2021年高考数学(理)解析几何突 专题10圆锥曲线综合应用(2)-最值、范围、证明问题(解析版)
- 格式:docx
- 大小:512.39 KB
- 文档页数:23
专题17 圆锥曲线的综合应用一、知识速览二、考点速览知识点1 直线与椭圆的位置关系 1、直线与椭圆的位置判断设直线方程为y kx m =+,椭圆方程为22221(0)x ya b a b+=>>联立2222,1,y kx m x y a b =+⎧⎪⎨+=⎪⎩消去y 得一个关于x 的一元二次方程222222222()20b k a x a kmx a m a b +++-=①0∆>⇔直线和椭圆相交⇔直线和椭圆有两个交点(或两个公共点); ②0∆=⇔直线和椭圆相切⇔直线和椭圆有一个切点(或一个公共点); ③0∆<⇔直线和椭圆相离⇔直线和椭圆无公共点. 2、直线与椭圆相交的弦长公式(1)定义:连接椭圆上两个点的线段称为椭圆的弦. (2)求弦长的方法①交点法:将直线的方程与椭圆的方程联立,求出两交点的坐标,然后运用两点间的距离公式来求. ②根与系数的关系法:如果直线的斜率为k ,被椭圆截得弦AB 两端点坐标分别为(x 1,y1),(x 2,y 2),则弦长公式为:=AB 知识点2 直线与双曲线的位置关系 1、直线与双曲线的位置关系判断将双曲线方程22221x y a b-=与直线方程:l y kx b =+联立消去y 得到关于x 的一元二次方程()22222222220ba k x a mkx a m ab ----=,(1)当2220b a k -=,即bk a=±,直线l 与双曲线的渐近线平行,直线l 与双曲线只有一个交点; (2)当2220b a k -≠,即b k a≠±,设该一元二次方程的判别式为∆,若0∆>,直线与双曲线相交,有两个公共点; 若0∆=,直线与双曲线相切,有一个公共点; 若∆<0,直线与双曲线相离,没有公共点;注意:直线与双曲线有一个公共点时,可能相交或相切. 2、直线与双曲线弦长求法若直线:l y kx m =+与双曲线22221x ya b-=(0a >,0b >)交于()11,A x y ,()22,B x y 两点,则12A B x =-或12AB y =-(0k ≠).(具体同椭圆相同) 知识点3 直线与抛物线的位置关系1、直线与抛物线的位置关系有三种情况相交(有两个公共点或一个公共点); 相切(有一个公共点); 相离(没有公共点).2、以抛物线22(0)y px p =>与直线的位置关系为例:(1)直线的斜率k 不存在,设直线方程为x a =,若0a >,直线与抛物线有两个交点;若0a =,直线与抛物线有一个交点,且交点既是原点又是切点; 若0<a ,直线与抛物线没有交点. (2)直线的斜率k 存在.设直线:l y kx b =+,抛物线22(0)y px p =>,直线与抛物线的交点的个数等于方程组22y kx by px=+⎧⎨=⎩,的解的个数,即二次方程2222()0k x kb p x b +-+=(或22220k y py bp -+=)解的个数. ①若0k ≠,则当0∆>时,直线与抛物线相交,有两个公共点; 当0∆=时,直线与抛物线相切,有个公共点; 当0∆<时,直线与抛物线相离,无公共点.②若0k =,则直线y b =与抛物线22(0)y px p =>相交,有一个公共点. 3、直线与抛物线相交弦长问题 (1)一般弦长设AB 为抛物线22(0)y px p =>的弦,11(,)A x y ,22(,)B x y ,弦AB 的中点为00(,)M x y . ①弦长公式:212122111AB k x y k +-+-(k 为直线AB 的斜率,且0k ≠). ②0AB p k y =, 推导:由题意,知2222y px =,① 2112y px = ② 由①-②,得121212()(=2()y y y y p x x +--),故1212122y y py y x x -=+-,即0AB p k y =. ③直线AB 的方程为000()py y x x y -=-. (2)焦点弦长如图,AB 是抛物线22(0)y px p =>过焦点F 的一条弦, 设11(,)A x y ,22(,)B x y ,AB 的中点00(,)M x y ,过点A ,M ,B 分别向抛物线的准线l 作垂线,垂足分别为点1A ,1B ,1M , 根据抛物线的定义有1AF AA =,1BF BB =,11AB AF BF AA BB =+=+ 故11AB AF BF AA BB =+=+.又因为1MM 是梯形11AA B B 的中位线,所以1112AB AA BB MM =+=, 从而有下列结论;①以AB 为直径的圆必与准线l 相切.