a PF PF c=-=,可得==cea,ba==,则双曲线的渐近线方程为by xa=±即为y=.故C,D正确.故选BCD.26.已知双曲线222(0)63x yλλ-=≠,则不因λ改变而变化的是A.渐近线方程B.顶点坐标C.离心率D.焦距【试题来源】江苏省南通市如皋市2020-2021学年高二上学期教学质量调研(一)【答案】AC【解析】双曲线222(0)63x yλλ-=≠可化为2222163x yλλ-=,所以22226,3a b λλ==,所以229c λ=,所以2231()2b e a=+=,渐近线方程为b y x a =±=,故选AC . 27.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,P 为右支上一点,若123PF PF =,则双曲线的离心率可能为A .2 BCD .3【试题来源】江苏省南通市如皋市2020-2021学年高二上学期教学质量调研(一) 【答案】AB【解析】由已知12||3||PF PF =和12||||2PF PF a -=得, 所以21|||3,|PF PF a a ==,所以1212||||||2PF PF F F c ≥=+, 即42a c ≥,12e <≤,故选AB .28.在平面直角坐标系xOy 中,已知双曲线()2222:10,0x y C a b a b-=>>,且双曲线C 的左焦点在直线0x y ++=上,A ,B 分别是双曲线C 的左,右顶点,点P 是双曲线C 的右支上位于第一象限的动点,记P A ,PB 的斜率分别为1k ,2k ,则下列说法正确的是A .双曲线C 的渐近线方程为2y x =±B .双曲线C 的方程为2214x y -=C .12k k 为定值14D .存在点P ,使得121k k +=【试题来源】江苏省南通市如皋市2020-2021学年高三上学期10月第一次教学质量调研 【答案】BC【解析】因为双曲线C 的左焦点(,0)c -在直线0x y +=上,所以c =c e a ==,所以2a =,故2221b c a =-=,所以双曲线方程为2214x y -=,故双曲线的渐近线方程为20x y ±=,故A 错误;B 正确; 由题意可得(2,0),(2,0)A B -,设P (m , n ),可得2214m n -=,即有22144n m =-,所以212212244n n n k k m m m =⋅==+--,故C 正确;因为点P 是双曲线C 的右支上位于第一象限的动点,所以120,0k k >>,则121212k k +≥=⨯=,当且仅当12k k =时,等号成立, 由A ,B 为左右顶点,可得12k k ≠,所以121k k +>,故D 错误.故选BC29.已知抛物线24y x =的准线过双曲线2222:1x y C a b-=(0,a >0b >)的左焦点F ,且与双曲线交于,A B 两点,O 为坐标原点,AOB 的面积为32,则下列结论正确的有 A .双曲线C 的方程为224413y x -=B .双曲线C 的两条渐近线的夹角为60°C .点F 到双曲线CD .双曲线C 的离心率为2 【试题来源】江苏省扬州市宝应中学2020-2021学年高二上学期阶段考试 【答案】ABD【解析】因为抛物线24y x =的准线过双曲线2222:1x y C a b-=(0,a >0b >)的左焦点F ,所以1c =-,又与双曲线交于,A B 两点,所以221,,1,b b A B a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,所以AOB 的面积为2123122b a ⨯⨯=,即232b a =,解得213,24a b ==,所以双曲线C 的方程为22441y x -=,故A 正确;双曲线C 的渐近线方程为y =,所以两渐近线的的夹角为60°,故B 正确;点F 到双曲线C 的渐近线的距离为2d =,故C 错误; 双曲线C 的离心率为1212c e a ===,故正确;故选ABD.30.设1F ,2F 是双曲线:C ()222210,0x y a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1PF OP =,则下列说法正确的是 A .2F P b =BC.双曲线的渐近线方程为y =D .点P在直线x =上 【试题来源】江苏省南通市如皋中学2020-2021学年高二上学期第一次阶段检测 【答案】ABD【解析】由双曲线的性质可知,双曲线的一条渐近线方程为by x a=,即0bx ay -=, 焦点()1,0F c -,()2,0F c ,()0,0,0a b c >>>因为过2F 作C 的一条渐近线的垂线,垂足为P ,所以2bcF P b c===,故A 正确;因为OP a ===,则()1222cos cos 180cos OP aFOP F OP F OP OF c∠=︒-∠=-∠=-=-,所以1PF ==,在三角形1OPF 中,根据余弦定理可知2221111cos 2OP OF F PFOP OP OF +-∠==⋅22262a c a aac c +-=-,解得223a c =,即离心率e =或e =,故B 正确;因为e ==b a =y =,故C 错误; 因为点P在直线y =上,可设()()0P x x >,由OP a =可知,OP a ===,解得3x a =,故D 正确.故选ABD . 31.如果双曲线22221(0,0)x y a b a b-=>>的一条渐近线上的点(M -关于另一条渐近线的对称点恰为右焦点F ,P 为双曲线上的动点,已知(3,1)A ,则12PA PF +的值可能为 A .32 B .2 C .52D .4【试题来源】江苏省南通市如皋中学2020-2021学年高二上学期第一次阶段检测【答案】CD【解析】依题意可知点(3)M -在渐近线b y x a =-上,所以3b a =3b a =, 设(c,0)F ,则3030122abb c a -=--+=⨯⎩,结合3b a =解得2c =,由222c a b =+,所以21a =,23b =,所以离心率2c e a ==,右准线为212a x c ==,设点P 到右准线12x =的距离为d ,则根据双曲线的定义可知2PFe d==, 所以12PA PF PA +=+122d PA d ⨯=+132≥-52=.根据四个选项可知,,C D 正确.故选CD.32.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,P 为双曲线上一点,且122=PF PF ,若1215sin F PF ∠=a ,b ,c ,e 的有关结论正确的是 A .6e =B .4e =C .5b a =D .3b a =【试题来源】江苏省南通市如东高级中学、泰州高级中学2020-2021学年高二11月联考 【答案】ACD 【解析】122PF PF =,∴由双曲线定义可知1222PF PF PF a -==,14PF a ∴=,由1215sin F PF ∠=121cos 4F PF ∠=±,在12PF F △中,由余弦定理可得2221241641cos 2244a a c F PF a a +-∠==±⨯⨯,解得,224c a =或226c a=,2c a ∴=或c =,b ∴==或b =,2ce a∴==,故选ACD . 33.已知2a =,4c =,则双曲线的标准方程为A .221412x y -=B .221124x y -=C .221412y x -=D .221124y x -=【试题来源】江苏省南京市江浦高级中学2020-2021学年高二上学期检测(一) 【答案】AC【解析】由已知得22212b c a =-=,所以当焦点在x 轴上,双曲线的标准方程为221412x y-=;当焦点在y 轴上,双曲线的标准方程为221412y x-=.故选AC34.已知双曲线C过点且渐近线方程为3y x =,则下列结论正确的是 A .双曲线C 的方程为2213x y -=B .双曲线CC .曲线21x y e -=-经过双曲线C 的一个焦点D .焦点到渐近线的距离为1【试题来源】江苏省无锡市第一中学2020-2021学年高二上学期期中 【答案】ACD【分析】根据已知条件求得,,a b c ,由此对选项逐一分析,从而确定正确选项.【解析】设双曲线方程为221Ax By +=,将(代入得921A B +=.双曲线的渐近线方程为y =133A B =⇒=-. 由92113A B A B+=⎧⎪⎨=-⎪⎩解得1,13A B ==-,所以双曲线的方程为2213x y -=.所以1,2a b c ===.故A 选项正确.双曲线的离心率为ca==,故B选项错误.双曲线的焦点坐标为()2,0±,其中()2,0满足21xy e-=-,所以C选项正确.双曲线一个焦点为()2,0,渐近线方程y x=30y-=,1=,故D选项正确.故选ACD35.已知双曲线C的标准方程为2213yx-=,则A.双曲线C的离心率为2B.直线2x=与双曲线C相交的弦长为6C.双曲线2213xy-=与双曲线C有相同的渐近线D.双曲线C【试题来源】重庆市育才中学2020-2021学年高二上学期10月月考【答案】ABD【解析】由2213yx-=得1,2,2ca b c ea=====,渐近线为y=,故A正确,C中双曲线2213xy-=的渐近线为3y=±,故C错;B中将2x=代入2213yx-=解得3=±y,故2x=与双曲线C相交的弦长为6,故B正确;D中,双曲线C的焦点到渐近线的距离为d b===D正确故选ABD 36.设双曲线()2222:10,0x yC a ba b-=>>的右焦点为F,直线l为C的一条斜率为正数的渐近线,O为坐标原点.若在C的左支上存在点P,使点P与点F关于直线l对称,则下列结论正确的是.A.2PF b=B.POF的面积为abC.双曲线CD.直线l的方程是2y x=【试题来源】湖南师大附中2020-2021学年高二上学期10月月考(第二次大练习)【答案】ABD【解析】设左焦点为1F,PF与l的交点为M,如下图所示:因为点P 与点F 关于直线l 对称,所以OM PF ⊥,M 为PF 中点,且O 为1FF 中点, 所以112OM PF =,2PF MF =,因为(),0,:0F c l bx ay -=,所以MF b ==,所以2OM a ==,所以2PF b =,故A 正确;因为112POFPFF SS =,且1122222PFF PF PF a b Sab ⋅⨯===,所以POFSab =,故B 正确;由双曲线的定义可知12PF PF a -=,所以222b a a -=,所以2b a =,所以:2l y x =,2b a ===,所以e =,故C 错误,D 正确,故选ABD . 37.已知点P 在双曲线221169x y -=上,1F ,2F 分别是左、右焦点,若12PF F △的面积为20,则下列判断正确的有 A .点P 到x 轴的距离为203B .12503PF PF += C .12PF F △为钝角三角形D .123F PF π∠=【试题来源】江苏省南京市天印高级中学2020-2021学年高二上学期10月学情调研 【答案】BC【解析】由双曲线方程得4a =,3b =,则5c =,由△12PF F 的面积为20, 得112||10||2022P P c y y ⨯⨯=⨯=,得||4P y =,即点P 到x 轴的距离为4,故A 错误, 将||4P y =代入双曲线方程得20||3P x =,根据对称性不妨设20(3P ,4),则213||3PF ,由双曲线的定义知12||||28PF PF a -==, 则11337||833PF =+=,则12133750||||333PF PF +=+=,故B 正确, 在△12PF F 中,113713||210||33PF c PF =>=>=,则24012020553PF k -==>-,21PF F ∠为钝角, 则△12PF F 为钝角三角形,故C 正确,2222121212121212121337641002||||||(||||)2||||10033cos 13372||||2||||233PF PF F F PF PF PF PF F PF PF PF PF PF -+⨯⨯+--+-∠===⨯⨯3618911121337133729⨯=-=-≠⨯⨯⨯,则123F PF π∠=错误,故正确的是BC ,故选BC .38.已知双曲线22221(0,0)x y a b a b -=>>的右焦点为1F ,点A 坐标为0,1,点P 双曲线左支上的动点,且1APF △的周长不小于14,则双曲线C 的离心率可能为 AB .2 CD .3【试题来源】江苏省南京市天印高级中学2020-2021学年高二上学期10月学情调研 【答案】ABC【解析】由右焦点为1F ,点A 的坐标为(0,1),1||5AF , 1APF △的周长不小于14,即周长的最小值不小于14,可得1||||PA PF +的最小值不小于 9,又2F 为双曲线的左焦点,可得12||||2PF PF a =+,1||||PA PF +=2||||2PA PF a ++ , 当A ,P ,2F 三点共线时,2||||2PA PF a ++取最小值52a + 所以529a +≥,即2a ≥,因为c =ce a=≤.故选ABC . 39.已知1F 、2F 是双曲线22:12y C x -=的上、下焦点,点M 是该双曲线的一条渐近线上的一点,并且以线段12F F 为直径的圆经过点M ,则下列说法正确的有 A .双曲线C的渐近线方程为y = B .以12F F 为直径的圆方程为222x y += C .点M的横坐标为D .12MF F △【试题来源】江苏省徐州市铜山区大许中学2020-2021学年高三上学期第二次调研考试 【答案】AD【解析】由双曲线方程2212yx-=知a=,1b=,焦点在y轴,渐近线方程为ay xb=±=,A正确;c==,以12F F为直径的圆的方程是223x y+=,B错误;由223x yy⎧+=⎪⎨=⎪⎩得1xy=⎧⎪⎨=⎪⎩1xy=-⎧⎪⎨=⎪⎩223x yy⎧+=⎪⎨=⎪⎩得1xy=⎧⎪⎨=⎪⎩1xy=-⎧⎪⎨=⎪⎩所以,M点横坐标是±1,C错误;121211122MF F MS F F x=⋅=⨯=△D正确.故选AD.【名师点睛】双曲线()222210,0x ya ba b-=>>的渐近线方程为by xa=±,而双曲线()222210,0y xa ba b-=>>的渐近线方程为ay xb=±(即bx ya=±),应注意其区别与联系.40.双曲线2222:1(0,0)x yC a ba b-=>>的左、右焦点分别为12,F F,点P为C的左支上任意一点,直线l是双曲线的一条渐近线,PQ l⊥,垂足为Q.当2||||PF PQ+的最小值为3时,1F Q的中点在双曲线C上,则A.C的方程为22122x y-=B.CC.C的渐近线方程为y x=±D.C的方程为221x y-=【试题来源】广东省东莞市东华高级中学2021届高三上学期第二次联考【答案】BCD【解析】因为21||||2PF PF a-=,所以21122.PF PQ PF PQ a FQ a+=++≥+因为焦点到渐近线的距离为b,所以1FQ的最小值为b,所以2 3.b a+=不妨设直线OQ 为by xa=,因为1F Q OQ⊥,所以点1(,0)F c-,2(,)a abQc c--,1F Q的中点为22(,2a cc+-)2ab c -.将其代入双曲线C 的方程,得2222222()144a c a a c c+-=,即2222222(1)144a a c a c c +-=,解得.c = 因为22223,b a a b c +=+=,所以1a b ==,故双曲线C 的方程为221x y -=,yx =±故选BCD41.若椭圆()221112211:10x y C a b a b +=>>和椭圆()222222222:10x y C a b a b +=>>的离心率相同,且12a a >,则下列结论正确的是 A .椭圆1C 和椭圆2C 一定没有公共点B .1122a b a b = C .22221212a a b b -<-D .1212a a b b -<-【试题来源】人教A 版(2019) 选择性必修第一册 过关斩将 第三章 圆锥曲线的方程 【答案】AB【解析】依题意,1212==c c e a a ,=所以1212b b a a =,所以1122a b a b =,因此B 正确;又12a a >,所以椭圆1C 和椭圆2C 一定没有公共点,因此A 正确; 设1212==b b m a a ,其中01m <<,则有()()()()222222211221210a b a b m a a ---=-->, 即有22221122->-a b a b ,则22221212->-a a b b ,因此C 错误;()()()112212(1)0---=-⋅->a b a b m a a ,即有1122->-a b a b ,则1212->-a a b b ,因此D 错误.故选AB . 42.已知曲线E 的方程为()22,ax by ab a b R +=∈,则下列选项正确的是A .当1ab =时,E 一定是椭圆B .当1ab =-时,E 是双曲线C .当0a b =>时,E 是圆D .当0ab =且220a b +≠时,E 是直线【试题来源】江苏省百校联考2020-2021学年高三上学期第一次考试 【答案】BCD【解析】对于A ,若1a =,1b =,此时22ax by ab +=变为221x y +=,不表示椭圆,故A 错误;。