②022p AB x ⎛⎫=+ ⎪⎝⎭(焦点弦长与中点关系)③12AB x x p =++.④若直线AB 的倾斜角为α,则22sin pAB α=. ⑤A ,B 两点的横坐标之积,纵坐标之积均为定值,即2124p x x =,212y y p =-.⑥11AF BF +为定值2P.一、直线与圆锥曲线位置关系1、直线与圆锥曲线有两个不同的公共点的判定:通常的方法是直线与圆锥曲线方程联立方程消元后得到一元二次方程,其中0∆>;另一方面就是数形结合,如直线与双曲线有两个不同的公共点,可通过判定直线的斜率与双曲线渐近线的斜率的大小得到.2、直线与圆锥曲线只有一个公共点则直线与双曲线的一条渐近线平行,或直线与抛物线的对称轴平行,或直线与圆锥曲线相切.【典例1】(2023·全国·高三专题练习)直线l :()()211740+++--=m x m y m 与椭圆C :2211812x y +=的位置关系是( )A .相交B .相切C .相离D .不能确定 【答案】A【解析】将直线l :()()211740+++--=m x m y m 变形为l :(27)40m x y x y +-++-=,由27040x y x y +-=⎧⎨+-=⎩得31x y =⎧⎨=⎩,于是直线l 过定点()3,1,而223171181212+=<,于是点()3,1在椭圆C :2211812x y +=内部, 因此直线l :()()211740+++--=m x m y m 与椭圆C :2211812x y +=相交.故选:A .【典例2】(2023·高三课时练习)直线()12y k x =-+与抛物线24x y =的位置关系为( ) A .相交 B .相切 C .相离 D .不能确定 【答案】A【解析】直线()12y k x =-+过定点()1,2,∵2142<⨯,∴()1,2在抛物线24x y =内部,∴直线()12y k x =-+与抛物线24x y =相交,故选:A .【典例3】(2023·四川成都·高三模拟预测)已知命题p :1k <,命题q :直线10kx y -+=与抛物线24y x =有两个公共点,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】B【解析】由10kx y -+=和24y x =可得()214kx x +=,整理得到:()222410k x k x +-+=,因为直线与抛物线有两个不同的交点,故()22Δ2440k k k ≠⎧⎪⎨=-->⎪⎩, 故1,0k k <≠,故命题q 成立能推出命题p 成立;反之,若1k <,取0k =,此时()222410k x k x +-+=仅有一个实数根14x =, 故此时直线与抛物线仅有一个不同的交点, 故命题p 成立不能推出命题q 成立, 故p 是q 的必要不充分条件,故选:B.【典例4】(2023上·江西南昌·高三校考阶段练习)已知直线1y kx =-与双曲线224x y -=,若直线与双曲线左支交于两点,求实数k 的取值范围.【答案】1⎛⎫- ⎪ ⎪⎝⎭【解析】因为直线与双曲线224x y -=左支交于两点,所以两点横坐标皆小于2-,把1y kx =-代入224x y -=得:()221250k x kx -+-=,所以()()22125f x k x kx =-+-有两个小于2-的零点,因为()050f =-<,所以210k -<,所以()()()()()()22222210Δ4201022212122250k k k k k f k k ⎧-<⎪=+->⎪⎪⎨-<-⎪-⎪⎪-=--+⨯--<⎩,解得1k <<-,则实数k 的范围为1⎛⎫- ⎪ ⎪⎝⎭.二、直线与圆锥曲线的弦长问题设11()M x y ,,22()N x y ,根据两点距离公式||MN =.(1)若M N 、在直线y kx m =+上,代入化简,得12||MN x -;(2)若M N 、所在直线方程为x ty m =+,代入化简,得12||MN y =-(3)构造直角三角形求解弦长,||MN 2121|||||cos ||sin |x x y y αα--==.其中k 为直线MN 斜率,α为直线倾斜角. 【典例1】(2023·全国·高三对口高考)已知椭圆2219x y +=,过左焦点F 作倾斜角为π6的直线交椭圆于A 、B两点,则弦AB 的长为 . 【答案】2【解析】在椭圆2219x y +=中,3a =,1b =,则c ()F -,设点()11,A x y 、()22,B x y ,由题意可知,直线AB 的方程为3223yx ,即x =-联立2299x x y ⎧=-⎪⎨+=⎪⎩可得21210y --=,1664121440∆=⨯+⨯=>,由韦达定理可得12y y +=,12112y y =-,所以,2AB =. 