圆锥曲线中的定点问题思路引导处理圆锥曲线中定点问题的方法:(1)探索直线过定点时,可设出直线方程为,然后利用条件建立,k m 等量关系进行消元,借助于直线系的思想找出定点.(2)从特殊情况入手,先探求定点,再证明与变量无关.母题呈现考法1参数法求证定点【例1】(2022·临沂、枣庄二模联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,其左、右焦点分别为F 1,F 2,点P 为坐标平面内的一点,且|OP →|=32PF 1→·PF 2→=-34,O 为坐标原点.(1)求椭圆C 的方程;(2)设M 为椭圆C 的左顶点,A ,B 是椭圆C 上两个不同的点,直线MA ,MB 的倾斜角分别为α,β,且α+β=π2.证明:直线AB 恒过定点,并求出该定点的坐标.【解题指导】【解析】(1)设P 点坐标为(x 0,y 0),F 1(-c,0),F 2(c,0),则PF 1→=(-c -x 0,-y 0),PF 2→=(c -x 0,-y 0).由题意得x 20+y 20=94,x 0+cx 0-c+y 20=-34,解得c 2=3,∴c = 3.又e =c a =32,∴a =2.∴b 2=a 2-c 2=1.∴所求椭圆C 的方程为x 24+y 2=1.(2)设直线AB 方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2).y 2=1,kx +m ,消去y 得(4k 2+1)x 2+8kmx +4m 2-4=0.∴x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1.又由α+β=π2,∴tan α·tan β=1,设直线MA ,MB 斜率分别为k 1,k 2,则k 1k 2=1,∴y 1x 1+2·y 2x 2+2=1,即(x 1+2)(x 2+2)=y 1y 2.∴(x 1+2)(x 2+2)=(kx 1+m )(kx 2+m ),∴(k 2-1)x 1x 2+(km -2)(x 1+x 2)+m 2-4=0,∴(k 2-1)4m 2-44k 2+1+(km -2)28()41kmk -++m 2-4=0,化简得20k 2-16km +3m 2=0,解得m =2k ,或m =103k .当m =2k 时,y =kx +2k ,过定点(-2,0),不合题意(舍去).当m =103k 时,y =kx +103k 10,0)3-,∴直线AB 恒过定点10(,0)3-【例2】(2022·福建·漳州三模)已知抛物线2:4C y x =的准线为l ,M 为l 上一动点,过点M 作抛物线C 的切线,切点分别为,A B .(1)求证:MAB ∆是直角三角形;(2)x 轴上是否存在一定点P ,使,,A P B 三点共线.【解题指导】【解析】(1)由已知得直线l 的方程为1x =-,设()1,M m -,切线斜率为k ,则切线方程为()1y m k x -=+,(2分)将其与24y x =联立消x 得244()0ky y m k -++=.所以1616()0k m k ∆=-+=,化简得210k mk +-=,(4分)所以121k k =-,所以MA MB ⊥.即MAB ∆是直角三角形.(6分)(2)由(1)知1616()0k m k ∆=-+=时,方程244()0ky y m k -++=的根为2y k=设切点221212,,,44y y A y B y ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则121222,y y k k ==.因为121k k =-,所以121244y y k k ==-.(10分)设:AB l x ny t =+,【点拨】由M 点出发向抛物线作量条切线,则切点A,B 所在直线与抛物线有两个焦点且其斜率不为零与24y x =联立消x 得2440y ny t --=,则124y y t =-,所以44t -=-,解得1t =,所以直线AB 过定点()1,0P .即x 轴上存在一定点()1,0P ,使,,A P B 三点共线.(12分)【解题技法】圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.【跟踪训练】(2020·新课标Ⅰ卷理科)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅= ,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【解析】(1)依据题意作出如下图象:由椭圆方程222:1(1)x E y a a+=>可得:(),0A a -,(),0B a ,()0,1G ∴(),1AG a = ,(),1GB a =-∴218AG GB a ⋅=-=,∴29a =∴椭圆方程为:2219x y +=(2)设()06,P y ,则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+所以点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭.同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭当203y ≠时,∴直线CD 的方程为:0022200002222000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++,整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭所以直线CD 过定点3,02⎛⎫⎪⎝⎭.当203y =时,直线CD :32x =,直线过点3,02⎛⎫ ⎪⎝⎭.故直线CD 过定点3,02⎛⎫⎪⎝⎭.考法2先求后证法求证定点【例4】(2022·全国乙T21)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()0,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.【解题指导】(1)将给定点代入设出的方程求解即可;(2)斜率不存在时探究定点→设出直线方程→与椭圆C 的方程联立→求HN 的方程→是否过定点.【解析】(1)设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛--⎫ ⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B --,所以2:23+=AB y x ,①若过点(1,2)P -的直线斜率不存在,直线1x =.代入22134x y+=,可得26(1,)3M ,26(1,3N-,代入AB方程223y x=-,可得263,3T+,由MT TH=得到265,)3H.求得HN方程:(223y x=--,过点(0,2)-.②若过点(1,2)P-的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y--+=.联立22(2)0,134kx y kx y--+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k+-+++=,可得1221226(2)343(4)34k kx xkk kx xk+⎧+=⎪⎪+⎨+⎪=⎪+⎩,12222228(2)344(442)34ky ykk ky yk-+⎧+=⎪⎪+⎨+-⎪=⎪+⎩,且1221224(*)34kx y x yk-+=+联立1,223y yy x=⎧⎪⎨=-⎪⎩可得111113(3,),(36,).2yT y H y x y++-可求得此时1222112:()36y yHN y y x xy x x--=-+--,将(0,2)-,代入整理得12121221122()6()3120x x y y x y x y y y+-+++--=,将(*)代入,得222241296482448482436480,k k k k k k k+++---+--=显然成立,综上,可得直线HN过定点(0,2).-【解题技法】(1)定点问题,先猜后证,可先考虑运动图形是否有对称性及特殊(或极端)位置猜想,如直线的水平位置、竖直位置,即k=0或k不存在时.(2)以曲线上的点为参数,设点P(x1,y1),利用点在曲线f(x,y)=0上,即f(x1,y1)=0消参.【跟踪训练】模拟训练(2)方法一:设PQ 方程为x my =()2222234433x my m y my x y =-⎧⇒-+⎨-=⎩以PQ 为直径的圆的方程为(1x x -()(22121212x x x x x x y y y -+++-+由对称性知以PQ 为直径的圆必过()21212120x x x x x x y y -+++=,而()21212212431m x x m y y m +=+-=-()()212121222x x my my m y y =--=22222434931313m x x m m m --∴-++---()()22313510m x m x ⎡⎤⇒-+--=⎣⎦∴以PQ 为直径的圆经过定点(1,0方法二:设PQ 方程为2,x my P =-()22222311233x my m y my x y =-⎧⇒--⎨-=⎩由对称性知以PQ 为直径的圆必过设以PQ 为直径的圆过(),0E t ,()()1210EP EQ x t x t y ∴⋅=⇒--+ 而()()21212122x x my my m y =--=2229122431313m m m m m -=⋅-⋅+=--【点睛】方法定睛:过定点问题的两大类型及解法(1)动直线l过定点问题.解法:设动直线方程得y=k(x+m),故动直线过定点(-(2)动曲线C过定点问题.解法:引入参变量建立曲线等于零,得出定点.7.(2023·浙江·模拟预测)已知双曲线为双曲线E的左、右顶点,P为直线(1)求双曲线E的标准方程.(2)直线CD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.理得1112,y y y y +(或1212,x x x x +),代入交点坐标后可得结论,如果是求动直线过定点,则可以引入参数求得动直线方程后,观察直线方程得定点.。
圆锥曲线知识点1.圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点的距离的和等于常数2a,且此常数2a一定要大于,当常数等于时,轨迹是线段,当常数小于时,无轨迹;双曲线中,与两定点的距离的差的绝对值等于常数2a,且此常数2a 一定要小于,定义中的“绝对值”与不可忽视。
若,则轨迹是以为端点的两条射线,若,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
比如:①已知定点,在满足下列条件的平面上动点P的轨迹中是椭圆的是A.B.C.D.(答:C);②方程表示的曲线是_____(答:双曲线的左支)(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e。
圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。
如已知点及抛物线上一动点P(x,y),则y+|PQ|的最小值是_____(答:2)2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x轴上时(参数方程,其中为参数),焦点在y轴上时。
方程表示椭圆的充要条件是什么?(ABC≠0,且A,B,C 同号,A≠B)。
比如:已知方程表示椭圆,则k的取值范围为____(答:);(2)双曲线:焦点在x轴上:,焦点在y轴上:。
方程表示双曲线的充要条件是什么?(ABC≠0,且A,B异号)。
比如:双曲线的离心率等于,且与椭圆有公共焦点,则该双曲线的方程_______(答:);(3)抛物线:开口向右时,开口向左时,开口向上时,开口向下时。
3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):(1)椭圆:由分母的大小决定,焦点在分母大的坐标轴上。
如已知方程表示焦点在y轴上的椭圆,则m的取值范围是__(答:)(2)双曲线:由项系数的正负决定,焦点在系数为正的坐标轴上;(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。
齐次化妙解圆锥曲线问题【微点综述】直线与圆锥曲线位置关系,是高考的一个难点,而其中一个难在于运算,本微专题的目标在于采用齐次化运算解决直线与圆锥曲线的一类:斜率之和或斜率之积的问题.本专题重难点:一是在于消元的解法,即怎么构造齐次化方程;二是本解法的适用范围.亮点是用平面几何的视角解决问题.圆锥曲线的定义、定值、弦长、面积,很多都可以转化为斜率问题,当圆锥曲线遇到斜率之和或者斜率之积,以往我们的常用解法是设直线y =kx +b ,与圆锥曲线方程联立方程组,韦达定理,再将斜率之和或之积的式子通分后,将x 1+x 2和x 1⋅x 2代入,得到关于k 、b 的式子.解法不难,计算量较为复杂.如果采用齐次化解决,直接得到关于k 的方程,会使题目计算量大大减少.“齐次”即次数相等的意思,例如f x =ax 2+bxy +cy 2称为二次齐式,即二次齐次式的意思,因为f x 中每一项都是关于x 、y 的二次项.如果公共点在原点,不需要平移.如果不在原点,先平移图形,将公共点平移到原点,无论如何平移,直线斜率是不变的.注意平移口诀是“左加右减,上减下加”,你没有看错,“上减下加”,因为是在等式与y 同侧进行加减,我们以往记的“上加下减”都是在等式与y 的异侧进行的.例:y =kx +b 向上平移1个单位,变为y =kx +b +1,即y -1=kx +b ,x 2a 2+y 2b 2=1向上平移1个单位,变为x 2a 2+y -1 2b 2=1.设平移后的直线为mx +ny =1(为什么这样设?∵这样齐次化更加方便,相当于“1”的妙用),与平移后的圆锥联立,一次项乘以mx +ny ,常数项乘以mx +ny 2,构造ay 2+bxy +cx 2=0,然后等式两边同时除以x 2(前面注明x 不等于0),得到a ⋅y x2+b ⋅y x +c =0,可以直接利用韦达定理得出斜率之和或者斜率之积,y 1x 1+y 2x 2=-b a ,y 1x 1⋅y 2x 2=c a ,即可得出答案.如果是过定点题目,还需要还原,之前如何平移,现在反平移回去.总结解法为:①平移;②联立并齐次化;③同除以x 2;④韦达定理.证明完毕,若过定点,还需要还原.优点:大大减小计算量,提高准确率!缺点:mx +ny =1不能表示过原点的直线,少量题目需要讨论.一、齐次化运算的前世--韦达定理1.韦达定理发展简史法国数学家弗朗索瓦·韦达(Fran çois Vi ète ,1540-1603)在著作《论方程的识别与订正》中改进了三、四次方程的解法,还对n =2,3的情形,建立了方程根与系数之间的关系,现代称之为韦达定理.证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性.2.韦达定理:设关于x 的一元二次方程ax 2+bx +c =0的两根为x 1,x 2,则x 1+x 2=-b a ,x 1x 2=c a .韦达定理是本微专题的理论基础..引例1.已知x1和x2是方程2x2+3x-4=0的两个根,求1x1+1x2的值.【解析】解法1:1x1+1x2=x1+x2x1⋅x2=-b aca=-b c=34.解法2:方程两边同除以x2,得-41x2+31x +2=0,∵1x1,1x2,∴由韦达定理得1x1+1x2=34.引例2.设x1,y1,x2,y2是方程组y=x-1,y2=4x的两组根,求y1x1+y2x2,y1x1⋅y2x2的值.【分析】如果可以建立关于以yx为未知数的一元二次方程Ayx2+B⋅y x+C=0,那么y1x1+y2x2,y1x1⋅y2x2就是对应方程的两根之和了.所以本运算的关键是如何通过消元得到:Ay2+Bxy+Cx2=0,再由x≠0,方程两边同时除以x2.消元得到方程Ay2+Bxy+Cx2=0是个二次齐次式,所以把本计算方法命名为:齐次化运算.观察y=x-1,y2=4x,发现y2已经为二次式,关键在于将4x化成二次式,由y=x-1可得1=x-y,∴y2=4x⋅1=4x⋅x-y,整理可得y2+4xy-4x2=0,显然x=0不是方程y2+4xy-4x2=0的根,方程y2+4xy-4x2=0两边同时除以x2可得:关于yx为未知数的一元二次方程:yx2+4⋅y x-4=0,则由韦达定理可得:y1x1+y2x2=-4,y1x1⋅y2x2=-4.二、齐次化运算的今生--韦达定理遇到笛卡尔解析几何例1.直线mx+ny=1与抛物线y2=4x交于A x1,y1,B x2,y2,求k OA+k OB,k OA⋅k OB.(用m,n表示)【解析】联立mx+ny=1y2=4x,齐次化得y2=4x mx+ny,等式两边同时除以x2,yx2-4n y x -4m=0,∴∴k OA+k OB=y1x1+y2x2=4n,k OA k OB=y1x1⋅y2x2=-4m.例2.直线mx+ny=1与椭圆x24+y23=1交于A x1,y1,B x2,y2,求k OA⋅k OB(用m,n表示).【解析】mx+ny=1 x24+y23=1齐次化联立得:x24+y23=mx+ny2,等式两边同时除以x2,12n2-4yx2+24mn y x +12m2-3=0,∴k OA⋅k OB=y1x1⋅y2x2=12m2-312n2-4.引例3.已知动直线l的方程为mx+ny=1.(1)若m=2n,求直线l的斜率;(2)若m=-12,求直线l所过的定点;(3)若m=2n+1,求直线l所过的定点;(4)若m=2n+2,求直线l所过的定点;(5)若6+3n4+12m=1,求直线l所过的定点.【解析】(1)k =-mn=-2.(2)-12x +ny =1,消去n ,令y =0,∴过定点-2,0 .(3)整理得m -2n =1∴过定点1,-2 .(4)整理得12m -n =1,∴过定点12,-1 .(5)整理得6m -32n =1,∴过定点6,-32 .例3.抛物线y 2=4x ,直线l 交抛物线于A 、B 两点,且OA ⊥OB ,求证:直线l 过定点.【解析】设直线AB 方程为mx +ny =1,A x 1,y 1 ,B x 2,y 2 ,mx +ny =1y 2=4x 联立得y x 2-4n y x-4m =0,∵k OA k OB=y 1y 2x 1x 2,∴-4m =-1,∴m =14,∴直线AB :14x +ny =1过定点4,0 .例4.不过原点的动直线交椭圆x 24+y 23=1于A 、B 两点,直线OA 、AB 、OB 的斜率成等比数列,求证:直线l 的斜率为定值.【解析】设直线AB 方程为mx +ny =1,A x 1,y 1 ,B x 2,y 2 ,mx +ny =1x 24+y 23=1联立得12n 2-4 y x 2+24mn y x+12m 2-3=0,于是k OA k OB =y 1x 1y 2x 2=12m 2-312n 2-4,又k AB =-m n ,∴12m 2-312n 2-4=m 2n 2,得k AB=-m n =±32.三、y -nx -m型怎么采用齐次化运算解决,平移是关键引例4.已知椭圆x 24+y 2=1,按照平移要求变换椭圆方程,并化简平移后的椭圆方程.(1)将椭圆向左平移1个单位,求平移后的椭圆;(2)将椭圆向右平移2个单位,求平移后的椭圆;(3)将椭圆向上平移3个单位,求平移后的椭圆;(4)将椭圆向下平移4个单位,求平移后的椭圆;(5)将椭圆向左平移1个单位,向下平移32个单位,求平移后的椭圆;(6)将椭圆向左平移2个单位,向下平移1个单位,求平移后的椭圆.【解析】(1)x +124+y 2=1,即4y 2+x 2+2x -3=0.(2)x -224+y 2=1,即4y 2+x 2-4x =0.(3)x 24+y -3 2=1,即4y 2+x 2-24y +32=0.(4)x 24+y +4 2=1,即4y 2+x 2+32y +60=0.(5)x +124+y +322=1,即4y 2+x 2+2x +43y =0.(6)x +224+y -1 2=1,即4y 2+x 2+4x -8y +4=0.例5.抛物线y 2=4x ,P 1,2 ,直线l 交抛物线于A 、B 两点,PA ⊥PB ,求证:直线l 过定点.【解析】将图形向左平移1个单位,向下平移2个单位,平移后的抛物线方程为y +2 2=4x +1 ,整理得y 2+4y -4x =0.设平移后直线A B 方程为mx +ny =1,A x 1,y 1 ,B x 2,y 2 ,mx +ny =1,y 2+4y -4x =0联立得1+4n y x 2+4m -4n y x -4m =0,于是k P Ak PB=y 1x 1⋅y 2x 2=-4m1+4n=-1,整理得4m -4n =1,∴mx +ny =1过定点4,-4 ,右移1个,上移2个,直线AB 过定点5,-2 .例6.椭圆x 24+y 23=1,点P 1,32,A ,B 为椭圆上两点,k PA +k PB =0.求证:直线AB 斜率为定值.【解析】解法一:将图形向左平移1个单位,向下平移32个单位,平移后的椭圆为x +1 24+y +3223=1,整理得4y 2+3x 2+6x +12y =0,设平移后直线A B 方程为mx +ny =1,A x 1,y 1 ,B x 2,y 2 ,mx +ny =14y 2+3x 2+6x +12y =0,联立得4y 2+3x 2+6x +12y mx +ny =0,12n +4 y2+62m +n xy +6m +3 x 2=0,同时除以x 2,12n +4 y x2+62m +n y x +6m +3 =0,k P A+k PB=y 1x 1+y 2x 2=-62m +n 12n +4=0,-62m +n =0,mx +ny =1的斜率-m n =12.解法二(换元法):设A x 1,y 1 ,B x 2,y 2 ,即化为y 1-32x 1-1⋅y 2-32x 2-1=0,即建立以y -32x -1为未知数的一元二次方程A y -32x -12+B⋅y -32x -1+C =0,即可解答.为了方便运算设x -1=s ,y -32=t ,代入椭圆x 24+y 23=1,得3s 2+4t 2+6t +12t =0,∴设直线ms +nt =6可方便运算,3s 2+4t 2+t (ms +nt )+2t (ms +nt )=0,化简得:4+2n t s 2+2m +n t s +(3+m )=0,∴y 1-32x 1-1⋅y 2-32x 2-1=t 1s 1⋅t 2s 2=2m +n 4+2n =0,x -1=s ,y -32=t ,n =-2m 代入ms +nt =6,得m (x -1)-2m y -32 =6,∴直线AB 的斜率是12.例7.双曲线x 22-y 22=1,P 2,0 ,A 、B 为双曲线上两点,且k PA +k PB =0.AB 不与x 轴垂直,求证:直线AB 过定点.【解析】将图形左平移2个单位,平移后的双曲线为x +222-y 22=1,整理得y 2-x 2-4x -2=0,设平移后直线A B 方程为mx +ny =1,A x 1,y 1 ,B x 2,y 2 ,mx +ny =1y 2-x 2-4x -2=0 ,联立得y 2-x 2-4x mx +ny -2mx +ny 2=0,1-2n 2 y 2-4n +4mn xy -2m 2+4m +1 x 2=0,同时除以x 2,1-2n 2y x 2-4n +4mn y x -2m 2+4m +1 =0,k P A+k PB=y 1x 1+y 2x 2=4n +4mn 1-2n 2=0,4n +4mn =4n m +1 =0,n =0或m =-1,AB 不与x 轴垂直,n ≠0,∴m =-1,-x +ny =1过-1,0 ,右移2个单位,原直线过1,0 .四、齐次化在解析几何中的应用例8.(2021重庆期末)已知抛物线C :y 2=2px p >0 上一点A 2,a 到其焦点的距离为3.(Ⅰ)求抛物线C 的方程;(Ⅱ)过点4,0 的直线与抛物线C 交于P ,Q 两点,O 为坐标原点,证明:∠POQ =90°.【解析】解法1:(Ⅰ)由题意知:2--p2=3⇒p =2⇒y 2=4x .(Ⅱ)证明:设该直线为my =x -4,P 、Q 的坐标分别为x 1,y 1 、x 2,y 2 ,联立方程有:my =x -4y 2=4x⇒y 2-4my -16=0,OP ⋅OQ =x 1x 2+y 1y 2=y 21y 2216+y 1y 2=116×-16 2-16=0,∴∠POQ =90°.解法2:要证明∠POQ =90°,即证k PO ⋅k QO =-1,设PQ :mx +ny =1,过4,0 ,∴4m =1,m =14,y 2=4x mx +ny ,y 2-4nxy -4mx 2=0,同除以x 2得y x 2-4n y x -4m =0,k 1⋅k 2=-4m ,∵m =14,∴k 1⋅k 2=-1即∠POQ =90°.例9.如图,椭圆E :x 2a 2+y 2b 2=1a >b >0 经过点A 0,-1 ,且离心率为22.(Ⅰ)求椭圆E 的方程;(Ⅱ)经过点1,1 ,且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 斜率之和为2.【解析】解法1:(Ⅰ)由题设知,c a =22,b =1,结合a 2=b 2+c 2,解得a =2,∴x 22+y 2=1.(Ⅱ)证明:由题意设直线PQ 的方程为y =k x -1 +1k ≠0 ,代入椭圆方程x 22+y 2=1,可得1+2k 2 x 2-4k k -1 x +2k k -2 =0,由已知得1,1 在椭圆外,设P x 1,y 1 ,Q x 2,y 2 ,x 1x 2≠0,则x 1+x 2=4k k -1 1+2k 2,x 1x 2=2k k -21+2k 2,且Δ=16k 2k -1 2-8k k -2 1+2k 2 >0,解得k >0或k <-2.则有直线AP ,AQ 的斜率之和为k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-k x 2=2k +2-k 1x 1+1x 2 =2k +2-k ⋅x 1+x 2x 1x 2=2k +2-k ⋅4k k -12k k -2=2k -2k -1 =2.即有直线AP 与AQ 斜率之和为2.解法2:(2)上移一个单位,椭圆E 和直线L :x 22+y -12=1mx +ny =1,mx +ny =1过点1,2 ,m +2n =1,m =1-2n ,x 2+2y -1 2=2,x 2+2y 2-4y =0,2y 2+x 2-4y mx +ny =0,-4n +2 y2-4mxy +x 2=0,∵x ≠0,同除x 2,得-4n +2 y x2-4m yx+1=0,k 1+k 2=-4m -4n +2=2m 1-2n =2mm=2.例10.设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.【解析】(1)设A x 1,x 214 ,B x 2,x 224为曲线C :y =x 24上两点,则直线AB 的斜率为k =x 214-x 224x 1-x 2=14x 1+x 2 =14×4=1.(2)解法1:设直线AB 的方程为y =x +t ,代入曲线C :y =x 24,可得x 2-4x -4t =0,即有x 1+x 2=4,x 1x 2=-4t ,再由y =x 24的导数为y=12x ,设M m ,m 24 ,可得M 处切线的斜率为12m ,由C 在M 处的切线与直线AB 平行,可得12m =1,解得m =2,即M 2,1 ,由AM ⊥BM 可得,k AM ⋅k BM =-1,即为x 214-1x 1-2⋅x 224-1x 2-2=-1,化为x 1x 2+2x 1+x 2 +20=0,即为-4t +8+20=0,解得t =7,则直线AB 的方程为y =x +7.解法2:y =x 24,y =x 2=1,x =2,∴M 2,1 ,左移2个单位,下移1个单位C:y +1=x +2 24,A B :mx +ny =1,4y +4=x 2+4x +4,x 2+4x -y mx +ny =0,x 2+4mx 2+nxy -mxy -ny 2 =0,1+4m x2+4n -m xy -4ny 2=0,x ≠0,同除以x 2,得-4n y x2+4n -m yx+1+4m =0,4nk 2-4n -m k -1+4m =0,mx +ny =1,斜率-mn =1,m =-n ,k 1k 2=-1+4m 4n=-1,1+4m =4n ,n =18,m =-18,-18x +18y =1,x -y +8=0右2,上1,x -2 -y -1 +8=0,x -y +7=0.例11.(2017年全国卷理)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 ,四点P 11,1 ,P 20,1 ,P 3-1,32 ,P 41,32 中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.【解析】(1)解:根据椭圆的对称性,P 3-1,32 ,P 41,32两点必在椭圆C 上,又P 4的横坐标为1,∴椭圆必不过P 11,1 ,∴P 20,1 ,P 3-1,32,P 41,32 三点在椭圆C 上,把P 20,1 ,P 3-1,32 代入椭圆C ,得:1b 2=11a 2+34b 2=1,解得a 2=4,b 2=1,∴椭圆C 的方程为x 24+y 2=1.(2)证法1:①当斜率不存在时,设l :x =m ,A m ,y A ,B m ,-y A ,∵直线P 2A 与直线P 2B 的斜率的和为-1,∴k P 2A +k P 2B =y A -1m +-y A -1m =-2m=-1,解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l :y =kx +t ,t ≠1 ,A x 1,y 1 ,B x 2,y 2 ,联立y =kx +tx 2+4y 2-4=0 ,整理,得1+4k 2 x 2+8ktx +4t 2-4=0,x 1+x 2=-8kt 1+4k 2,x 1x 2=4t 2-41+4k 2,则k P 2A +k P 2B =y 1-1x 1+y 2-1x 2=x 2kx 1+t -x 2+x 1kx 2+t -x 1x 1x 2=8kt 2-8k -8kt 2+8kt 1+4k 24t 2-41+4k 2=8k t -14t +1 t -1=-1,又t ≠1,∴t =-2k -1,此时Δ=-64k ,存在k ,使得Δ>0成立,∴直线l 的方程为y =kx -2k -1,当x =2时,y =-1,∴l 过定点2,-1 .证法2:下移1个单位得E:x 24+y +1 2=1,A B :mx +ny =1,x 24+y 2+2y =0,x 2+4y 2+8y mx +ny =0,8n +4 y 2+8mxy +x 2=0,∵x ≠0同除以x 2,8n +4 y x 2+8m y x +1=0,8n +4 k 2+8mk +1=0,k 1+k 2=-8m 8n +4=-1,8m =8n +4,2m -2n =1,∴mx +ny =1过2,-2 ,上移1个单位2,-1 .例12.(2018全国一文)设抛物线C :y 2=2x ,点A 2,0 ,B -2,0 ,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:∠ABM =∠ABN .【解析】(1)当l 与x 轴垂直时,x =2,代入抛物线解得y =±2,∴M 2,2 或M 2,-2 ,直线BM 的方程:y =12x +1,或y =-12x -1.(2)解法1:证明:设直线l 的方程为l :x =ty +2,M x 1,y 1 ,N x 2,y 2 ,联立直线l 与抛物线方程得y 2=2xx =ty +2 ,消x 得y 2-2ty -4=0,即y 1+y 2=2t ,y 1y 2=-4,则有k BN +k BM =y 1x 1+2+y 2x 2+2=y 222×y 1+y 212×y 2+2y 1+y 2 x 1+2 x 2+2 =y 1+y 2 y 1y 22+2 x 1+2 x 2+2=0,∴直线BN 与BM 的倾斜角互补,∴∠ABM =∠ABN .解法2:(2)右移2个单位C :y 2=2x -2 ,l :mx +ny =1过4,0 即4m =1,m =14,y 2=2x -4,y 2=2x mx +ny -4mx +ny 2,y 2=2mx 2+2nxy -4m 2x 2+n 2y 2+2mnxy ,1+4n 2y2+8mn -2n xy +4m 2-2m x 2=0,∵x ≠0,同除以x 2,得1+4n 2 k 2+8mn -2n k +4m 2-2m =0,k 1+k 2=-8mn -2n 1+4n 2=-2n 4m -1 1+4n 2=0,∴∠ABM =∠ABN .例13.(2018全国一卷理)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为2,0 .(1)当l 与x 轴垂直时,求直线AM 的方程;(2)设O 为坐标原点,证明:∠OMA =∠O MB .【解析】(1)c =2-1=1,∴F 1,0 ,∵l 与x 轴垂直,∴x =1,由x =1x 22+y 2=1 ,解得x =1y =22 或x =1y =-22,∴A 1,22 ,或1,-22 ,∴直线AM 的方程为y =-22x +2,y =22x -2.(2)证明:解法1:当l 与x 轴重合时,∠OMA =∠O MB =0°,当l 与x 轴垂直时,OM 为AB 的垂直平分线,∴∠OMA =∠O MB .当l 与x 轴不重合也不垂直时,设l 的方程为y =k x -1 ,k ≠0,A x 1,y 1 ,B x 2,y 2 ,则x 1<2,x 2<2,直线MA ,MB 的斜率之和为k MA ,k MB 之和为k MA +k MB =y 1x 1-2+y 2x 2-2,由y 1=kx 1-k ,y 2=kx 2-k 得k MA +k MB =2kx 1x 2-3x 1+x 2 +4k x 1-2 x 2-2 ,将y =k x -1 代入x 22+y 2=1可得2k 2+1 x 2-4k 2x +2k 2-2=0,∴x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1,∴2kx 1x 2-3k x 1+x 2 +4k =12k 2+14k 3-4k -12k 3+8k 3+4k =0,从而k MA +k MB =0,故MA ,MB 的倾斜角互补,∴∠OMA =∠O MB ,综上∠OMA =∠O MB .解法2:左移2个单位C:x +222+y 2=1,l :mx +ny =1过-1,0 即-m =1.m =-1,x 2+4x +2y 2+2=0,x 2+4x mx +ny +2y 2+2mx +ny 2=0,2+2n 2y2+4n +4mn xy +1+4m +2m 2 x 2=0,∵x ≠0,同除以x 2,得2+2n 2 k 2+4n +4mn k +1+4m +2m 2=0,k 1+k 2=4n +4mn-2+2n 2=0,∴∠OMA =∠O MB .例14.(2020·新课标Ⅰ)已知A ,B 分别为椭圆E :x 2a 2+y 2=1a >1 的左、右顶点,G 为E 的上顶点,AG ⋅GB =8.P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【解析】(1)由题意A -a ,0 ,B a ,0 ,G 0,1 ,∴AG =a ,1 ,GB =a ,-1 ,AG ⋅GB =a 2-1=8,解得:a =3,故椭圆E 的方程是x 29+y 2=1.(2)证法1:由(1)知A -3,0 ,B 3,0 ,设P 6,m ,则直线PA 的方程是y =m9x +3 ,联立x 29+y 2=1y =m 9x +3⇒9+m 2 x 2+6m 2x +9m 2-81=0,由韦达定理-3x c =9m 2-819+m 2⇒x c =-3m 2+279+m 2,代入直线PA 的方程为y =m 9x +3 得:y c=6m9+m 2,即C -3m 2+279+m 2,6m9+m 2,直线PB 的方程是y =m3x -3 ,联立方程x 29+y 2=1y =m 3x -3⇒1+m 2 x 2-6m 2x +9m 2-9=0,由韦达定理3x D =9m 2-91+m 2⇒x D =3m 2-31+m 2,代入直线PB 的方程为y =m 3x -3 得y D =-2m 1+m 2,即D 3m 2-31+m 2,-2m1+m 2 ,则①当x c =x D 即27-3m 29+m 2=3m 2-3m 2+1时,有m 2=3,此时x c =x D=32,即CD 为直线x =32.②x C ≠x D 时,直线CD 的斜率K CD =y C -y D x C -x D =4m33-m 2 ,∴直线CD 的方程是y --2m 1+m 2=4m 33-m 2 x -3m 2-31+m 2 ,整理得:y =4m 33-m 2x -32 ,直线CD 过定点32,0 .综合①②故直线CD 过定点32,0 .证法2:设P 6,t ,A -3,0 ,B 3,0 ,则k AC =k AP =t 9,k BD =k BP =t 3,根据椭圆第三定义(本书后面有详细讲解),k AD ⋅k BD =b 2a2=-19,∴k AD =-13t ,则k AC ⋅k AD =-127,将图像向右移动3个单位,则椭圆E 和直线l CD :x -329+y 2=1mx +ny =1,联立得:x 2-6x +9y 2=0,x 2-6x mx +ny +9y 2=0,即9y 2-6nxy +1-6m x 2=0,两边同时除以x 2,得:9y 2x2-6n yx +1-6m =0,则k AC ⋅k AD =1-6m 9=-127,解得m =29,则直线过定点92,0 ,则平移前过32,0 .例15.(2020·山东)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的离心率为22,且过点A 2,1 .(1)求C 的方程;(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得DQ 为定值.【解析】(1)∵离心率e =c a =22,∴a =2c ,又a 2=b 2+c 2,∴b =c ,a =2b ,把点A 2,1 代入椭圆方程得,42b 2+1b 2=1,解得b 2=3,故椭圆C 的方程为x 26+y 23=1.(2)证法1:①当直线MN 的斜率存在时,设其方程为y =kx +m ,联立y =kx +mx 26+y 23=1,得2k 2+1 x 2+4km x +2m 2-6=0,由Δ=4km 2-42k 2+1 2m 2-6 >0,知m 2<6k 2+3,设M x 1,y 1 ,N x 2,y 2 ,则x 1+x 2=-4km 2k 2+1,x 1x 2=2m 2-62k 2+1,∵AM ⊥AN ,∴AM ⋅AN=x 1-2,y 1-1 ⋅x 2-2,y 2-1 =0,即k 2+1 x 1x 2+km -k -2 x 1+x 2 +m 2-2m +5=0,∴k 2+1 ⋅2m 2-62k 2+1+km -k -2 -4km 2k 2+1+m 2-2m +5=0,化简整理得,4k 2+8km +3m 2-2m -1=2k +m -1 2k +3m +1 =0,∴m =1-2k 或m =-2k +13,当m =1-2k 时,y =kx -2k +1,过定点A 2,1 ,不符合题意,舍去;当m =-2k +13时,y =kx -2k +13,过定点23,-13.设D x 0,y 0 ,则y 0=kx 0+m ,(i )若k ≠0,∵AD ⊥MN ,∴k ⋅kx 0+m -1x 0-2=-1,解得x 0=2k 2+4k +63k 2+3,y 0=3k 2+4k -13k 2+3,∴x 0-432+y 0-132=-2k 2+4k +23k 2+3 2+2k 2+4k -23k 2+3 2=8k 4+2k 2+1 9k 2+12=89,∴点D 在以43,13 为圆心,223为半径的圆上,故存在Q 43,13 ,使得DQ =223,为定值.(ii )若k =0,则直线MN 的方程为y =-13,∵AD ⊥MN ,∴D 2,-13 ,∴DQ =43-22+13+132=223,为定值.②当直线MN 的斜率不存在时,设其方程为x =t ,M t ,s ,N t ,-s ,且t 26+s 23=1,∵AM ⊥AN ,∴AM ⋅AN =t -2,s -1 ⋅t -2,-s -1 =t 2-4t -s 2+5=32t 2-4t +2=0,解得t =23或2(舍2),∴D 23,1 ,此时DQ =43-232+13-1 2=223,为定值.综上所述,存在定点Q 43,13,使得DQ 为定值,且该定值为223.证法2:将图像向左移动两个单位,向下移动一个单位,那么平移后的C 和直线M N :x +226+y +123=1mx +ny =1,联立得:x 2+2y 2+4x +4y mx +ny =0,两边同时除以x 2:4n +2 y 2+4m +4n xy +4m +1 x 2=0,得:4n +2 k 2+4m +4n k +4m +1 =0,∵AM ⊥AN ,∴k AM ⋅k AN =-1,∴4m +14n +2=-1,4m +1=-4n -2,即-43m +-43n =1,M N 过定点-43,--43 ,则平移前该直线过定点P 23,-13 .在△ADP 中,AD ⊥DP ,则D 点的轨迹是以AP 为直径,∵A 为定点,P 为定点,则AP 为定值,则Q 为AP 中点,此时DQ 为定值,∵A 2,1 ,P 23,-13,则Q 43,13 ,DQ =12AP =223.例16.(2022惠州模拟)已知左焦点为F -1,0 的椭圆过点E 1,233,过点P 1,1 分别作斜率为k 1,k 2的椭圆的动弦AB ,CD ,设M ,N 分别为线段AB ,CD 的中点(1)求椭圆的标准方程;(2)若P 为线段AB 的中点,求k 1;(3)若k 1+k 2=1,求证:直线MN 恒过定点,并求出定点坐标【解析】(1)由题意c =1,且右焦点F 1,0 ,∴2a =EF +EF =23,b 2=a 2-c 2=2,∴所求椭圆方程为x 23+y 22=1.(2)设A x 1,y 1 ,B x 2,y 2 ,则x 213+y 212=1①,x 223+y 222=1②②-①,可得k 1=y 2-y 1x 2-x 1=-2x 2+x 1 3y 2+y 1=-23.(3)证法1:由题意,k 1≠k 2,设M x M ,y M ,直线AB 的方程为y -1=k 1x -1 ,即y =k 1x +k 2,代入椭圆方程并化简得2+3k 21 x 2+6k 1k 2x +3k 22-6=0,∴x M =-3k 1k 22+3k 21,y M =2k 22+3k 21,同理,x N =-3k 1k 22+3k 22,y N =2k 12+3k 22,当k 1k 2≠0时,直线MN 的斜率k =y M -y N x M -x N =10-6k 1k 2-9k 1k 2,直线MN 的方程为y -2k 22+k 21=10-6k 1k 2-9k 1k 2x --3k 1k 22+3k 21,即y =10-6k 1k 2-9k 1k 2x -23,此时直线过定点0,-23 .当k 1k 2=0时,直线MN 即为y 轴,此时亦过点0,-23.综上,直线MN 恒过定点,且坐标为0,-23.