故答案为:2.【典例2】(2023·四川乐山·高三统考二模)已知直线()():20l y k x k =+>与抛物线24y x =交于点A 、B ,以线段AB 为直径的圆经过定点()2,0D ,则AB =( ) A .4 B .6 C .8 D .10 【答案】C 【解析】记10m k=>,则直线l 的方程可表示为2x my =-,设点()11,A x y 、()22,B x y , 联立224x my y x=-⎧⎨=⎩可得2480y my -+=,216320m ∆=->,可得22m >,由韦达定理可得124y y m +=,128y y =,()()11112,4,DA x y my y =-=-,()()22222,4,DB x y my y =-=-,由已知可得DA DB ⊥,则()()()()212121212441416DA DB my my y y m y y m y y ⋅=--+=+-++()2228116162480m m m =+-+=-=,可得23m =, 所以,()22221212141163213163328AB m y y y y m m ++-+-=+⨯-=.故选:C.【典例3】(2023·新疆喀什·高三校考模拟预测)已知双曲线C 两条准线之间的距离为1,离心率为2,直线l 经过C 的右焦点,且与C 相交于A 、B 两点. (1)求C 的标准方程;(2)若直线l 与该双曲线的渐近线垂直,求AB 的长度.【答案】(1)223y x -=1;(2)3 【解析】(1)因为直线l 经过C 的右焦点,所以该双曲线的焦点在横轴上, 因为双曲线C 两条准线之间的距离为1,所以有222112a a a c c c ⎛⎫--=⇒= ⎪⎝⎭, 又因为离心率为2,所以有122c a a c =⇒=代入212a c =中,可得2221,2413a cbc a ==⇒=-=-=,∴C 的标准方程为:2213y x -=;(2)由上可知:该双曲线的渐近线方程为3y x =,所以直线l 的斜率为3 由于双曲线和两条直线都关于y 轴对称, 所以两条直线与双曲线的相交弦相等.又因为直线斜率的绝对值小于渐近线斜率的绝对值, 所以直线与双曲线交于左右两支, 因此不妨设直线l 3方程为)32y x -与双曲线方程联立为: )222138413032y x x x y x ⎧-=⎪⎪⇒+-=⎨⎪=-⎪⎩,设()()1122,,,A x y B x y ,则有1212113,28x x x x +=-=-,()()222121212123232323113144 3.348AB x x x x x x x x ⎛⎫⎛⎫=+-=-=+--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭三、求解圆锥曲线中的定点问题的两种方法1、特殊推理法:先从特殊情况入手,求出定点,再证明定点与变量无关.2、直接推理法:①选择一个参数建立直线系方程,一般将题目中给出的曲线方程(包含直线方程)中的常量当成变量,将变量x ,y 当成常量,将原方程转化为kf (x ,y )+g (x ,y )=0的形式(k 是原方程中的常量);②根据直线过定点时与参数没有关系(即直线系方程对任意参数都成立),得到方程组⎩⎨⎧f (x ,y )=0,g (x ,y )=0;③以②中方程组的解为坐标的点就是直线所过的定点,若定点具备一定的限制条件,可以特殊解决.【典例1】(2022·江苏泰州·高三统考模拟预测)已知1l ,2l 是过点()0,2的两条互相垂直的直线,且1l 与椭圆22:14x y Γ+=相交于A ,B 两点,2l 与椭圆Γ相交于C ,D 两点. (1)求直线1l 的斜率k 的取值范围;(2)若线段AB ,CD 的中点分别为M ,N ,证明直线MN 经过一个定点,并求出此定点的坐标. 【答案】(1)⎛⋃ ⎝⎭⎝;(2)证明见解析;定点20,5⎛⎫⎪⎝⎭. 【解析】(1)根据题意直线1l ,2l 的斜率均存在且不为0直线1l ,2l 分别为2y kx =+,12y x k=-+,联立22214y kx x y =+⎧⎪⎨+=⎪⎩得()224116120k x kx +++=, 由()()2216412410k k ∆=-⨯+>得243k >,则k <或k > 同理2143k ⎛⎫-> ⎪⎝⎭,则k < 所以k的取值范围为⎛⋃ ⎝⎭⎝. (2)设()11,A x y ,()22,B x y ,由(1)得()224116120k kx +++=,所以1221641k x x k +=-+,则1228241Mx x k x k +==-+, 所以22282224141M M k y kx k k =+=-+=++,则2282,4141k M k k ⎛⎫- ⎪++⎝⎭,同理22282,44k k N k k ⎛⎫⎪++⎝⎭,则直线MN 的方程为22222222228441884141441k k k k y x k k k k k k -⎛⎫++-=+ ⎪++⎝⎭+++, 化简整理得21255k y x k -=+因此直线MN 经过一个定点20,5⎛⎫⎪⎝⎭.【典例2】(2023·吉林·通化一中高三校联考模拟预测)已知曲线E 上任意一点Q到定点F 的距离与Q到定直线:m x =(1)求曲线E 的轨迹方程;(2)斜率为k k ⎛> ⎝⎭的直线l 交曲线E 于B ,C 两点,线段BC 的中点为M ,点M 在x 轴下方,直线OM交曲线E 于点N ,交直线=1x -于点D ,且满足2||||||ON OD OM =(O 为原点).求证:直线l 过定点.【答案】(1)22195x y -=;(2)证明见解析 【解析】(1)设曲线E 上任意一点(,)Q x y=化简整理得22195x y -=,所以曲线E 的轨迹方程为22195x y -=;(2)设()11,B x y ,()22,C x y ,直线l的方程为y kx t k ⎛=+> ⎝⎭,联立22195y kx tx y =+⎧⎪⎨-=⎪⎩,得()22259189450k x ktx t ----=,因为有两个交点,所以2590Δ0k ⎧-≠⎨>⎩,即22259095k k t ⎧-≠⎨<+⎩,所以1221859kt x x k +=-,()()22121222182591025959k t t k t y y k x x t k k +-+=++==--, 即2295,5959ktt M k k ⎛⎫ ⎪--⎝⎭,因为点M 在x 轴下方,所以25059t k <-,又k >0t >, 所以直线OM 的斜率59OMk k =,则直线OM 的直线方程为59y x k=, 将其代入双曲线E 的方程,整理得2228195Nk x k =-,所以2222222258125||18195NNNk ON x y x k k +⎛⎫=+=+= ⎪-⎝⎭, 将59y x k =代入直线=1x -,解得51,9D k ⎛⎫-- ⎪⎝⎭,又因为2295,5959kt t M k k ⎛⎫ ⎪--⎝⎭,所以有||OD ==||OM ==. 由2||||||ON OD OM =,解得9t k =±,因为k >0t >,所以9t k =, 因此直线l 的方程为9(9)y kx k k x =+=+,故直线l 过定点(9,0)-.【典例3】(2022上·江苏苏州·苏州中学高三校联考阶段练习)在平面直角坐标系xOy 中,已知点P 在抛物线21:4C y x =上,圆2222:(2)(02).C x y r r -+=<<(1)若1r =,Q 为圆2C 上的动点,求线段PQ 长度的最小值;(2)若点P 的纵坐标为4,过P 的直线,m n 与圆2C 相切,分别交抛物线1C 于,A B (异于点P ),求证:直线AB 过定点. 【答案】(1)1;(2)证明见解析【解析】(1)设()2,2P t t ,则21111PQ PC ≥-=≥,当()0,0P ,Q 为2PC 线段与圆2C 的交点时,min 1PQ = (2)题意可知()4,4P ,过P 点直线()44y k x -=-与圆2C 相切,r =,即()222416160r k k r --+-=,①设直线AB 为:()()441m x n y -+-=, 则与抛物线C 的交点方程可化为:()()()()()()24844444(4)4y y m x n y x m x n y -+--+-=--+-⎡⎤⎡⎤⎣⎦⎣⎦,令44y z x -=-,则:()()2188440n z m n z m ++--=,② 题意有,①②方程同解,故有()()()[]()2233164164818444y r r m n m n -⎡⎤⎣=---+⨯=--+-⎦-, 即:2111m n -=,所以直线AB 为:()()1114412n x n y +-+-=,即6(11252)0x n x y -++-=, 由60112520x x y -=⎧⎨+-=⎩,解得67x y =⎧⎨=-⎩,直线AB 恒过()6,7-.