证法2:设过点P 的弦的中点坐标为x 0,y 0 ,由点差法得y 0-1x 0-1⋅y 0x 0=-23,即中点的轨迹方程为2x 2-x +3y 2-y =0,将点P 平移到原点,整体左移1个单位,下移1个单位,设平移后的MN 方程为mx +ny =1,曲线为2x +1 2-x +1 +3y +1 2-y +1 =0,2x 2+3y 2+3y mx +ny +2x mx +ny =0,3+3n y 2+2n +3m xy +2+2m x 2=0,同除以x 2,得3+3n k 2+2n +3m k +2+2m =0,∵k 1+k 2=1,∴-2n +3m 3+3n =1,-m -35n =1,∴过定点-1,-53,则平移前的MN 过定点0,-23 .例17.(2022武汉模拟)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左右顶点分别为A ,B ,过椭圆内点D 23,0 且不与x 轴重合的动直线交椭圆C 于P ,Q 两点,当直线PQ 与x 轴垂直时,PD =BD =43.(1)求椭圆C 的标准方程;(2)设直线AP ,AQ 和直线l :x =t 分别交于点M ,N ,若MD⊥ND 恒成立,求t 的值.【解析】(Ⅰ)由BD =43得a =23+43=2,故C 的方程为x 24+y 2b2=1,此时P 23,43 ,代入方程19+169b2=1,解得b 2=2,故C 的标准方程为x 24+y 22=1.(Ⅱ)解法1:设直线PQ 的方程为:x =my +23,与椭圆联立得m 2+2 y 2+4m 3y 329=0,设P x 1,y 1 ,Q x 2,y 2 ,则y 1+y 2=-4m 3m 2+2 y 1y 2=-329m 2+2,①此时直线PA 的方程为y =y 1x 1+2x +2 ,与x =t 联立,得点M t ,t +2 y 1x 1+2 ,同理,N t ,t +2 y 2x 2+2 ,由MD ⊥ND ,则k MD ⋅k ND =-1,即t +2 y 1t -23 x 1+2 ⋅t +2 y 2t -23 x 2+2=-1,∴t +2 2y 1y 2+t -23 2my 1+83 my 2+83 =0,即t +2 2y 1y 2+t -232m 2y 1y 2+8m 3y 1+y 2 +649 =0,把①代入得-32t +2 29m 2+2+t -23 2-32m 29m 2+2 -32m 29m 2+2 +649 =0,化简得-32t +2 2+t -23 2-32m 2-32m 2+64m 2+2 =0,即t +2 2-4t -23 2=0,t +2=±2t -23 ,解得t =-29或t =103.解法2:公共点A -2,0 ,右移2个单位后P O :mx +ny =1过D 83,0 ,∴83m +0n =1,m =38,C :x -2 24+y 22=1P O :mx +ny =1 ,x 2+2y 2-4x mx +ny =0,2y 2-4nxy +1-4m x 2=0,等式两边同时除以x ,2y x 2-4n y x +1-4m =0,k AP ⋅k AQ =k AM ⋅k AN =1-4m 2=-14,∵MD ⊥ND ,∴k MD ⋅k ND =-1,k DM ⋅k DN k AM ⋅k AN =-1-14=4,直线MN :x =t ,MTt -23⋅-NT t -23 MT t +2⋅-NT t +2=4,t +2 2t -23 2=4,解得t =-29或t =103.五、齐次化运算为什么不是解决圆锥曲线的常规武器通过上面分析,我们可以发现,齐次化运算比传统的设而不求运算量大大的降低,但为什么齐次化运算并不是常规武器呢?首先我们总结一下齐次化运算步骤f x ,y =0,g x ,y =0 ⇒A y x 2+B ⋅y x +C =0⇒y 1x 1+y 2x 2=-B A ,y 1x 1⋅y 2x 2=C A ⇒k 1+k 2=-B A ,k 1k 2=C A .通过上面的步骤可以看出,本方法适用于斜率的相关问题,有较大的局限性,当然,还有一个难点在于方程消元的基本思路是消未知数,而本方法是消去常数,这也是学生不适应之处.但更大的难点是如果通过审题,转化为斜率之积、之和问题.下面通过两道题来说明:例18.A ,B 分别是椭圆E :x 29+y 2=1左右顶点,P 是直线x =6的动点,PA 交E 于另一点C ,PB 交E 于另一点D .求证:直线CD 过定点.思路一:本问题没有直接的提到斜率之和(积),而且很容易入手,分别设直线PA ,PB ,与椭圆方程联立,消去x 得到关于y 的常数项为0的方程,即可解出C ,D 坐标,然后写出CD 方程.在实际运算中,C ,D 坐标,CD 过定点运算量巨大.本方法少思、多算.解答如下:证法一:设P 6,y 0,则直线AP 的方程为:y =y 0-06--3 x +3 ,即:y =y 09x +3 ,联立直线AP 的方程与椭圆方程可得:x 29+y 2=1y =y 09x +3,整理得:y 02+9 x 2+6y 02x +9y 02-81=0,解得:x =-3或x =-3y 02+27y 02+9,将x =-3y 02+27y 02+9代入直线y =y 09x +3 可得:y =6y 0y 02+9,所以点C 的坐标为-3y 02+27y 02+9,6y 0y 02+9 .同理可得:点D 的坐标为3y 02-3y 02+1,-2y 0y 02+1.当y 20≠3时,直线CD 的方程为:y --2y 0y 02+1 =6y 0y 02+9--2y 0y 02+1 -3y 02+27y 02+9-3y 02-3y 02+1x -3y 02-3y 02+1,整理可得:y +2y 0y 02+1=8y 0y 02+3 69-y 04 x -3y 02-3y 02+1 =8y 063-y 02 x -3y 02-3y 02+1,整理得:y =4y 033-y 02 x +2y 0y 02-3=4y 033-y 02x -32 ,所以直线CD 过定点32,0 .当y 20=3时,直线CD :x =32,直线过点32,0 .故直线CD 过定点32,0 .思路二:连接CB ,由椭圆第三定义得,k CA k CB =-19,而k CA k CB =-19, k CA =PQ AQ,k BD =k BP =PQ BQ =13,可得:k BC k BD =-13,就可以采用本方法解答.证法二:设交点C x 1,y 1 ,D x 2,y 2 ,即化为y 1x 1-3⋅y 2x 2-3=-13,设x -3=t ,得t 2+9y 2+6t =0, 故设6=mt +ny 易算.计算如下:9y t 2+n ⋅y t +m +1 =0⇒k 1k 2=m +19=-13⇒m =-4⇒-4x -3 +ny =6,可知直线CD 过定点32,0 .例19.A ,B 分别是椭圆E :x 24+y 2=1下上两顶点,过(1,0)的直线l 交于E 的C ,D ,设直线AC ,BD 的斜率为k 1,k 2,k 1=2k 2,求直线l 的方程.【分析】已知给出了k 1=2k 2,但还是没有斜率之积(和)为定值,还是要用到椭圆的第三定义,k AD k BD =-14,得到k AC k AD =-12,即可采用齐次化运算了.【简解】设交点C x 1,y 1 ,D x 2,y 2 ,即化为y 1x 1+1⋅y 2x 2+1=-12,设y +1=t ,得x 2+4t 2-8t =0, 所以设8=mx +n (y +1)=mx +nt 易算.计算如下:4-n t x 2-m ⋅t x +1=0,∴k 1k 2=14-n ,∴14-n =-12,∴n =6,又l 过(1,0),得m =2,∴直线l 的方程的方程:y =13x -13.六、为什么斜率为会是定值,从平面几何看众所周知,直径所对的圆周角为直角,其实圆相交弦的还有如下性质.如图圆中,AB 为直径,CD 与AB 交于F ,则有如下性质:tan αtan β=BF AF =PQ AQ ,tan ηtan β=-PQ AQ.引入坐标系,如图建系,设A (-a ,0),B (a ,0),F (m ,0),则k BC k BD =m +a m -a ,k AC k BD =a -m m +a ,且AB 与CD 的交点在直线x =a 2m 上.【简证】tan αtan β=sin αsin βcos αcos β=sin αsin βsin γsin η,分别在ΔACF ,ΔBCF ,由正弦定理得:sin αsin β=CF AF ,sin γsin η=BF CF ,所以tan αtan β=sin αsin β⋅cos αcos β=sin αsin β⋅sin γsin η=CF AF ⋅BF CF =BF AF,tan α=PQ AQ ,tan β=PQ BQ ,tan αtan β=BQ AQ,而tan ηtan β=-tan βtan α=-AQ BQ .那么椭圆怎么有这些性质呢?如图,圆的方程为x 2+y 2=a 2,椭圆方程为:x 2a 2+y 2b 2=1,设B x 1,y 1 ,D x 2,y 2 ,B x 1,y 1b ,D x 2,y 2b ,则k A Dk C B=k AD k CB ,k B A k B C=-b 2a 2,更具一般性质的椭圆的内接四边形性质如如下:在椭圆中,O 为椭圆的中心,A ,C 是椭圆上两点且关于O 对称,直线A C 上一点M ,过M 的直线交椭圆于B ,D ,则如果M 为定点,则k A D k B C为定值,反之亦成立.例20.A,B分别是椭圆E:x29+y2=1左右顶点,P是直线x=6的动点,PA交E于另一点C,PB交E于另一点D.求证:直线CD 过定点.【分析】用几何法,k ACk BD=BQAQ=EBAE,得BE=32,所以过32,0.例21.A,B分别是椭圆E:x24+y2=1下上两顶点,过(1,0)的直线l交于E的C,D,设直线AC,BD的斜率为k1,k2,k1=2k2,求直线l 的方程.【分析】用几何法,k1k2=k ACk BD=AEBE,得BE=23,所以E13,0,所以直线l的方程的方程:y=13x-13.【评注】用平面几何的视角,对本问题进行证明,使代数,解析几何,平面几何三者融合.七、微专题小结齐次化运算在解析几何中的运算,只可以处理斜率之和(积)的问题,基本步骤如下:f x,y=0,g x,y=0⇒A yx2+B⋅y x+C=0⇒y1x1+y2x2=-BA,y1x1⋅y2x2=CA⇒k1+k2=-B A,k1k2=C A,重点一在于通过分析题意,明确能不能用本方法,二在于直线方程的设元技巧,三在于消元中的齐次化运算.【针对训练训练】(2022阎良区期末)1.已知抛物线C:x2=2py p>0,直线l经过抛物线C的焦点,且垂直于抛物线C的对称轴,直线l与抛物线C交于M,N两点,且MN=4.(1)求抛物线C的方程;(2)已知点P2,1,直线m:y=k x+2与抛物线C相交于不同的两点A,B,设直线PA与直线PB的斜率分别为k1和k2,求证:k1⋅k2为定值.2.已知直线l与抛物线C:y2=4x交于A,B两点.(1)若直线l的斜率为-1,且经过抛物线C的焦点,求线段AB的长;(2)若点O为坐标原点,且OA⊥OB,求证:直线l过定点.(2022滁州期末)3.已知点A在圆C:x-2,线段AB的垂直平分线与AC相交于点D.2+y2=16上,B-2,0,P0,2(1)求动点D的轨迹方程;(2)若过点Q0,-1的直线l斜率存在,且直线l与动点D的轨迹相交于M,N两点.证明:直线PM与PN的斜率之积为定值.4.已知椭圆M:x2a2+y2b2=1(a>b>0)经过点P3,12,且椭圆M的上顶点与右焦点所在直线的斜率为-33.(1)求椭圆M的方程;(2)设B、C是椭圆上异于左顶点A的两个点,若以BC为直径的圆过点A,求证:直线BC过定点.(2022醴陵市期中)5.已知椭圆C1:x2a2+y2b2=1a>b>0的左右顶点是双曲线C2:x24-y2=1的顶点,且椭圆C1的上顶点到双曲线C2的渐近线距离为215 5.(1)求椭圆C1的方程;(2)点F为椭圆的左焦点,不垂直于x轴且不过F点的直线l与曲线C1相交于A、B两点,若直线FA、FB的斜率之和为0,则动直线l是否一定经过一定点?若存在这样的定点,则求出该定点的坐标;若不存在这样的定点,请说明理由.6.椭圆C:x2a2+y2b2=1(a>b>0)的离心率为22,过点P(0,1)的动直线l与椭圆相交于A,B两点,当直线l平行于x轴时,直线l被椭圆C截得线段长为26.(1)求椭圆C的方程;(2)在y轴上是否存在异于点P的定点Q,使得直线l变化时,总有∠PQA=∠PQB?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案:1.(1)x 2=4y (2)证明见解析【分析】(1)将MN 用p 表示,得出p 的值,进而得抛物线方程;(2)联立直线与抛物线的方程,根据斜率计算公式结合韦达定理即可得结果.(1)由题意可得2p =4,得p =2,∴抛物线C :x 2=4y .(2)证明:m :y =k x +2 ,联立y =k x +2 x 2=4y,得x 2-4kx -8k =0.由Δ=16k 2+32k >0,得k >0或k <-2,设A x 1,y 1 ,B x 2,y 2 ,则x 1+x 2=4k ,x 1x 2=-8k ,∴k 1k 2=y 1-1x 1-2⋅y 2-1x 2-2=x 214-1x 1-2⋅x 224-1x 2-2=x 1+2 x 2+216=x 1x 2+2x 1+x 2 +416=-8k +8k +416=14.2.(1)8(2)证明见解析【分析】(1)联立直线与抛物线的方程,根据抛物线的焦点弦公式结合韦达定理即可得解;(2)直线AB 方程为:x =my +n ,由向量数量积公式结合韦达定理可得n 的值,进而可得结果.(1)抛物线为y 2=4x ,∴焦点坐标为1,0 ,直线AB 斜率为-1,则直线AB 方程为:y =-x +1,设A x 1,y 1 ,B x 2,y 2 ,由y =-x +1y 2=4x 得:x 2-6x +1=0,可得x 1+x 2=6,由抛物线定义可得AB =x 1+x 2+2,∴AB =8.(2)设直线AB 方程为:x =my +n ,设A x 1,y 1 ,B x 2,y 2 ,∵OA ⊥OB ,∴OA ⋅OB =0,∴x 1x 2+y 1y 2=0,由x =my +n y 2=4x得:y 2-4my -4n =0,∴y 1y 2=-4n ;x 1x 2=n 2;∴n 2-4n =0,解得n =0或n =4,当n=0时,直线AB过原点,不满足题意;当n=4时,直线AB过点4,0.故当OA⊥OB时,直线AB过定点4,0.3.(1)x24+y22=1;(2)-32-2.【解析】(1)由圆的方程可得:圆心C(2,0),半径r=4,|DA|=|DB|,|DB|+|DC|=|DA|+|DC|=|AC|=r=4>|BC|=22,由椭圆的定义即可求解;(2)设l:y=kx-1,M(x1,y1),N(x2,y2),联立直线与椭圆的方程,利用根与系数的关系计算x1+x2,x1x2,再计算k1k2=y1-2x1⋅y2-2x2=(kx1-2-1)x1⋅(kx2-2-1)x2即可求解.【详解】(1)由C:x-22+y2=16得,圆心C(2,0),半径r=4,∵点D在线段AB的垂直平分线上,∴|DA|=|DB|,∴|DB|+|DC|=|DA|+|DC|=|AC|=r=4>|BC|=22,由椭圆的定义可得动点D的轨迹是以B(-2,0),C(2,0)为焦点,长轴长为2a=4的椭圆.从而a=2,c=2,b2=a2-c2=2,故所求动点D的轨迹方程为x24+y22=1.(2)设l:y=kx-1,M(x1,y1),N(x2,y2)由y=kx-1x24+y22=1消去y得(2k2+1)x2-4kx-2=0,显然Δ=(-4k)2+8(2k2+1)=k2+8>0∴x1+x2=4k2k2+1,x1x2=-22k2+1.∵x1≠0,x2≠0,∴可设直线PM与PN的斜率分别为k1,k2则k1k2=y1-2x1⋅y2-2x2=(kx1-2-1)x1⋅(kx2-2-1)x2=k2x1x2-(2+1)k(x1+x2)+22+3x1x2=k2+-(2+1)k×4k2k2+1+22+3-22k2+1=k2+2k2+3+22-2=-32-2即直线PM与PN的斜率之积为定值.【点睛】方法点睛:求轨迹方程的常用方法(1)直接法:如果动点满足的几何条件本身就是一些几何量,如(距离和角)的等量关系,或几何条件简单明了易于表达,只需要把这种关系转化为x,y的等式,就能得到曲线的轨迹方程;(2)定义法:某动点的轨迹符合某一基本轨迹如直线、圆锥曲线的定义,则可根据定义设方程,求方程系数得到动点的轨迹方程;(3)几何法:若所求轨迹满足某些几何性质,如线段的垂直平分线,角平分线的性质,则可以用几何法,列出几何式,再代入点的坐标即可;(4)相关点法(代入法):若动点满足的条件不变用等式表示,但动点是随着另一动点(称之为相关点)的运动而运动,且相关点满足的条件是明显的或是可分析的,这时我们可以用动点的坐标表示相关点的坐标,根据相关点坐标所满足的方程,求得动点的轨迹方程;(5)交轨法:在求动点轨迹时,有时会出现求两个动曲线交点的轨迹问题,这类问题常常通过解方程组得出交点(含参数)的坐标,再消去参数即可求出所求轨迹的方程.4.(1)x 24+y 2=1;(2)证明见解析【分析】(1)由椭圆的定义,性质列方程,求出a ,b 的值,再得到椭圆的方程;(2)设出直线BC 方程,与椭圆联立,由题可得AB ⊥AC ,利用AB ⋅AC =0建立关系可得.【详解】(1)由已知设椭圆的上顶点的坐标为(0,b ),右焦点为(c ,0),则由已知可得-b c =-333a 2+14b 2=1a 2=b 2+c 2,解得a =2,b =1,所以椭圆方程为x 24+y 2=1;(2)可得A (-2,0),设直线BC 方程为x =my +n ,代入椭圆方程可得4+m 2 y 2+2mny +n 2-4=0,设B x 1,y 1 ,C x 2,y 2 ,则y 1+y 2=-2mn 4+m 2,y 1y 2=n 2-44+m 2,∴x 1+x 2=m y 1+y 2 +2n =8n 4+m 2,x 1x 2=my 1+n my 2+n =m 2y 1y 2+mn y 1+y 2 +n 2=4n 2-m 2 4+m 2,∵以BC 为直径的圆过点A ,∴AB ⊥AC ,即AB ⋅AC =0,∴x 1+2,y 1 ⋅x 2+2, y 2 =x 1x 2+2x 1+x 2 +4+y 1y 2=5n 2+16n +124+m 2=0,解得n =-2或n =-65,又A (-2,0),故n =-65,所以直线BC 方程为x =my -65,故直线BC 过定点-65,0 .【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤:(1)得出直线方程,设交点为A x 1,y 1 ,B x 2,y 2 ;(2)联立直线与曲线方程,得到关于x(或y)的一元二次方程;(3)写出韦达定理;(4)将所求问题或题中关系转化为x1+x2,x1x2形式;(5)代入韦达定理求解.5.(1)x24+y23=1;(2)存在,-4,0.【分析】(1)由双曲线顶点求出a,再由点到直线距离求出b作答.(2)设出直线l的方程,与双曲线方程联立,利用韦达定理及斜率坐标公式计算、推理作答.(1)双曲线C2:x24-y2=1的顶点坐标为(±2,0),渐近线方程为x±2y=0,依题意,a=2,椭圆上顶点为0,b到直线x±2y=0的距离2b5=2155,解得b=3,所以椭圆的方程为x24+y23=1.(2)依题意,设直线l的方程为y=kx+m,A x1,y1、B x2,y2,点F-1,0,由x24+y23=1y=kx+m消去y并整理得3+4k2x2+8km x+4m2-12=0,则x1+x2=-8km3+4k2,x1⋅x2=4m2-123+4k2,直线FA、FB的斜率之和为y1x1+1+y2x2+1=kx1+mx1+1+kx2+mx2+1=2kx1x2+(k+m)(x1+x2)+2m(x1+1)(x2+1)=0,即2kx1x2+k+mx1+x2+2m=0,有2k⋅4m2-123+4k2+k+m-8km3+4k2+2m=0,整理得m=4k,此时Δ=64k2m2-16(4k2+3)(m2-3)=48(4k2+3-m2)=144(1-4k2),k≠0,否则m=0,直线l 过F点,因此当Δ>0且k≠0,即-12<k<12且k≠0时,直线l与椭圆C1交于两点,直线l:y=k(x+4),所以符合条件的动直线l过定点(-4,0).6.(Ⅰ)x28+y24=1;(Ⅱ)存在定点Q(0,4)满足题意.【详解】试题分析:(1)由椭圆C的离心率是22,直线l被椭圆C截得的线段长为26列方程组求出b 2=4,a 2=8,从而可得椭圆C 的标准方程;(2)设直线l 方程为y =kx +1,由x 2+2y 2=8y =kx +1 得2k 2+1 x 2+4kx -6=0,Δ=16k 2+242k 2+1 >0,根据韦达定理及斜率公式可得k QA +k QB =2k+1-t-4k -6=2k 4-t 3,令4-t =0,可得t =4符合题意.试题解析:(1)∵e =22,e 2=c 2a2=12,∴a 2=2c 2=b 2+c 2,b =c ·a 2=2b 2,椭圆方程化为:x 22b 2+y 2b2=1,由题意知,椭圆过点6,1 ,∴62b 2+1b 2=1,解得b 2=4,a 2=8,所以椭圆C 的方程为:x 28+y 24=1;(2)当直线l 斜率存在时,设直线l 方程:y =kx +1,由x 2+2y 2=8y =kx +1得2k 2+1 x 2+4kx -6=0,Δ=16k 2+242k 2+1 >0,设A x 1,y 1 ,B x 2,y 2 ,x 1+x 2=-4k 2k 2+1x 1x 2=-62k 2+1,假设存在定点Q 0,t (t 不为2)符合题意,∵∠PQA =∠PQB ,∴k QA =-k QB ,∴k QA +k QB =y 1-t x 1+y 2-t x 2=x 2y 1+x 1y 2-t x 1+x 2 x 1x 2=x 2kx 1+1 +x 1kx 2+1 -t x 1+x 2 x 1x 2=2kx 1x 2+1-t x 1+x 2 x 1x 2=2k +1-t -4k -6=2k 4-t 3=0,∵上式对任意实数k 恒等于零,∴4-t =0,即t =4,∴Q 0,4 ,当直线l 斜率不存在时,A ,B 两点分别为椭圆的上下顶点0,-2 ,0,2 ,显然此时∠PQA =∠PQB ,综上,存在定点Q 0,4 满足题意.。