四、圆锥曲线中的定值问题的常见类型及解题策略1、求代数式为定值:依题意设条件,得出与代数式参数有关的等式,代入代数式,化简即可得出定值;2、求点到直线的距离为定值:利用点到直线的距离公式得出距离的解析式,再利用题设条件化简变形求得;3、求某线段长度为定值:利用长度公式求得解析式,再依据条件对解析式进行化简变形即可求得. 【典例1】(2023上·四川·南江中学高三校联考阶段练习)以坐标原点为对称中心,坐标轴为对称轴的椭圆过点()830,1,(,)55C D ---.(1)求椭圆的方程. (2)设P 是椭圆上一点(异于,C D ),直线,PC PD 与x 轴分别交于,M N 两点.证明在x 轴上存在两点,A B ,使得MB NA ⋅是定值,并求此定值.【答案】(1)2214x y +=;(2)证明见解析,定值为12-.【解析】(1)设椭圆方程为221px qy +=,则164912525q p q =⎧⎪⎨+=⎪⎩,解得141p q ⎧=⎪⎨⎪=⎩, 所以椭圆的方程为2214x y +=.(2)设()()()00,,,0,,0P x y A m B n ,(,0),(,0)M N M x N x ,则00(,1),(,1)M CM x CP x y ==+,由//CM CP ,得00(1)M x y x +=,而010y +≠,于是001M x x y =+,008383(,),(,)5555N DN x DP x y =+=++,同理008338()()()5555N x y x ++=+,而0305y +≠,于是000385535N x y x y -=+, 则000003855(,0),(,0)315x y x NA m MB n y y -=-=-++,00000000000038(583355()()31(1)(53))()5x y x ny n x my y m x MB NA n m y y y y -+-++-⋅=--=++++, 令00058333my y m ny n ++=--,而00(,)P x y 是椭圆上的动点,则583,33m n m n +=-=-,得4,4n m ==-,于是()()()2222200000020000003443(44)(4412(583)12]1533[1)(5)58)3(y x y y y y MB NA y y y y y y ⎡⎤-+--+---++⎣⎦⋅====-++++++, 所以存在()4,0A -和()4,0B ,使得MB NA ⋅是定值,且定值为12-.【典例2】(2023上·广东深圳·高三统考期末)点M 是平面直角坐标系xOy 上一动点,两直线1:l y x =,2:l y x =-,已知1MA l ⊥于点A ,A 位于第一象限;2MB l ⊥于点B ,B 位于第四象限.若四边形OAMB 的面积为2.(1)若动点M 的轨迹为C ,求C 的方程.(2)设(),M s t ,过点M 分别作直线MP ,MQ 交C 于点P ,Q .若MP 与MQ 的倾斜角互补,证明直线PQ 的斜率为一定值,并求出这个定值.【答案】(1)()2240x y x -=>;(2)证明见解析,定值为s t-.【解析】(1)设(),M x y ,依题意得0x >且x y x >>-,即0x y ->且0x y +>,设(),A n n ,则(),MA x n y n =--, 因为直线1l 的方向向量为()1,1, 所以()1,10MA x n y n ⋅=-+-=,2x y n +=,即,22x y x y A ++⎛⎫⎪⎝⎭,所以)2x y x OA +⎛==, ),2x y x MA -⎛== 所以四边形OAMB 的面积为2222x y OA MA -⋅==,即动点M 的轨迹方程为()2240x y x -=>.(2)设直线():MP y t k x s -=-(1k <-或1k >),则():MQ y t k x s -=--,联立()224,,x y y t k x s ⎧-=⎪⎨-=-⎪⎩得()224x kx ks t ⎡⎤---=⎣⎦, 整理得()()()2221240k x k ks t x ks t -+----=,所以()221P k ks t s x k -+=-,即222222211P k s kt k s kt sx s k k --+=-=--,所以()22221P P k t ksy k x s t t k -+=-+=+-,同理得22221Q k s kt x s k +=--,22221Q k t ksy t k --=+-,所以直线PQ 的斜率44Q P Q P y y ks sk x x kt t--===--,得证.【典例3】(2023·河北衡水·高三模拟预测)已知点(1,2)M -在抛物线2:2(0)C y px p =>上,过点(0,1)N -的直线l 与C 相交于,A B 两点,直线,MA MB 分别与y 轴相交于点,D E . (1)当弦AB 的中点横坐标为3时,求l 的一般方程;(2)设O 为原点,若,DN mON EN nON ==,求证:mnm n+为定值. 【答案】(1)10x y --=或2330x y ++=;(2)证明见解析【解析】(1)由点(1,2)M -在抛物线2:2C y px =上,所以2p =,所以抛物线C 的方程为24y x =.设直线l 的方程为()()11221(0),,,,y kx k A x y B x y =-≠.由241y xy kx ⎧=⎨=-⎩,得22(24)10k x k x -++=. 依题意22(24)410k k ∆=+-⨯⨯>,解得1k >-且0k ≠. 且121222241,k x x x x k k ++==. 因为弦AB 的中点横坐标为3,所以126x x +=,即2246k k +=,解得1k =或23k =-, 所以l 的一般方程为10x y --=或2330x y ++=.(2)直线MA 的方程为1122(1)1y y x x ++=--, 又111y kx =-,令0x =,得点D 的纵坐标为111(2)1D k x y x -+=-.所以111(2)0,1k x D x ⎛⎫-+ ⎪-⎝⎭,同理得点E 的坐标为221(2)0,1k x E x ⎛⎫-+ ⎪-⎝⎭.由,DN mON EN nON ==,得11(1)11D k x m y x +=+=--,22(1)11E k x n y x +=+=--. 所以12121111(1)(1)x x m n k x k x --+=+++1212112(242)211x x k k x x k ⎛⎫+=-=+-= ⎪++⎝⎭. 所以11112mn m n m n==++,即mn m n +为定值12.五、圆锥曲线中的范围、最值问题的解题方法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系; (3)利用隐含的不等关系建立不等式,从而求出参数的取值范围; (4)利用已知的不等关系建立不等式,从而求出参数的取值范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围. 【典例1】(2022上·江苏宿迁·如东中学高三校考期中)已知12,F F 为椭圆C 的左、右焦点,点3P ⎛ ⎝⎭为其上一点,且124PF PF +=. (1)求椭圆C 的标准方程;(2)已知直线y kx m =+与椭圆C 相交于,A B 两点,与y 轴交于点M ,若存在m ,使得34OA OBOM ,求m 的取值范围.【答案】(1)2214x y +=;(2)111,,122⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭【解析】(1)由题意设椭圆的标准方程为22221(0)x y a b a b+=>>,因为点3P ⎛ ⎝⎭为椭圆上一点,且124MF MF +=, 所以22241314a a b =⎧⎪⎨+=⎪⎩,解得2241a b ⎧=⎨=⎩, 所以椭圆的标准方程为2214x y +=.(2)设()()1122,,,,A x y B x y 又()0,M m , 由34OA OBOM 得,12123,30,4x x y y m ,123x x =-联立2214y kx m x y =+⎧⎪⎨+=⎪⎩可得()222418440k x kmx m +++-= 222(8)4(41)(4m 4)0km k ∆=-⨯+⨯->,即226416160k m -+>,22410k m ∴-+>,且12221228414441km x x k m x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩, 又123x x =-22441kmx k ,则222122224443()4141km m x x x k k -⋅=-==++222216410k mkm,2221416m km ,代入22410k m -+>得22211014m m m -+->-, 2114m <<,解得111,,122m ⎛⎫⎛⎫∈-- ⎪ ⎪⎝⎭⎝⎭.m ∴的取值范围是111,,122⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭.【典例2】(2023·河北秦皇岛·高三校联考二模)已知双曲线22221(0,0)x y a b a b-=>>实轴的一个端点是P ,虚轴的一个端点是Q ,直线PQ 与双曲线的一条渐近线的交点为11,22⎛⎫⎪⎝⎭.