圆锥曲线中的定值问题思路引导处理圆锥曲线中定值问题的方法:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.母题呈现考法1证明某些几何量为定值【例2】(2022·湖北省天门中学模拟预测)在平面直角坐标系xOy 中,已知椭圆C :x 4+y 2=1,点P (x 1,y 1),Q (x 2,y 2)是椭圆C 上两个动点,直线OP ,OQ 的斜率分别为k 1,k 2,若m =11(,)2x y ,n =22(,)2x y ,m·n =0.(1)求证:k 1·k 2=-14;(2)试探求△OPQ 的面积S 是否为定值,并说明理由.【解题指导】【解析】(1)证明:∵k 1,k 2均存在,∴x 1x 2≠0.又m·n =0,∴x 1x 24+y 1y 2=0,即x 1x24=-y 1y 2,∴k 1·k 2=y 1y 2x 1x 2=-14.(2)①当直线PQ 的斜率不存在,即x 1=x 2,y 1=-y 2时,由y 1y 2x 1x 2=-14,得x 214-y 21=0.又∵点P (x 1,y 1)在椭圆上,∴x 214+y 21=1,∴|x 1|=2,|y 1|=22.∴S △POQ =12|x 1||y 1-y 2|=1.②当直线PQ 的斜率存在时,设直线PQ 的方程为y =kx +b .kx +b ,y 2=1,消去y 并整理得(4k 2+1)x 2+8kbx +4b 2-4=0,其中Δ=(8kb )2-4(4k 2+1)(4b 2-4)=16(1+4k 2-b 2)>0,即b 2<1+4k 2.∴x 1+x 2=-8kb4k 2+1,x 1x 2+1∵x 1x 24+y 1y 2=0,∴x 1x 24+(kx 1+b )(kx 2+b )=0,得2b 2-4k 2=1(满足Δ>0).∴S △POQ =12·|b |1+k 2·|PQ |=12|b |x 1+x 22-4x 1x 2=2|b |4k 2+1-b 24k 2+1=1.综合①②知△POQ 的面积S 为定值1.【解题技法】参数法解决圆锥曲线中最值问题的一般步骤【跟踪训练】(2020·北京卷)已知椭圆C :x 2a 2+y 2b 2=1过点A (-2,-1),且a =2b .(1)求椭圆C 的方程;(2)过点B (-4,0)的直线l 交椭圆C 于点M ,N ,直线MA ,NA 分别交直线x =-4于点P ,Q ,求|PB ||BQ |的值.解(1)由椭圆过点A (-2,-1),得4a 2+1b 2=1.又a =2b ,∴44b 2+1b2=1,解得b 2=2,∴a 2=4b 2=8,∴椭圆C 的方程为x 28+y 22=1.(2)当直线l 的斜率不存在时,显然不合题意.设直线l :y =k (x +4),=k (x +4),2+4y 2=8得(4k 2+1)x 2+32k 2x +64k 2-8=0.由Δ>0,得-12<k <12.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-32k 24k 2+1,x 1x 2=64k 2-84k 2+1.又∵直线AM :y +1=y 1+1x 1+2(x +2),令x =-4,得y P =-2(y 1+1)x 1+2-1.将y 1=k (x 1+4)代入,得y P =-(2k +1)(x 1+4)x 1+2.同理y Q =-(2k +1)(x 2+4)x 2+2.∴y P +y Q =-(2k +1)121244(,)22x x x x ++++=-(2k +1)·2x 1x 2+6(x 1+x 2)+16(x 1+2)(x 2+2)=-(2k +1)·2(64k 2-8)4k 2+1+6×(-32k 2)4k 2+1+16(x 1+2)(x 2+2)=-(2k +1)×128k 2-16-192k 2+64k 2+16(4k 2+1)(x 1+2)(x 2+2)=0.∴|PB |=|BQ |,∴|PB ||BQ |=1.考法2证明某些代数式为定值【例3】(2022·山东泰安·三模)已知椭圆2222:1x y E a b +=(a >b >0)的离心率2e =,四个顶点组成的菱形面积为O 为坐标原点.(1)求椭圆E 的方程;(2)过228:3O x y +=上任意点P 做O 的切线l 与椭圆E 交于点M ,N ,求证PM PN ⋅ 为定值.【解题指导】【解析】(1)由题意得2ab =,2c e a ==,222a b c =+可得a =b =2,所以椭圆的标准方程为22184x y +=.(2)当切线l的斜率不存在时,其方程为x =【提醒】求直线方程时忽略直线斜率不存在的情况.当3x =时,将3x =代入椭圆方程22184x y +=得3y =±,∴33M ⎛ ⎝⎭,,33N ⎛⎫- ⎪ ⎪⎝⎭,,03P ⎛⎫⎪ ⎪⎝⎭,,0,PM PN ⎛⎛== ⎝⎭⎝⎭ ∴83PM PN ⋅=-当x =83PM PN ⋅=- ,当切线l 的斜率存在时,设l 的方程为y kx m =+,()11,M x y ,()22,N x y ,因为l 与O3=,所以22388m k =+【技巧】圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题.由22184y kx m x y =+⎧⎪⎨+=⎪⎩,得()222124280k x kmx m +++-=,∴122412km x x k +=-+,21222812m x x k -=+∴()()()2PM PN OM OP ON OP OP OP OM OP ON OM ON⋅=-⋅-=-⋅-⋅+⋅()()()22283OPOPOPOM ON OM ON=--+⋅=-+⋅()()12121212OM ON x x y y x x kx m kx m ⋅=+=+++()()2212121k x x km x x m =++++()2222222228438810121212m kmm k k km m k kk ---⎛⎫=++-+== ⎪+++⎝⎭∴8·3PM PN =-综上,PM PN 为定值83-.【解后反思】常见处理技巧:(1)在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢;(2)巧妙利用变量间的关系,例如点的坐标符号曲线方程等,尽量做到整体代入,简化运算.【例4】(2022·湖南怀化·一模)如图.矩形ABCD 的长AB =12BC =,以A 、B 为左右焦点的椭圆2222:1x y M a b+=恰好过C 、D 两点,点P 为椭圆M 上的动点.(1)求椭圆M 的方程,并求PA PB ⋅的取值范围;(2)若过点B 且斜率为k 的直线交椭圆于M 、N 两点(点C 与M 、N 两点不重合),且直线CM 、CN 的斜率分别为12k k 、,试证明122k k k +-为定值.【解题指导】【解析】(1)由题意得c =又点)12C 在椭圆2222:1x y M a b+=上,所以223114a b +=,且223a b -=,所以2a =,1b =,故椭圆M 的方程为2214x y +=.(3分)设点(,)P x y ,由A ,(B 得222223331244x x PA PB x y x ⋅=-+=-+-=- .又[2,2]x ∈-,所以PA PB ⋅[]2,1∈-.(5分)【技巧】利用隐含的不等关系,即点P 在圆上转化为[2,2]x ∈-,从而确定PA PB ⋅的取值范围(2)设过点B 且斜率为k 的直线方程为(y k x =-,联立椭圆M 方程得2222(14)1240k x x k +-+-=.设两点M 11(,)x y 、N 22(,)x y ,故21228314x x k+=+,212212414k x x k -=+.(7分)因为())()121212121212111222y y y x x y y y x x k k --++-++==,其中()1212121228214k y x x y kx x x x k -+=+=+,12y y +=(9分)故221222228614141421242414143k k k k k k k k k k k k -+++++==---+++所以122k k k +-=(12分)【解题技法】圆锥曲线中的定值问题的常见类型及解题策略(1)证明代数式为定值:依题意设条件,得出与代数式中参数有关的等式,代入代数式并化简,即可得出定值;(2)证明点到直线的距离为定值:利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、证明。
方法技巧专题10圆锥曲线中的垂径定理圆锥曲线是一类特殊的曲线,包括椭圆、双曲线、抛物线等。
在圆锥曲线中,存在许多重要的性质和定理,其中之一就是垂径定理。
垂径定理描述了圆锥曲线上任意一点的垂直线与曲线的关系,是解题中常用的方法技巧之一垂径定理的表述如下:圆锥曲线上任意一点的垂直线恰好与该点所在的切线相切。
为了更好地理解垂径定理,我们以椭圆为例进行分析。
首先,我们需要明确椭圆的定义及其性质。
椭圆是指平面上所有离定点F1和F2的距离之和等于常数2a的点的集合,常数2a称为椭圆的长轴。
通过椭圆的定义可以得知,椭圆的形状是一个“拉长”的圆。
根据椭圆的性质,我们可以知道椭圆的焦点在长轴上,且定点F1和F2与椭圆的中心O的连线被称为短轴。
椭圆的两个焦点与中心的连线称为主轴。
现在,我们来探讨椭圆上的任意一点P与曲线上的垂直线的关系。
首先,我们任取椭圆上一点P,并且过该点作曲线的切线,设切线与椭圆的交点为T。
我们可以发现,由于切线与椭圆的交点在椭圆上,所以它满足椭圆的定义。
从而,点T到定点F1和F2的距离之和等于常数2a。
同时,点P到定点F1和F2的距离之和也等于常数2a。
这说明了垂直线与切线同时满足椭圆的定义,即垂直线与切线相切。
由此可见,垂径定理可以应用于椭圆上的任意一点,也可以推广到其他圆锥曲线中。
除了椭圆,垂径定理同样适用于双曲线和抛物线。
对于双曲线,其定义为平面上满足两个常数F1和F2到一点的距离之差等于常数2a的点的集合。
对于抛物线,其定义为平面上满足一点到一个定直线和另一点的距离相等的点的集合。
通过类似的推理,我们可以得到垂径定理在双曲线和抛物线上的适用结果。
垂径定理可以方便地用于解决各种与圆锥曲线有关的问题。
例如,通过垂径定理,我们可以确定椭圆上其中一点的切线方程,从而求曲线的切线方程。
此外,我们还可以通过垂径定理来证明一些有关圆锥曲线的重要性质,如:切线垂直于主轴。
总而言之,垂径定理是探讨圆锥曲线中垂直线与曲线的关系的重要方法技巧。
专题10 圆锥曲线易错点1 混淆“轨迹”与“轨迹方程”如图,已知点0(1)F ,,直线:1l x =-,P 为平面上的动点,过P 作直线l 的垂线,垂足为点Q ,且QP QF FP FQ ⋅=⋅,求动点P 的轨迹.【错解】设点P (x ,y ),则Q (-1,y ),由QP QF FP FQ ⋅=⋅,得(x +1,0)·(2,-y )=(x -1,y )·(-2,y ),化简得y 2=4x .【错因分析】错解中求得的是动点的轨迹方程,而不是轨迹,混淆了“轨迹”与“轨迹方程”的区别. 【试题解析】设点P (x ,y ),则Q (-1,y ),由QP QF FP FQ ⋅=⋅,得(x +1,0)·(2,-y )=(x -1,y )·(-2,y ),化简得y 2=4x . 故动点P 的轨迹为焦点坐标为(1,0)的抛物线.【参考答案】动点P 的轨迹为焦点坐标为(1,0)的抛物线.1.求轨迹方程时,若题设条件中无坐标系,则需要先建立坐标系,建系时,尽量取已知的相互垂直的直线为坐标轴,或利用图形的对称性选轴,或使尽可能多的点落在轴上.求轨迹方程的方法有:(1)直接法:直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性.(2)定义法:求轨迹方程时,若动点与定点、定直线间的等量关系满足圆、椭圆、双曲线、抛物线的定义,则可直接根据定义先确定轨迹类型,再写出其方程.(3)相关点法:动点所满足的条件不易得出或转化为等式,但形成轨迹的动点,()P x y 却随另一动点(),Q x y ''的运动而有规律地运动,而且动点Q 的轨迹方程为给定的或容易求得的,则可先将x ',y '表示成关于x ,y 的式子,再代入Q 的轨迹方程整理化简即得动点P 的轨迹方程.(4)参数法:若动点,()P x y 坐标之间的关系不易直接找到,且无法判断动点,()P x y 的轨迹,也没有明显的相关动点可用,但较易发现(或经分析可发现)这个动点的运动受到另一个变量的制约,即动点,()P x y 中的x ,y 分别随另一变量的变化而变化,我们可称这个变量为参数,建立轨迹的参数方程,这种求轨迹方程的方法叫做参数法.2.求轨迹方程与求轨迹是有区别的,若是求轨迹,则不仅要求出方程,而且还要说明和讨论所求轨迹是什么样的图形,即说出图形的形状、位置等.1.已知定点(1,0)A -及直线:2l x =-,动点P 到直线l 的距离为d ,若||PA d =. (1)求动点P 的轨迹C 方程;(2)设,M N 是C 上位于x 轴上方的两点,B 坐标为(1,0),且AM BN ∥,MN 的延长线与x 轴交于点(3,0)D ,求直线AM 的方程.【答案】(1)2212x y +=;(2)(1)2y x =+.【解析】(1)设(,)P x y ,则由(1,0)A -,知||PA = 又:2l x =-,∴|2|d x =+,2=∴2221(1)(2)2x y x ++=+, ∴2222x y +=,∴点P 的轨迹方程为2212x y +=.(2)设1122(,),(,)M x y N x y ()120,0y y >>,∵(1,0)(1,0),(3,0)A B D -,, ∴B 为AD 中点, ∵//AM BN ,∴1212,322x x y y +==, ∴1223x x =-,又221112x y +=,∴()222223412x y -+=, 又222212x y +=,∴2151,42x x ==-,∵0y >,∴14y =,∴1112AM y k x ==+, ∴直线AM的方程为1)2y x =+. 【名师点睛】本题考查椭圆的轨迹方程,直线与椭圆的位置关系,求轨迹方程用的是直接法,另外还有定义法、相关点法、参数法、交轨法等.易错点2 求轨迹方程时忽略变量的取值范围已知曲线C :y=x 2-2x +2和直线l :y =kx (k ≠0),若C 与l 有两个交点A 和B ,求线段AB 中点的轨迹方程.【错解】依题意,由⎩⎨⎧y =x 2-2x +2,y =kx ,分别消去x 、y 得,(k 2-1)x 2+2x -2=0,① (k 2-1)y 2+2ky -2k 2=0.②设AB 的中点为P (x ,y ),则在①②中分别有12212212121x x x k y y k y k +⎧==⎪⎪-⎨+⎪==⎪-⎩,故线段AB 中点的轨迹方程为220x y x --=.【错因分析】消元过程中,由于两边平方,扩大了变量y 的允许范围,故应对x ,y 加以限制.【试题解析】依题意,由⎩⎨⎧y =x 2-2x +2y =kx,分别消去x 、y 得,(k 2-1)x 2+2x -2=0,① (k 2-1)y 2+2ky -2k 2=0.②设AB 的中点为P (x ,y ),则在①②中分别有⎩⎪⎨⎪⎧x =x 1+x 22=11-k 2, ③y =y 1+y 22=k1-k 2, ④又对②应满足222212221221044(2)(1)0201201k k k k k y y k k y y k ∆⎧-≠⎪=-⨯-⨯->⎪⎪⎨+=>-⎪⎪⎪=>-⎩,解得22<k <1.结合③④,则有x >2,y > 2.所以所求轨迹方程是x 2-y 2-x =0(x >2,y >2). 【参考答案】轨迹方程是x 2-y 2-x =0(x >2,y >2).1.一般地,在直角坐标系中,如果某曲线C (看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程(,)0f x y =的实数解建立了如下的关系: (1)曲线上点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线.2.要注意有的轨迹问题包含一定的隐含条件,由曲线和方程的概念可知,在求曲线时一定要注意它的“完备性”和“纯粹性”,即轨迹若是曲线的一部分,应对方程注明x 的取值范围,或同时注明x ,y的取值范围.2.已知圆221:(3)1C x y ++=和圆222:(3)9C x y -+=,动圆M 同时与圆1C 及圆2C 相外切,则动圆圆心M的轨迹方程为A .2218y x -=B .221(1)8y x x -=≤-C .2218x yD .221(1)8y x x -=≥【答案】B【解析】设动圆的圆心M 的坐标为(,)x y ,半径为r , 则由题意可得121,3MC r MC r =+=+,相减可得21122MC MC C C -=<,所以点M 的轨迹是以12,C C 为焦点的双曲线的左支, 由题意可得22,3a c ==,所以b =,故点M 的轨迹方程为221(1)8y x x -=≤-,故选B.【名师点睛】本题主要考查了圆与圆的位置关系,以及双曲线的定义、性质和标准方程的应用,其中解答中根据圆与圆的位置关系,利用双曲线的定义得到动点的轨迹是以12,C C 为焦点的双曲线的左支是解答的关键,着重考查了转化思想,以及推理与计算能力,属于基础题.易错点3 忽略椭圆定义中的限制条件若方程22186x y k k +=--表示椭圆,则实数k 的取值范围为________________.【错解】由8060k k ->⎧⎨->⎩,可得68k <<,所以实数k 的取值范围为(6,8).【错因分析】忽略了椭圆标准方程中a >b >0这一限制条件,当a =b >0时表示的是圆的方程.【试题解析】由806086k k k k ->⎧⎪->⎨⎪-≠-⎩,可得68k <<且7k ≠,所以实数k 的取值范围为(6,7)∪(7,8).【方法点睛】准确理解椭圆的定义,明确椭圆定义中的限制条件,才能减少解题过程中的失误,从而保证解题的正确性.【参考答案】(6,7)∪(7,8).平面上到两定点12,F F 的距离的和为常数(大于两定点之间的距离)的点P 的轨迹是椭圆. 这两个定点叫做椭圆的焦点,两个定点之间的距离叫做椭圆的焦距,记作122F F c =. 