(1)求双曲线的方程;(2)若直线1(01)y kx k k=+<<与曲线C 有两个不同的交点,A B O 、是坐标原点,求OAB的面积最小值.【答案】(1)221x y -=;(2)【解析】(1)设点(),0P a ,点()0,Q b ,则直线PQ 的方程为1x y a b+=,与渐近线b y x a =联立,得1x ya b b y x a ⎧+=⎪⎪⎨⎪=⎪⎩,解之得22a x b y ⎧=⎪⎪⎨⎪=⎪⎩,即直线PQ 与双曲线的一条渐近线交点为,22a b ⎛⎫⎪⎝⎭,又直线PQ 与双曲线的一条渐近线的交点为11,22⎛⎫⎪⎝⎭,所以122122a b ⎧=⎪⎪⎨⎪=⎪⎩,即1a b ==,因此双曲线方程为221x y -=.(2)设()()1122,,,A x y B x y ,把1y kx k =+代入221x y -=,得()22211210k x x k----=,则()()422122224112Δ44110,1k k k x x k k k -+⎛⎫=+-+=>+= ⎪-⎝⎭ ,2122111k x x k--=-,12AB x =-==点O 到直线1y kx k=+的距离211k d k =+所以OAB 的面积为()()242422222242111111212222111k k k k kS AB d k k k k k k +-+-==⨯+=⨯+--()242241k k k k +-=-令24t k k =-,所以22111t S t t t+⎛⎫==+ ⎪⎝⎭ 令1s t=,则2S s s =+因为01k <<,所以201k <<, 由221124t k ⎛⎫=--+ ⎪⎝⎭,得104t <≤,由1s t=,得4s ≥,由221124S s s s ⎛⎫=++- ⎪⎝⎭16425S ≥+=即当21124,,,42s t k k ====时,等号成立,此时满足Δ0>,所以OAB 面积的最小值为5【典例3】(2023·全国·高三模拟预测)已知F 是抛物线()2:20C y px p =>的焦点,过点F 的直线交抛物线C于A 、B 两点,且112AF BF+=. (1)求抛物线C 的方程;(2)若O 为坐标原点,过点B 作y 轴的垂线交直线AO 于点D ,过点A 作直线DF 的垂线与抛物线C 的另一交点为E ,AE 的中点为G ,求GB DG的取值范围.【答案】(1)22y x =;(2)1,12⎛⎫⎪⎝⎭【解析】(1)抛物线C 的焦点为,02p F ⎛⎫⎪⎝⎭,若直线AB 与x 轴重合,则直线AB 与抛物线C 只有一个公共点,不合乎题意,设直线AB 的方程为2px my =+,设点()11,A x y 、()22,B x y , 联立222y px p x my ⎧=⎪⎨=+⎪⎩可得2220y pmy p --=,222440p m p ∆=+>,由韦达定理可得122y y pm +=,212y y p =-,()()()12121212211111122m y y p p p AF BF my p my p my p my p x x +++=+=+=++++++()()()()22122222222221212212222221p m m y y p pm pm y y mp y y p m p m p p pp m ++++=====+++-+++,解得1p =, 所以,抛物线C 的方程为22y x =. (2)设点()11,A x y 、()22,B x y ,则10x >,由(1)可得122y y m +=,121y y =-,又因为直线AO 的方程为11211122y y y x x x y x y ===, 将2y y =代入直线AO 的方程可得212y x y =, 可得12122y y x ==-,即点21,2D y ⎛⎫- ⎪⎝⎭, 所以,221122DF y k y ==---, 因为AE DF ⊥,则211AE DF k k y =-=, 所以,直线AE 的方程为()1121y y x x y -=-, 联立()112212y y x x y y x ⎧-=-⎪⎨⎪=⎩可得2212220y y y x ---=,则122E y y y +=,故212E y y y =-,则()22122111212121212142E E x y y x y y y x x y y y x x =++=-++=+-+=++,由AE 的中点为G ,可得()12221,G x x y ++, 故G 、B 、D 三点共线,则1221212122111321222GB x x x x x GDx x x x ++-++==+++++.