定义式:12122(2)PF PF a a F F +=>. 要注意,该常数必须大于两定点之间的距离,才能构成椭圆.3.已知F 1,F 2为两定点,|F 1F 2|=8,动点M 满足|MF 1|+|MF 2|=8,则动点M 的轨迹是A .椭圆B .直线C .圆D .线段【答案】D【解析】虽然动点M 到两个定点F 1,F 2的距离为常数8,但由于这个常数等于|F 1F 2|,故动点M 的轨迹是线段F 1F 2,故选D .平面上到两定点12,F F 的距离的和为常数(大于两定点之间的距离)的点P 的轨迹是椭圆.若忽略了椭圆定义中|F 1F 2|<2a 这一隐含条件,就会错误地得出点M 的轨迹是椭圆.易错点4 忽略对椭圆焦点位置的讨论已知椭圆的标准方程为2221(0)36x ykk+=>,并且焦距为8,则实数k的值为_____________.1.解决已知椭圆的焦点位置求方程中的参数问题,应注意结合焦点位置与椭圆方程形式的对应关系求解.②表示焦点在y 轴上的椭圆⇔0,0m n >>且m n <; ③表示椭圆⇔0,0m n >>且m n ≠.对于形如:Ax 2+By 2=1(其中A >0,B >0,A ≠B )的椭圆的方程,其包含焦点在x 轴上和在y 轴上两种情况,当B >A 时,表示焦点在x 轴上的椭圆;当B <A 时,表示焦点在y 轴上的椭圆. 2.求椭圆的方程有两种方法:(1)定义法.根据椭圆的定义,确定a 2,b 2的值,结合焦点位置可写出椭圆方程. (2)待定系数法.这种方法是求椭圆的方程的常用方法,其一般步骤是:第一步,做判断.根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能(这时需要分类讨论).第二步,设方程.根据上述判断设方程为22221(0)x y a b a b +=>>或22221(0)y x a b a b+=>>.第三步,找关系.根据已知条件,建立关于,,a b c 的方程组(注意椭圆中固有的等式关系222c a b =-). 第四步,得椭圆方程.解方程组,将解代入所设方程,即为所求.3.用待定系数法求椭圆的方程时,要“先定型,再定量”,不能确定焦点的位置时,需要分焦点在x 轴上和在y 轴上两种情况讨论,也可设椭圆的方程为Ax 2+By 2=1(其中A >0,B >0,A ≠B ).求椭圆的标准方程的方法可以采用待定系数法,此时要注意根据焦点的位置选择椭圆的标准方程;也可以利用椭圆的定义及焦点位置或点的坐标确定椭圆的标准方程.4.关于曲线C :222214x y a a +=-性质的叙述,正确的是A .一定是椭圆B .可能为抛物线C .离心率为定值D .焦点为定点【答案】D【解析】因为曲线方程没有一次项,不可能为抛物线,故B 错误;因为24a -可正也可负,所以曲线可能为椭圆或双曲线.若曲线为椭圆,则()22244c a a =--=,∴2c =,2e a=,离心率不是定值,焦点()2,0,()2,0-,为定点. 若曲线为双曲线,方程为222214x y a a-=-,则()22244c a a =+-=,∴2c =,2e a =,离心率不是定值,焦点()2,0,()2,0-为定点,故选D.【名师点睛】本题考查了圆锥曲线的标准方程和性质,体现了分类讨论的思想.易错点5 忽略椭圆的范围设椭圆的中心是坐标原点,长轴在x 轴上,离心率32e =,已知点3(0,)2P 到椭圆的最远距离为7,求椭圆的标准方程.1.椭圆22221(0)x ya ba b+=>>的范围就是方程中变量x,y的范围,由22221x ya b+=得222211x ya b=-≤,则||x a≤;222211y xb a=-≤,则||y b≤.故椭圆落在直线x=±a,y=±b围成的矩形内,因此用描点法画椭圆的图形时就可以不取“矩形”范围以外的点了.同时,在处理椭圆的一些参数或最值问题时要注意x,y的取值范围.2.设椭圆22221(0)x y a b a b+=>>上任意一点,()P x y ,则当0x =时,||OP 有最小值b ,P 点在短轴端点处;当x a =±时,||OP 有最大值a ,P 点在长轴端点处. 3.(1)解决椭圆x 2a 2+y 2b 2=1(a >b >0)中的范围问题常用的关系有:①-a ≤x ≤a ,-b ≤y ≤b ; ②离心率0<e <1;③一元二次方程有解,则判别式0∆≥.(2)解决与椭圆有关的最值问题常用的方法有以下几种: ①利用定义转化为几何问题处理;②利用三角替代(换元法)转化为三角函数的最值问题处理; ③利用数与形的结合,挖掘数学表达式的几何特征,进而求解;④利用函数最值的研究方法,将其转化为函数的最值问题来处理,此时,应注意椭圆中x 、y 的取值范围,常常是化为闭区间上的二次函数的最值来求解.5.已知椭圆2222:1(0)x y C a b a b +=>>的上顶点为(0,1)B ,且过点2P . (1)求椭圆C 的方程及其离心率;(2)斜率为k 的直线l 与椭圆C 交于,M N 两个不同的点,当直线,OM ON 的斜率之积是不为0的定值时,求此时MON △的面积的最大值.【答案】(1)2214x y +=,2e =;(2)1. 【解析】(1)由题意可得1b =.又2P 在椭圆C 上,所以22212a +=,解得2a =,所以椭圆C 的方程为2214x y +=,所以c C 的离心率2c e a ==.(2)设直线l 的方程为()0y kx m m =+≠.由22,14y kx m x y =+⎧⎪⎨+=⎪⎩,消去y ,得()222418440k x kmx m +++-=, 所以22222(8)4(41)(44)6416160km k m k m ∆=-+-=-+>,设()()1122,,,M x y N x y ,则2121222844,4141km m x x x x k k --+==++. ()()()2212121212121212OM ONkx m kx m k x x km x x my y k k x x x x x x +++++===222222244841414441m kmk km m k k m k --⨯+⨯+++=-+222444m k m -=-, 由题意,OM ON k k 为定值,所以21444k -=-,即214k =,解得12k =±.此时MN===, 点O 到直线y kx m =+的距离|5m d =.11||22MON S MN d m ==△== 显然,当21m =(此时214k =,21m =满足226416160k m ∆=-+>),即1m =±时,S 取得最大值,最大值为1.易错点6 忽略双曲线定义中的限制条件已知F 1(-5,0),F 2(5,0),动点P 满足|PF 1|-|PF 2|=2a ,当a 为3和5时,点P 的轨迹分别为A .双曲线和一条直线B .双曲线和一条射线C .双曲线的一支和一条直线D .双曲线的一支和一条射线在求解与双曲线有关的轨迹问题时,准确理解双曲线的定义,才能正确解题.当||MF 1|-|MF 2||=2a <|F 1F 2|(a >0),即|MF 1|-|MF 2|=±2a ,0<2a <|F 1F 2|时,点M 的轨迹是双曲线,其中取正号时为双曲线的右(上)支,取负号时为双曲线的左(下)支;当||MF 1|-|MF 2||=2a =|F 1F 2|(a >0)时,点M 的轨迹是以点F 1,F 2为端点的两条射线; 当||MF 1|-|MF 2||=2a >|F 1F 2|(a >0)时,点M 的轨迹不存在.6.如图,在ABC △中,已知||AB =A ,B ,C 满足2sin sin 2sin A C B +=,以AB 边所在的直线为x 轴,AB 的垂直平分线为y 轴,建立平面直角坐标系,求顶点C 的轨迹方程.【答案】221(26x y x -=>.【解析】由题意可得(A -,B .因为2sin sin 2sin A C B +=,由正弦定理可得||||||22BC AB AC +=,故|||||12|||AC BC AB AB -=<=, 由双曲线的定义知,点C 的轨迹为双曲线的右支(除去与x 轴的交点).由题意,设所求轨迹方程为22221()x y x a a b-=>,因为a =c =2226b c a =-=,故所求轨迹方程为221(26x y x -=>.【名师点睛】求解与双曲线有关的轨迹问题时要特别注意:(1)双曲线的焦点所在的坐标轴;(2)检验所求的轨迹对应的是双曲线的一支还是两支.易错点7 忽略双曲线中的隐含条件已知M 是双曲线2216436x y -=上一点,F 1,F 2是双曲线的左、右焦点,且1||17MF =,则2MF =_____________.1.在求解双曲线上的点到焦点的距离d 时,一定要注意d c a ≥-这一隐含条件.2.双曲线方程中,a b 的大小关系是不确定的,但必有0,0c a c b >>>>.3.由22221(0,0)x y a b a b-=>>,知x 2a2≥1,所以x ≤-a 或x ≥a ,因此双曲线位于不等式x ≥a 和x ≤-a 所表示的平面区域内,同时,也指明了坐标系内双曲线上点的横坐标的取值范围.7.过双曲线的一个焦点2F 作垂直于实轴的直线,交双曲线于,P Q ,1F 是另一焦点,若1=3PFQ π∠,则双曲线的离心率e 等于 A 1 BC 1D 2+【答案】B【解析】由双曲线的对称性可知,12PF F △是以点2F 为直角顶点,且126PF F π∠=,则122PF PF =,由双曲线的定义可得1222PF PF PF a -==, 在12Rt PF F △中,212122tan 2PF a PF F F F c ∠===c e a∴== B. 【名师点睛】本题考查双曲线的离心率的求解,要充分研究双曲线的几何性质,在遇到焦点时,善于利用双曲线的定义来求解,考查逻辑推理能力和计算能力,属于中等题.易错点8 忽略双曲线的焦点所在位置的讨论已知双曲线的渐近线方程是23y x=±,焦距为226,求双曲线的标准方程. 2b1.求解双曲线的标准方程时,先确定双曲线的类型,也就是确定双曲线的焦点所在的坐标轴是x 轴还是y 轴,从而设出相应的标准方程的形式,然后利用待定系数法求出方程中的22,a b 的值,最后写出双曲线的标准方程.2.在求双曲线的方程时,若不知道焦点的位置,则进行讨论,或可直接设双曲线的方程为221(0)Ax By AB +=<.8.已知双曲线的一条渐近线方程为0x y ±=,且过点()12P ,--,则该双曲线的标准方程为__________.【答案】22133y x -=【解析】根据题意,双曲线的一条渐近线方程为0x y ±=,可设双曲线方程为()220x y λλ-=≠,∵双曲线过点()12P ,--,∴14λ-=,即3λ=-.∴所求双曲线方程为22133y x -=,故答案为22133y x -=.【名师点睛】本题考查双曲线的标准方程的求法,需要学生熟练掌握已知渐近线方程时,如何设出双曲线的标准方程.易错点9 忽略直线与双曲线只有一个公共点的特殊情况若过点(1,1)P 且斜率为k 的直线l 与双曲线2214y x -=只有一个公共点,则k =___________.【方法点睛】解决直线与双曲线的位置关系的题目时,要注意讨论联立直线与双曲线的方程消元后得到的方程是否为一元一次方程,即二次项系数是否为0,因为直线与双曲线有一个公共点包含直线与双曲线的渐21. 直线与双曲线有三种位置关系:(1)无公共点,此时直线有可能为双曲线的渐近线. (2)有一个公共点,分两种情况:①直线是双曲线的切线,特别地,直线过双曲线一个顶点,且垂直于实轴;②直线与双曲线的一条渐近线平行,与双曲线的一支有一个公共点. (3)有两个公共点,可能都在双曲线一支上,也可能两支上各有一点.2.研究直线与双曲线位置关系的一般思路仍然是联立二者的方程,解方程组或者转化为一元二次方程,依据根的判别式和根与系数的关系求解.要注意讨论转化以后的方程的二次项系数,即若二次项系数为0,则直线与双曲线的渐近线平行或重合;若二次项系数不为0,则进一步研究二次方程的根的判别式∆,得到直线与双曲线的交点个数.9.已知直线y kx =与双曲线22416x y -=.当k 为何值时,直线与双曲线: (1)有两个公共点;(2)有一个公共点;(3)没有公共点. 【答案】见解析.【解析】由22416x y y kx -==⎧⎨⎩消去y 得22(4)160k x --= ①,当240k -=,即2k =±时,方程①无解;当240k -≠时,2204(4)(16)64(4)k k ∆=---=-, 当0∆>,即22k -<<时,方程①有两解; 当0∆<,即2k <-或2k >时,方程①无解; 当0∆=,且240k -≠时,这样的k 值不存在.综上所述,(1)当22k -<<时,直线与双曲线有两个公共点; (2)不存在使直线与双曲线有一个公共点的k 值; (3)当2k ≤-或2k ≥时,直线与双曲线没有公共点.【名师点睛】研究直线与双曲线位置关系的一般思路仍然是联立二者的方程,解方程组或者转化为一元二次方程,依据根的判别式和根与系数的关系求解.要注意讨论转化以后的方程的二次项系数,即若二次项系数为0,则直线与双曲线的渐近线平行或重合;若二次项系数不为0,则进一步研究二次方程的根的判别式∆,得到直线与双曲线的交点个数.易错点10 忽略抛物线定义中的限制条件已知点P 到F (4,0)的距离与到直线5x =-的距离相等,求点P 的轨迹方程.【参考答案】2189y x =+.1.抛物线的标准方程是特殊的抛物线方程,对坐标轴的位置有严格的要求.若从题意中无法判断方程是否为标准方程,可按求曲线方程的一般步骤求解.2.抛物线定义中要求直线l 不经过点F ,若l 经过F 点,则轨迹为过定点F 且垂直于定直线l 的一条直线.因此当动点P 到定点F 的距离与它到定直线l 的距离相等时,不能盲目套用抛物线定义.10.已知圆C 的方程22100x y x +-=,求与y 轴相切且与圆C 外切的动圆圆心P 的轨迹方程.【答案】220(0)y x x =>或)00(y x =<.【解析】设P 点坐标为(x ,y ),动圆的半径为R ,∵动圆P 与y 轴相切,∴R x =,∵动圆与定圆C :2252)5(x y -+=外切,∴5PC R =+,∴5PC x =+.当点P 在y 轴右侧,即x >0时,5PC x =+,点P 的轨迹是以(5,0)为焦点的抛物线,则圆心P 的轨迹方程为220(0)y x x =>;当点P 在y 轴左侧,即x <0时, 5PC x =-+,此时点P 的轨迹是x 轴的负半轴,即方程)00(y x =<.故点P 的轨迹方程为220(0)y x x =>或)00(y x =<.【名师点睛】抛物线的轨迹问题,既可以用轨迹法直接求解,也可以转化为利用抛物线的定义求解,利用抛物线的定义求解的关键是找到条件满足动点到定点的距离等于到定直线的距离,需要依据条件进行转化.易错点11 忽略抛物线的焦点所在位置的讨论设抛物线y 2=mx 的准线与直线x =1的距离为3,求抛物线的方程.【错解】易知准线方程为x =-m4,因为准线与直线x =1的距离为3, 所以准线方程为x =-2, 所以-m4=-2,解得m =8,故抛物线方程为y 2=8x .【错因分析】题目条件中未给出m 的符号,当m >0或m <0时,抛物线的准线是不同的,错解中考虑问题欠周到.【试题解析】当m >0时,准线方程为x =-m4,由条件知1-(-m4)=3,所以m =8.此时抛物线方程为y 2=8x ; 当m <0时,准线方程为x =-m4,由条件知-m4-1=3,所以m =-16,此时抛物线方程为y 2=-16x .所以所求抛物线方程为y 2=8x 或y 2=-16x . 【参考答案】y 2=8x 或y 2=-16x .1.抛物线的四种标准方程与对应图形如下表所示:图 形标准方程22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =->焦点坐标(,0)2p (,0)2p -(0,)2p(0,)2p -准线方程2p x =-2p x =2p y =-2p y =注:抛物线标准方程中参数p 的几何意义是:抛物线的焦点到准线的距离,所以p 的值永远大于0. 2.求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点的位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.用待定系数法求抛物线标准方程的步骤:若无法确定抛物线的位置,则需分类讨论.特别地,已知抛物线上一点的坐标,一般有两种标准方程.11.顶点在原点,且过点(1,1)-的抛物线的标准方程是A .2y x =-B .2x y =C .2y x =-或2x y =D .2y x =或2x y =-【答案】C【解析】当焦点在x 轴上时,设方程为2y ax =,将(1,1)-代入得1a =-,2y x ∴=-;当焦点在y 轴上时,设方程为2x ay =,将(1,1)-代入得1a =,2x y ∴=.故选C .本题若只考虑焦点在x 轴的负半轴上的情况,而忽略了焦点也可能在y 轴的正半轴上的情况,则会出现漏解.易错点12 忽略直线与抛物线有一个公共点的特殊情况求过定点(11)P -,,且与抛物线22y x =只有一个公共点的直线l 的方程.直线l y kx b =+:与抛物线22(0)y px p =>公共点的个数等价于方程组22y x p bxy k ⎧⎨==+⎩的解的个数.(1)若0k ≠,则当0∆>时,直线和抛物线相交,有两个公共点;当0∆=时,直线和抛物线相切,有一个公共点;当0∆<时,直线和抛物线相离,无公共点.(2)若0k =,则直线y b =与抛物线22(0)y px p =>相交,有一个公共点.特别地,当直线l 的斜率不存在时,设x m =,则当0m >时,直线l 与抛物线相交,有两个公共点;当0m =时,直线l 与抛物线相切,有一个公共点;当0m <时,直线l 与抛物线相离,无公共点.12.“直线与抛物线相切”是“直线与抛物线只有一个公共点”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】“直线与抛物线相切”可得“直线与抛物线只有一个公共点”,“直线与抛物线只有一个公共点”时,直线可能与对称轴平行,此时不相切,故“直线与抛物线相切”是“直线与抛物线只有一个公共点”的充分不必要条件.故选A .本题易忽略直线平行于抛物线的对称轴时,直线与抛物线也只有一个交点,而漏掉k =0.一、曲线与方程 1.求曲线方程的步骤求曲线的方程,一般有下面几个步骤:(1)建立适当的坐标系,用有序实数对(x ,y )表示曲线上任意一点M 的坐标; (2)写出适合条件p 的点M 的集合{|()}P M p M =; (3)用坐标表示条件p (M ),列出方程(,)0f x y =; (4)化方程(,)0f x y =为最简形式;(5)说明以化简后的方程的解为坐标的点都在曲线上.一般地,化简前后方程的解集是相同的,步骤(5)可以省略不写.若遇到某些点虽适合方程,但不在曲线上时,可通过限制方程中x ,y 的取值范围予以剔除.另外,也可以根据情况省略步骤(2),直接列出曲线方程. 2.两曲线的交点(1)由曲线方程的定义可知,两条曲线交点的坐标应该是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;反过来,方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点.(2)两条曲线有交点的充要条件是它们的方程所组成的方程组有实数解.可见,求曲线的交点问题,就是求由它们的方程所组成的方程组的实数解问题.二、椭圆 1.椭圆的定义平面上到两定点12,F F 的距离的和为常数(大于两定点之间的距离)的点P 的轨迹是椭圆. 这两个定点叫做椭圆的焦点,两个定点之间的距离叫做椭圆的焦距,记作122F F c =. 定义式:12122(2)PF PF a a F F +=>. 要注意,该常数必须大于两定点之间的距离,才能构成椭圆. 2.椭圆的标准方程焦点在x 轴上,22221(0)x y a b a b +=>>;焦点在y 轴上,22221(0)y x a b a b+=>>.说明:要注意根据焦点的位置选择椭圆方程的标准形式,知道,,a b c 之间的大小关系和等量关系:222,0,0a c b a b a c -=>>>>.3.椭圆的几何性质标准方程22221x y a b +=(a >b >0) 22221y x a b +=(a >b >0) 图形范围 a x a -≤≤,b y b -≤≤ b x b -≤≤,a y a -≤≤对称性 对称轴:x 轴、y 轴;对称中心:原点焦点 左焦点F 1 (-c ,0),右焦点F 2 (c ,0)下焦点F 1 (0,-c ),上焦点F 2 (0,c )顶点1212(,0),(,0),(0,),(0,)A a A a B b B b -- 1212(0,),(0,),(,0),(,0)A a A a B b B b --三、双曲线 1. 双曲线的定义(1)定义:平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于|F 1F 2|且大于零)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两个焦点间的距离叫做双曲线的焦距.(2)符号语言:1212202,MF MF a a F F =<-<. (3)当122MF MF a -=时,曲线仅表示焦点2F 所对应的双曲线的一支; 当122MF MF a -=-时,曲线仅表示焦点1F 所对应的双曲线的一支;当12||2a F F =时,轨迹为分别以F 1,F 2为端点的两条射线; 当12||2a F F >时,动点轨迹不存在. 2.双曲线的标准方程(1)焦点在x 轴上的双曲线的标准方程为22221x y a b-=(a >0,b >0),焦点分别为F 1(-c ,0),F 2(c ,0),焦距为2c ,且222c a b =+.(2)焦点在y 轴上的双曲线的标准方程为22221y x a b-=(a >0,b >0),焦点分别为F 1(0,-c ),F 2(0,c ),焦距为2c ,且222c a b =+. 3.双曲线的几何性质标准方程22221x y a b -=(a >0,b >0) 22221y x a b -=(a >0,b >0) 图形范围 ||x a ≥,y ∈R ||y a ≥,x ∈R对称性 对称轴:x 轴、y 轴;对称中心:原点焦点 左焦点F 1(-c ,0),右焦点F 2(c ,0)下焦点F 1(0,-c ),上焦点F 2(0,c )顶点12(,0),(,0)A a A a - 12(0,),(0,)A a A a -轴线段A 1A 2是双曲线的实轴,线段B 1B 2是双曲线的虚轴;实轴长|A 1A 2|=2a ,虚轴长|B 1B 2|=2b渐近线 b y x a=±a y x b=±离心率e22c ce a a==(1)e >在解决双曲线中与焦点三角形有关的问题时,首先要注意定义中的条件12||||||2PF PF a -=的应用;其次是要利用余弦定理、勾股定理等知识进行运算,在运算中要注意整体思想和一些变形技巧的应用. 4.等轴双曲线四、抛物线 1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F ) 距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.抛物线关于过焦点F 与准线垂直的直线对称,这条直线叫抛物线的对称轴,简称抛物线的轴.注意:直线l 不经过点F ,若l 经过F 点,则轨迹为过定点F 且垂直于定直线l 的一条直线. 2.抛物线的标准方程(1)顶点在坐标原点,焦点在x 轴正半轴上的抛物线的标准方程为22(0)y px p =>;(2)顶点在坐标原点,焦点在x 轴负半轴上的抛物线的标准方程为22(0)y px p =->;(3)顶点在坐标原点,焦点在y 轴正半轴上的抛物线的标准方程为22(0)x py p =>;(4)顶点在坐标原点,焦点在y 轴负半轴上的抛物线的标准方程为22(0)x py p =->.注意:抛物线标准方程中参数p 的几何意义是抛物线的焦点到准线的距离,所以p 的值永远大于0,当抛物线标准方程中一次项的系数为负值时,不要出现p <0的错误. 3.抛物线的几何性质标准方程22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =->图 形几 何 性质范 围 0,x y ≥∈R0,x y ≤∈R0,y x ≥∈R0,y x ≤∈R对称性 关于x 轴对称关于x 轴对称关于y 轴对称关于y 轴对称焦点(,0)2p F (,0)2p F -(0,)2p F(0,)2p F -准线方程 2p x =-2p x =2p y =-2p y =顶 点 坐标原点(0,0)离心率1e =4.抛物线的焦半径抛物线上任意一点00(),P x y 与抛物线焦点F 的连线段,叫做抛物线的焦半径. 根据抛物线的定义可得焦半径公式如下表:抛物线方程22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =->。
圆锥曲线专题:定值问题的7种常见考法一、定值问题处理方法1、解析几何中的定值问题是指某些几何量(线段长度,图形面积,角度,直线的斜率等)的大小或某些代数表达式的值和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值,求定值问题常见的解题方法有两种:法一、先猜后证(特例法):从特殊入手,求出定值,再证明这个定值与变量无关;法二、引起变量法(直接法):直接推理、计算,并在计算推理过程中消去参数,从而得到定值。
2、直接法解题步骤第一步设变量:选择适当的量当变量,一般情况先设出直线的方程:b kx y +=或n my x +=、点的坐标;第二步表示函数:要把证明为定值的量表示成上述变量的函数,一般情况通过题干所给的已知条件,进行正确的运算,将需要用到的所有中间结果(如弦长、距离等)用引入的变量表示出来;第三步定值:将中间结果带入目标量,通过计算化简得出目标量与引入的变量无关,是一个常数。
二、常见定值问题的处理方法1、处理较为复杂的问题,可先采用特殊位置(例如斜率不存在的直线等)求出定值,进而给后面一般情况的处理提供一个方向;2、在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢;3、巧妙利用变量间的关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算。
三、常见条件转化1、对边平行:斜率相等,或向量平行;2、两边垂直:斜率乘积为-1,或向量数量积为0;3、两角相等:斜率成相反数或相等或利用角平分线性质;4、直角三角形中线性质:两点的距离公式5、点与圆的位置关系:(·1)圆外:点到直径端点向量数量积为正数;(2)圆上:点到直径端点向量数量积为零;(3)圆内:点到直径端点向量数量积为负数。
四、常用的弦长公式:(1)若直线AB 的方程设为b kx y +=,()11y x A ,,()22y x B ,,则()a k x x x x k x x k AB ∆⋅+=-+⋅+=-⋅+=22122122121411(2)若直线AB 的方程设为n my x +=,()11y x A ,,()22y x B ,,则()am y y y y m y y m AB ∆⋅+=-+⋅+=-⋅+=22122122121411【注】上式中a 代表的是将直线方程带入圆锥曲线方程后,化简得出的关于x 或y 的一元二次方程的二次项系数。
专题10 圆锥曲线易错点1 混淆“轨迹”与“轨迹方程”如图,已知点0(1)F ,,直线:1l x =-,P 为平面上的动点,过P 作直线l 的垂线,垂足为点Q ,且QP QF FP FQ ⋅=⋅,求动点P 的轨迹.【错解】设点P (x ,y ),则Q (-1,y ),由QP QF FP FQ ⋅=⋅,得(x +1,0)·(2,-y )=(x -1,y )·(-2,y ),化简得y 2=4x .【错因分析】错解中求得的是动点的轨迹方程,而不是轨迹,混淆了“轨迹”与“轨迹方程”的区别. 【试题解析】设点P (x ,y ),则Q (-1,y ),由QP QF FP FQ ⋅=⋅,得(x +1,0)·(2,-y )=(x -1,y )·(-2,y ),化简得y 2=4x . 故动点P 的轨迹为焦点坐标为(1,0)的抛物线.【参考答案】动点P 的轨迹为焦点坐标为(1,0)的抛物线.1.求轨迹方程时,若题设条件中无坐标系,则需要先建立坐标系,建系时,尽量取已知的相互垂直的直线为坐标轴,或利用图形的对称性选轴,或使尽可能多的点落在轴上.求轨迹方程的方法有:(1)直接法:直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性.(2)定义法:求轨迹方程时,若动点与定点、定直线间的等量关系满足圆、椭圆、双曲线、抛物线的定义,则可直接根据定义先确定轨迹类型,再写出其方程.(3)相关点法:动点所满足的条件不易得出或转化为等式,但形成轨迹的动点,()P x y 却随另一动点(),Q x y ''的运动而有规律地运动,而且动点Q 的轨迹方程为给定的或容易求得的,则可先将x ',y '表示成关于x ,y 的式子,再代入Q 的轨迹方程整理化简即得动点P 的轨迹方程.(4)参数法:若动点,()P x y 坐标之间的关系不易直接找到,且无法判断动点,()P x y 的轨迹,也没有明显的相关动点可用,但较易发现(或经分析可发现)这个动点的运动受到另一个变量的制约,即动点,()P x y 中的x ,y 分别随另一变量的变化而变化,我们可称这个变量为参数,建立轨迹的参数方程,这种求轨迹方程的方法叫做参数法.2.求轨迹方程与求轨迹是有区别的,若是求轨迹,则不仅要求出方程,而且还要说明和讨论所求轨迹是什么样的图形,即说出图形的形状、位置等.1.已知定点(1,0)A -及直线:2l x =-,动点P 到直线l 的距离为d ,若||2PA d =. (1)求动点P 的轨迹C 方程;(2)设,M N 是C 上位于x 轴上方的两点,B 坐标为(1,0),且AM BN ∥,MN 的延长线与x 轴交于点(3,0)D ,求直线AM 的方程.【答案】(1)2212x y +=;(2)(1)2y x =+.【解析】(1)设(,)P x y ,则由(1,0)A -,知||PA = 又:2l x =-,∴|2|d x =+,2=, ∴2221(1)(2)2x y x ++=+, ∴2222x y +=,∴点P 的轨迹方程为2212x y +=.(2)设1122(,),(,)M x y N x y ()120,0y y >>,∵(1,0)(1,0),(3,0)A B D -,, ∴B 为AD 中点, ∵//AM BN ,∴1212,322x x y y +==, ∴1223x x =-,又221112x y +=,∴()222223412x y -+=, 又222212x y +=,∴2151,42x x ==-,∵0y >,∴14y =1112AM y k x ==+, ∴直线AM的方程为1)2y x =+. 【名师点睛】本题考查椭圆的轨迹方程,直线与椭圆的位置关系,求轨迹方程用的是直接法,另外还有定义法、相关点法、参数法、交轨法等.易错点2 求轨迹方程时忽略变量的取值范围已知曲线C :y=x 2-2x +2和直线l :y =kx (k ≠0),若C 与l 有两个交点A 和B ,求线段AB 中点的轨迹方程.【错解】依题意,由⎩⎨⎧y =x 2-2x +2,y =kx ,分别消去x 、y 得,(k 2-1)x 2+2x -2=0,① (k 2-1)y 2+2ky -2k 2=0.②设AB 的中点为P (x ,y ),则在①②中分别有12212212121x x x k y y k y k +⎧==⎪⎪-⎨+⎪==⎪-⎩,故线段AB 中点的轨迹方程为220x y x --=.【错因分析】消元过程中,由于两边平方,扩大了变量y 的允许范围,故应对x ,y 加以限制.【试题解析】依题意,由⎩⎨⎧y =x 2-2x +2y =kx,分别消去x 、y 得,(k 2-1)x 2+2x -2=0,① (k 2-1)y 2+2ky -2k 2=0.②设AB 的中点为P (x ,y ),则在①②中分别有⎩⎪⎨⎪⎧x =x 1+x 22=11-k 2, ③y =y 1+y 22=k1-k 2, ④又对②应满足222212221221044(2)(1)0201201k k k k k y y k k y y k ∆⎧-≠⎪=-⨯-⨯->⎪⎪⎨+=>-⎪⎪⎪=>-⎩,解得22<k <1.结合③④,则有x >2,y > 2.所以所求轨迹方程是x 2-y 2-x =0(x >2,y >2). 【参考答案】轨迹方程是x 2-y 2-x =0(x >2,y >2).1.一般地,在直角坐标系中,如果某曲线C (看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程(,)0f x y =的实数解建立了如下的关系: (1)曲线上点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线.2.要注意有的轨迹问题包含一定的隐含条件,由曲线和方程的概念可知,在求曲线时一定要注意它的“完备性”和“纯粹性”,即轨迹若是曲线的一部分,应对方程注明x 的取值范围,或同时注明x ,y的取值范围.2.已知圆221:(3)1C x y ++=和圆222:(3)9C x y -+=,动圆M 同时与圆1C 及圆2C 相外切,则动圆圆心M的轨迹方程为A .2218y x -=B .221(1)8y x x -=≤-C .2218x yD .221(1)8y x x -=≥【答案】B【解析】设动圆的圆心M 的坐标为(,)x y ,半径为r , 则由题意可得121,3MC r MC r =+=+,相减可得21122MC MC C C -=<,所以点M 的轨迹是以12,C C 为焦点的双曲线的左支, 由题意可得22,3a c ==,所以b =,故点M 的轨迹方程为221(1)8y x x -=≤-,故选B.【名师点睛】本题主要考查了圆与圆的位置关系,以及双曲线的定义、性质和标准方程的应用,其中解答中根据圆与圆的位置关系,利用双曲线的定义得到动点的轨迹是以12,C C 为焦点的双曲线的左支是解答的关键,着重考查了转化思想,以及推理与计算能力,属于基础题.易错点3 忽略椭圆定义中的限制条件若方程22186x y k k +=--表示椭圆,则实数k 的取值范围为________________.【错解】由8060k k ->⎧⎨->⎩,可得68k <<,所以实数k 的取值范围为(6,8).【错因分析】忽略了椭圆标准方程中a >b >0这一限制条件,当a =b >0时表示的是圆的方程.【试题解析】由806086k k k k ->⎧⎪->⎨⎪-≠-⎩,可得68k <<且7k ≠,所以实数k 的取值范围为(6,7)∪(7,8).【方法点睛】准确理解椭圆的定义,明确椭圆定义中的限制条件,才能减少解题过程中的失误,从而保证解题的正确性.【参考答案】(6,7)∪(7,8).平面上到两定点12,F F 的距离的和为常数(大于两定点之间的距离)的点P 的轨迹是椭圆. 这两个定点叫做椭圆的焦点,两个定点之间的距离叫做椭圆的焦距,记作122F F c =. 定义式:12122(2)PF PF a a F F +=>. 要注意,该常数必须大于两定点之间的距离,才能构成椭圆.3.已知F 1,F 2为两定点,|F 1F 2|=8,动点M 满足|MF 1|+|MF 2|=8,则动点M 的轨迹是A .椭圆B .直线C .圆D .线段【答案】D【解析】虽然动点M 到两个定点F 1,F 2的距离为常数8,但由于这个常数等于|F 1F 2|,故动点M 的轨迹是线段F 1F 2,故选D .平面上到两定点12,F F 的距离的和为常数(大于两定点之间的距离)的点P 的轨迹是椭圆.若忽略了椭圆定义中|F 1F 2|<2a 这一隐含条件,就会错误地得出点M 的轨迹是椭圆.易错点4 忽略对椭圆焦点位置的讨论已知椭圆的标准方程为2221(0)36x ykk+=>,并且焦距为8,则实数k的值为_____________.1.解决已知椭圆的焦点位置求方程中的参数问题,应注意结合焦点位置与椭圆方程形式的对应关系求解.②表示焦点在y 轴上的椭圆⇔0,0m n >>且m n <; ③表示椭圆⇔0,0m n >>且m n ≠.对于形如:Ax 2+By 2=1(其中A >0,B >0,A ≠B )的椭圆的方程,其包含焦点在x 轴上和在y 轴上两种情况,当B >A 时,表示焦点在x 轴上的椭圆;当B <A 时,表示焦点在y 轴上的椭圆. 2.求椭圆的方程有两种方法:(1)定义法.根据椭圆的定义,确定a 2,b 2的值,结合焦点位置可写出椭圆方程. (2)待定系数法.这种方法是求椭圆的方程的常用方法,其一般步骤是:第一步,做判断.根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能(这时需要分类讨论).第二步,设方程.根据上述判断设方程为22221(0)x y a b a b +=>>或22221(0)y x a b a b+=>>.第三步,找关系.根据已知条件,建立关于,,a b c 的方程组(注意椭圆中固有的等式关系222c a b =-). 第四步,得椭圆方程.解方程组,将解代入所设方程,即为所求.3.用待定系数法求椭圆的方程时,要“先定型,再定量”,不能确定焦点的位置时,需要分焦点在x 轴上和在y 轴上两种情况讨论,也可设椭圆的方程为Ax 2+By 2=1(其中A >0,B >0,A ≠B ).求椭圆的标准方程的方法可以采用待定系数法,此时要注意根据焦点的位置选择椭圆的标准方程;也可以利用椭圆的定义及焦点位置或点的坐标确定椭圆的标准方程.4.关于曲线C :222214x y a a +=-性质的叙述,正确的是A .一定是椭圆B .可能为抛物线C .离心率为定值D .焦点为定点【答案】D【解析】因为曲线方程没有一次项,不可能为抛物线,故B 错误;因为24a -可正也可负,所以曲线可能为椭圆或双曲线.若曲线为椭圆,则()22244c a a =--=,∴2c =,2e a=,离心率不是定值,焦点()2,0,()2,0-,为定点. 若曲线为双曲线,方程为222214x y a a-=-,则()22244c a a =+-=,∴2c =,2e a =,离心率不是定值,焦点()2,0,()2,0-为定点,故选D.【名师点睛】本题考查了圆锥曲线的标准方程和性质,体现了分类讨论的思想.易错点5 忽略椭圆的范围设椭圆的中心是坐标原点,长轴在x 轴上,离心率32e =,已知点3(0,)2P 到椭圆的最远距离为7,求椭圆的标准方程.1.椭圆22221(0)x ya ba b+=>>的范围就是方程中变量x,y的范围,由22221x ya b+=得222211x ya b=-≤,则||x a≤;222211y xb a=-≤,则||y b≤.故椭圆落在直线x=±a,y=±b围成的矩形内,因此用描点法画椭圆的图形时就可以不取“矩形”范围以外的点了.同时,在处理椭圆的一些参数或最值问题时要注意x,y的取值范围.2.设椭圆22221(0)x y a b a b+=>>上任意一点,()P x y ,则当0x =时,||OP 有最小值b ,P 点在短轴端点处;当x a =±时,||OP 有最大值a ,P 点在长轴端点处. 3.(1)解决椭圆x 2a 2+y 2b 2=1(a >b >0)中的范围问题常用的关系有:①-a ≤x ≤a ,-b ≤y ≤b ; ②离心率0<e <1;③一元二次方程有解,则判别式0∆≥.(2)解决与椭圆有关的最值问题常用的方法有以下几种: ①利用定义转化为几何问题处理;②利用三角替代(换元法)转化为三角函数的最值问题处理; ③利用数与形的结合,挖掘数学表达式的几何特征,进而求解;④利用函数最值的研究方法,将其转化为函数的最值问题来处理,此时,应注意椭圆中x 、y 的取值范围,常常是化为闭区间上的二次函数的最值来求解.5.已知椭圆2222:1(0)x y C a b a b +=>>的上顶点为(0,1)B ,且过点2P . (1)求椭圆C 的方程及其离心率;(2)斜率为k 的直线l 与椭圆C 交于,M N 两个不同的点,当直线,OM ON 的斜率之积是不为0的定值时,求此时MON △的面积的最大值.【答案】(1)2214x y +=,2e =;(2)1. 【解析】(1)由题意可得1b =.又2P 在椭圆C 上,所以22212a +=,解得2a =,所以椭圆C 的方程为2214x y +=,所以c C 的离心率2c e a ==.(2)设直线l 的方程为()0y kx m m =+≠.由22,14y kx m x y =+⎧⎪⎨+=⎪⎩,消去y ,得()222418440k x kmx m +++-=, 所以22222(8)4(41)(44)6416160km k m k m ∆=-+-=-+>,设()()1122,,,M x y N x y ,则2121222844,4141km m x x x x k k --+==++. ()()()2212121212121212OM ONkx m kx m k x x km x x my y k k x x x x x x +++++===222222244841414441m kmk km m k k m k --⨯+⨯+++=-+222444m k m -=-, 由题意,OM ON k k 为定值,所以21444k -=-,即214k =,解得12k =±.此时MN===, 点O 到直线y kx m =+的距离|5m d =.11||22MON S MN d m ==△== 显然,当21m =(此时214k =,21m =满足226416160k m ∆=-+>),即1m =±时,S 取得最大值,最大值为1.易错点6 忽略双曲线定义中的限制条件已知F 1(-5,0),F 2(5,0),动点P 满足|PF 1|-|PF 2|=2a ,当a 为3和5时,点P 的轨迹分别为A .双曲线和一条直线B .双曲线和一条射线C .双曲线的一支和一条直线D .双曲线的一支和一条射线在求解与双曲线有关的轨迹问题时,准确理解双曲线的定义,才能正确解题.当||MF 1|-|MF 2||=2a <|F 1F 2|(a >0),即|MF 1|-|MF 2|=±2a ,0<2a <|F 1F 2|时,点M 的轨迹是双曲线,其中取正号时为双曲线的右(上)支,取负号时为双曲线的左(下)支;当||MF 1|-|MF 2||=2a =|F 1F 2|(a >0)时,点M 的轨迹是以点F 1,F 2为端点的两条射线; 当||MF 1|-|MF 2||=2a >|F 1F 2|(a >0)时,点M 的轨迹不存在.6.如图,在ABC △中,已知||AB =A ,B ,C 满足2sin sin 2sin A C B +=,以AB 边所在的直线为x 轴,AB 的垂直平分线为y 轴,建立平面直角坐标系,求顶点C 的轨迹方程.【答案】221(26x y x -=>.【解析】由题意可得(A -,B .因为2sin sin 2sin A C B +=,由正弦定理可得||||||22BC AB AC +=,故|||||12|||AC BC AB AB -=<=, 由双曲线的定义知,点C 的轨迹为双曲线的右支(除去与x 轴的交点).由题意,设所求轨迹方程为22221()x y x a a b-=>,因为a =c =2226b c a =-=,故所求轨迹方程为221(26x y x -=>.【名师点睛】求解与双曲线有关的轨迹问题时要特别注意:(1)双曲线的焦点所在的坐标轴;(2)检验所求的轨迹对应的是双曲线的一支还是两支.易错点7 忽略双曲线中的隐含条件已知M 是双曲线2216436x y -=上一点,F 1,F 2是双曲线的左、右焦点,且1||17MF =,则2MF =_____________.1.在求解双曲线上的点到焦点的距离d 时,一定要注意d c a ≥-这一隐含条件.2.双曲线方程中,a b 的大小关系是不确定的,但必有0,0c a c b >>>>.3.由22221(0,0)x y a b a b-=>>,知x 2a2≥1,所以x ≤-a 或x ≥a ,因此双曲线位于不等式x ≥a 和x ≤-a 所表示的平面区域内,同时,也指明了坐标系内双曲线上点的横坐标的取值范围.7.过双曲线的一个焦点2F 作垂直于实轴的直线,交双曲线于,P Q ,1F 是另一焦点,若1=3PFQ π∠,则双曲线的离心率e 等于 A 1 BC 1D 2+【答案】B【解析】由双曲线的对称性可知,12PF F △是以点2F 为直角顶点,且126PF F π∠=,则122PF PF =,由双曲线的定义可得1222PF PF PF a -==, 在12Rt PF F △中,212122tan 2PF a PF F F F c ∠===c e a∴== B. 【名师点睛】本题考查双曲线的离心率的求解,要充分研究双曲线的几何性质,在遇到焦点时,善于利用双曲线的定义来求解,考查逻辑推理能力和计算能力,属于中等题.易错点8 忽略双曲线的焦点所在位置的讨论已知双曲线的渐近线方程是23y x=±,焦距为226,求双曲线的标准方程. 2b1.求解双曲线的标准方程时,先确定双曲线的类型,也就是确定双曲线的焦点所在的坐标轴是x 轴还是y 轴,从而设出相应的标准方程的形式,然后利用待定系数法求出方程中的22,a b 的值,最后写出双曲线的标准方程.2.在求双曲线的方程时,若不知道焦点的位置,则进行讨论,或可直接设双曲线的方程为221(0)Ax By AB +=<.8.已知双曲线的一条渐近线方程为0x y ±=,且过点()12P ,--,则该双曲线的标准方程为__________.【答案】22133y x -=【解析】根据题意,双曲线的一条渐近线方程为0x y ±=,可设双曲线方程为()220x y λλ-=≠,∵双曲线过点()12P ,--,∴14λ-=,即3λ=-.∴所求双曲线方程为22133y x -=,故答案为22133y x -=.【名师点睛】本题考查双曲线的标准方程的求法,需要学生熟练掌握已知渐近线方程时,如何设出双曲线的标准方程.易错点9 忽略直线与双曲线只有一个公共点的特殊情况若过点(1,1)P 且斜率为k 的直线l 与双曲线2214y x -=只有一个公共点,则k =___________.【方法点睛】解决直线与双曲线的位置关系的题目时,要注意讨论联立直线与双曲线的方程消元后得到的方程是否为一元一次方程,即二次项系数是否为0,因为直线与双曲线有一个公共点包含直线与双曲线的渐21. 直线与双曲线有三种位置关系:(1)无公共点,此时直线有可能为双曲线的渐近线. (2)有一个公共点,分两种情况:①直线是双曲线的切线,特别地,直线过双曲线一个顶点,且垂直于实轴;②直线与双曲线的一条渐近线平行,与双曲线的一支有一个公共点. (3)有两个公共点,可能都在双曲线一支上,也可能两支上各有一点.2.研究直线与双曲线位置关系的一般思路仍然是联立二者的方程,解方程组或者转化为一元二次方程,依据根的判别式和根与系数的关系求解.要注意讨论转化以后的方程的二次项系数,即若二次项系数为0,则直线与双曲线的渐近线平行或重合;若二次项系数不为0,则进一步研究二次方程的根的判别式∆,得到直线与双曲线的交点个数.9.已知直线y kx =与双曲线22416x y -=.当k 为何值时,直线与双曲线: (1)有两个公共点;(2)有一个公共点;(3)没有公共点. 【答案】见解析.【解析】由22416x y y kx -==⎧⎨⎩消去y 得22(4)160k x --= ①,当240k -=,即2k =±时,方程①无解; 当240k -≠时,2204(4)(16)64(4)k k ∆=---=-, 当0∆>,即22k -<<时,方程①有两解; 当0∆<,即2k <-或2k >时,方程①无解; 当0∆=,且240k -≠时,这样的k 值不存在.综上所述,(1)当22k -<<时,直线与双曲线有两个公共点; (2)不存在使直线与双曲线有一个公共点的k 值; (3)当2k ≤-或2k ≥时,直线与双曲线没有公共点.【名师点睛】研究直线与双曲线位置关系的一般思路仍然是联立二者的方程,解方程组或者转化为一元二次方程,依据根的判别式和根与系数的关系求解.要注意讨论转化以后的方程的二次项系数,即若二次项系数为0,则直线与双曲线的渐近线平行或重合;若二次项系数不为0,则进一步研究二次方程的根的判别式∆,得到直线与双曲线的交点个数.易错点10 忽略抛物线定义中的限制条件已知点P 到F (4,0)的距离与到直线5x =-的距离相等,求点P 的轨迹方程.【参考答案】2189y x =+.1.抛物线的标准方程是特殊的抛物线方程,对坐标轴的位置有严格的要求.若从题意中无法判断方程是否为标准方程,可按求曲线方程的一般步骤求解.2.抛物线定义中要求直线l 不经过点F ,若l 经过F 点,则轨迹为过定点F 且垂直于定直线l 的一条直线.因此当动点P 到定点F 的距离与它到定直线l 的距离相等时,不能盲目套用抛物线定义.10.已知圆C 的方程22100x y x +-=,求与y 轴相切且与圆C 外切的动圆圆心P 的轨迹方程.【答案】220(0)y x x =>或)00(y x =<.【解析】设P 点坐标为(x ,y ),动圆的半径为R ,∵动圆P 与y 轴相切,∴R x =,∵动圆与定圆C :2252)5(x y -+=外切,∴5PC R =+,∴5PC x =+.当点P 在y 轴右侧,即x >0时,5PC x =+,点P 的轨迹是以(5,0)为焦点的抛物线,则圆心P 的轨迹方程为220(0)y x x =>;当点P 在y 轴左侧,即x <0时, 5PC x =-+,此时点P 的轨迹是x 轴的负半轴,即方程)00(y x =<.故点P 的轨迹方程为220(0)y x x =>或)00(y x =<.【名师点睛】抛物线的轨迹问题,既可以用轨迹法直接求解,也可以转化为利用抛物线的定义求解,利用抛物线的定义求解的关键是找到条件满足动点到定点的距离等于到定直线的距离,需要依据条件进行转化.易错点11 忽略抛物线的焦点所在位置的讨论设抛物线y 2=mx 的准线与直线x =1的距离为3,求抛物线的方程.【错解】易知准线方程为x =-m4,因为准线与直线x =1的距离为3, 所以准线方程为x =-2, 所以-m4=-2,解得m =8,故抛物线方程为y 2=8x .【错因分析】题目条件中未给出m 的符号,当m >0或m <0时,抛物线的准线是不同的,错解中考虑问题欠周到.【试题解析】当m >0时,准线方程为x =-m4,由条件知1-(-m4)=3,所以m =8.此时抛物线方程为y 2=8x ; 当m <0时,准线方程为x =-m4,由条件知-m4-1=3,所以m =-16,此时抛物线方程为y 2=-16x .所以所求抛物线方程为y 2=8x 或y 2=-16x . 【参考答案】y 2=8x 或y 2=-16x .1.抛物线的四种标准方程与对应图形如下表所示:图 形标准方程22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =->焦点坐标(,0)2p (,0)2p -(0,)2p(0,)2p -准线方程2p x =-2p x =2p y =-2p y =注:抛物线标准方程中参数p 的几何意义是:抛物线的焦点到准线的距离,所以p 的值永远大于0. 2.求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点的位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.用待定系数法求抛物线标准方程的步骤:若无法确定抛物线的位置,则需分类讨论.特别地,已知抛物线上一点的坐标,一般有两种标准方程.11.顶点在原点,且过点(1,1)-的抛物线的标准方程是 A .2y x =-B .2x y =C .2y x =-或2x y =D .2y x =或2x y =-【答案】C【解析】当焦点在x 轴上时,设方程为2y ax =,将(1,1)-代入得1a =-,2y x ∴=-;当焦点在y 轴上时,设方程为2x ay =,将(1,1)-代入得1a =,2x y ∴=.故选C .本题若只考虑焦点在x 轴的负半轴上的情况,而忽略了焦点也可能在y 轴的正半轴上的情况,则会出现漏解.易错点12 忽略直线与抛物线有一个公共点的特殊情况求过定点(11)P -,,且与抛物线22y x =只有一个公共点的直线l 的方程.直线l y kx b =+:与抛物线22(0)y px p =>公共点的个数等价于方程组22y x p bx y k ⎧⎨==+⎩的解的个数.(1)若0k ≠,则当0∆>时,直线和抛物线相交,有两个公共点;当0∆=时,直线和抛物线相切,有一个公共点;当0∆<时,直线和抛物线相离,无公共点.(2)若0k =,则直线y b =与抛物线22(0)y px p =>相交,有一个公共点.特别地,当直线l 的斜率不存在时,设x m =,则当0m >时,直线l 与抛物线相交,有两个公共点;当0m =时,直线l 与抛物线相切,有一个公共点;当0m <时,直线l 与抛物线相离,无公共点.12.“直线与抛物线相切”是“直线与抛物线只有一个公共点”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】“直线与抛物线相切”可得“直线与抛物线只有一个公共点”,“直线与抛物线只有一个公共点”时,直线可能与对称轴平行,此时不相切,故“直线与抛物线相切”是“直线与抛物线只有一个公共点”的充分不必要条件.故选A .本题易忽略直线平行于抛物线的对称轴时,直线与抛物线也只有一个交点,而漏掉k =0.一、曲线与方程 1.求曲线方程的步骤求曲线的方程,一般有下面几个步骤:(1)建立适当的坐标系,用有序实数对(x ,y )表示曲线上任意一点M 的坐标; (2)写出适合条件p 的点M 的集合{|()}P M p M =; (3)用坐标表示条件p (M ),列出方程(,)0f x y =; (4)化方程(,)0f x y =为最简形式;(5)说明以化简后的方程的解为坐标的点都在曲线上.一般地,化简前后方程的解集是相同的,步骤(5)可以省略不写.若遇到某些点虽适合方程,但不在曲线上时,可通过限制方程中x ,y 的取值范围予以剔除.另外,也可以根据情况省略步骤(2),直接列出曲线方程. 2.两曲线的交点(1)由曲线方程的定义可知,两条曲线交点的坐标应该是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;反过来,方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点.(2)两条曲线有交点的充要条件是它们的方程所组成的方程组有实数解.可见,求曲线的交点问题,就是求由它们的方程所组成的方程组的实数解问题.二、椭圆 1.椭圆的定义平面上到两定点12,F F 的距离的和为常数(大于两定点之间的距离)的点P 的轨迹是椭圆. 这两个定点叫做椭圆的焦点,两个定点之间的距离叫做椭圆的焦距,记作122F F c =. 定义式:12122(2)PF PF a a F F +=>.要注意,该常数必须大于两定点之间的距离,才能构成椭圆. 2.椭圆的标准方程焦点在x 轴上,22221(0)x y a b a b +=>>;焦点在y 轴上,22221(0)y x a b a b+=>>.说明:要注意根据焦点的位置选择椭圆方程的标准形式,知道,,a b c 之间的大小关系和等量关系:222,0,0a c b a b a c -=>>>>.3.椭圆的几何性质标准方程22221x y a b +=(a >b >0) 22221y x a b+=(a >b >0) 图形范围 a x a -≤≤,b y b -≤≤ b x b -≤≤,a y a -≤≤对称性 对称轴:x 轴、y 轴;对称中心:原点焦点 左焦点F 1 (-c ,0),右焦点F 2 (c ,0)下焦点F 1 (0,-c ),上焦点F 2 (0,c )顶点1212(,0),(,0),(0,),(0,)A a A a B b B b -- 1212(0,),(0,),(,0),(,0)A a A a B b B b --轴线段A 1A 2,B 1B 2分别是椭圆的长轴和短轴;长轴长|A 1A 2|=2a ,短轴长|B 1B 2|=2b ,长半轴长为a ,短半轴长为b离心率e22c ce a a==(01)e <<三、双曲线 1. 双曲线的定义(1)定义:平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于|F 1F 2|且大于零)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两个焦点间的距离叫做双曲线的焦距.(2)符号语言:1212202,MF MF a a F F =<-<. (3)当122MF MF a -=时,曲线仅表示焦点2F 所对应的双曲线的一支; 当122MF MF a -=-时,曲线仅表示焦点1F 所对应的双曲线的一支;当12||2a F F =时,轨迹为分别以F 1,F 2为端点的两条射线; 当12||2a F F >时,动点轨迹不存在. 2.双曲线的标准方程(1)焦点在x 轴上的双曲线的标准方程为22221x y a b-=(a >0,b >0),焦点分别为F 1(-c ,0),F 2(c ,0),焦距为2c ,且222c a b =+.(2)焦点在y 轴上的双曲线的标准方程为22221y x a b-=(a >0,b >0),焦点分别为F 1(0,-c ),F 2(0,c ),焦距为2c ,且222c a b =+. 3.双曲线的几何性质标准方程22221x y a b -=(a >0,b >0) 22221y x a b-=(a >0,b >0) 图形范围 ||x a ≥,y ∈R ||y a ≥,x ∈R对称性 对称轴:x 轴、y 轴;对称中心:原点焦点 左焦点F 1(-c ,0),右焦点F 2(c ,0)下焦点F 1(0,-c ),上焦点F 2(0,c )顶点12(,0),(,0)A a A a - 12(0,),(0,)A a A a -轴线段A 1A 2是双曲线的实轴,线段B 1B 2是双曲线的虚轴;实轴长|A 1A 2|=2a ,虚轴长|B 1B 2|=2b渐近线 b y x a=±a y x b=±离心率e22c ce a a==(1)e >在解决双曲线中与焦点三角形有关的问题时,首先要注意定义中的条件12||||||2PF PF a -=的应用;其次是要利用余弦定理、勾股定理等知识进行运算,在运算中要注意整体思想和一些变形技巧的应用. 4.等轴双曲线实轴和虚轴等长的双曲线叫做等轴双曲线.等轴双曲线具有以下性质:(1)方程形式为22(0)x y λλ-=≠;四、抛物线 1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F ) 距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.抛物线关于过焦点F 与准线垂直的直线对称,这条直线叫抛物线的对称轴,简称抛物线的轴.注意:直线l 不经过点F ,若l 经过F 点,则轨迹为过定点F 且垂直于定直线l 的一条直线. 2.抛物线的标准方程(1)顶点在坐标原点,焦点在x 轴正半轴上的抛物线的标准方程为22(0)y px p =>;(2)顶点在坐标原点,焦点在x 轴负半轴上的抛物线的标准方程为22(0)y px p =->;(3)顶点在坐标原点,焦点在y 轴正半轴上的抛物线的标准方程为22(0)x py p =>;(4)顶点在坐标原点,焦点在y 轴负半轴上的抛物线的标准方程为22(0)x py p =->.注意:抛物线标准方程中参数p 的几何意义是抛物线的焦点到准线的距离,所以p 的值永远大于0,当抛物线标准方程中一次项的系数为负值时,不要出现p <0的错误. 3.抛物线的几何性质标准方程22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =->图 形几 何 性质范 围 0,x y ≥∈R0,x y ≤∈R0,y x ≥∈R0,y x ≤∈R对称性 关于x 轴对称关于x 轴对称关于y 轴对称关于y 轴对称焦点(,0)2p F (,0)2p F -(0,)2p F(0,)2p F -准线方程 2p x =-2p x =2p y =-2p y =顶 点 坐标原点(0,0)离心率1e =4.抛物线的焦半径抛物线上任意一点00(),P x y 与抛物线焦点F 的连线段,叫做抛物线的焦半径. 根据抛物线的定义可得焦半径公式如下表:抛物线方程22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =->焦半径公式 0||2pPF x =+ 0||2pPF x =- 0||2pPF y =+ 0||2pPF y =- 5.抛物线的焦点弦抛物线的焦点弦即过焦点F 的直线与抛物线所成的相交弦.焦点弦公式既可以运用两次焦半径公式得到,也可以由数形结合的方法求出直线与抛物线的两交点坐标,。