又由121y y =-,知221212144y y x x ==,故()()2111111221111111111141221411131346221222222x x x GB x x x GD x x x x x x x x ++++++===-=-++++++++1111,1222x ⎛⎫=-∈ ⎪+⎝⎭. 故GB GD的取值范围为1,12⎛⎫ ⎪⎝⎭.六、圆锥曲线中的证明问题1、圆锥曲线中的证明问题,常见的有位置关系方面的,如证明相切、垂直、过定点等;数量关系方面的,如存在定值、恒成立、值相等、角相等、三点共线等.在熟悉圆锥曲线的定义和性质的前提下,要多采用直接法证明,但有时也会用到反证法.【典例1】(2023·全国·高三专题练习)已知椭圆()2222:10x y C a b a b +=>>过3(1,)2和两点.(1)求椭圆C 的方程;(2)如图所示,记椭圆的左、右顶点分别为A ,B ,当动点M 在定直线4x =上运动时,直线AM ,BM 分别交椭圆于两点P 和Q (不同于B ,A ).证明:点B 在以PQ 为直径的圆内.【答案】(1)22143x y +=;(2)证明见解析. 【解析】(1)依题意,将点3(1,)2和的坐标代入椭圆22221x y a b +=,得222219142312a b ab ⎧+=⎪⎪⎨⎪+=⎪⎩,解得2243a b ⎧=⎨=⎩,所以椭圆方程为22143x y +=(2)由(1)知()()2,0,2,0A B -,显然点M 不在x 轴上,设()4,,0M t t ≠,()(),,,P P Q Q P x y Q x y ,直线,AM BM 斜率分别为,62AM BM t tk k ==,直线AM 的方程为()26ty x =+,BM 的方程为()22t y x =-,由()2226143t y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩,消去y 得()222227441080t x t x t +++-=,显然0∆>, 于是224108227P t x t --=+,解得2254227P t x t -=+,则()2182627P P t ty x t =+=+,由()2222143t y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,消去y 得()2222344120t x t x t +-+-=,显然0'∆>,于是2241223Q t x t -=+,解得22263Q t x t -=+,则()26223Q Q t ty x t =-=-+,因此22222254218418(2,)(,)27272727t t t t BP t t t t --=-=++++,22222266126(2,)(,)3333t t tBQ t t t t--=--=-++++, 则()()2222222241218660()()027*******t t t t BP BQ t t t t t t --⋅=⨯-+⨯-=++++++<, 则有PBQ ∠为钝角, 所以点B 在以PQ 为直径的圆内.【典例2】(2023上·福建泉州·高三校考阶段练习)点F 是抛物线Γ:22y px =(0p >)的焦点,O 为坐标原点,过点F 作垂直于x 轴的直线l ,与抛物线Γ相交于A ,B 两点,AB 4=,抛物线Γ的准线与x 轴交于点K .(1)求抛物线Γ的方程;(2)设C 、D 是抛物线Γ上异于A 、B 两点的两个不同的点,直线AC 、BD 相交于点E ,直线AD 、BC 相交于点G ,证明:E 、G 、K 三点共线. 【答案】(1)24y x =;(2)详见解析.【解析】(1)抛物线Γ:22y px =(0p >)的焦点坐标为:,02p F ⎛⎫⎪⎝⎭过点F 作垂因为直于x 轴的直线l ,与抛物线Γ相交于A ,B 两点,且AB 4=, 不妨设,2,,222p p A B ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,则2222p p =⋅,解得2p =或2p =-(舍去),所以抛物线Γ的方程为24y x =; (2)如图所示:由(1)知()()1,2,1,2A B -,设()22121212,,,2,244y y C y D y y y ⎛⎫⎛⎫≠≠- ⎪ ⎪⎝⎭⎝⎭,则直线AC 的方程为:()()12112421,21214y y x y x y y --=--=-+-,直线BD 的方程为:()()22222421,21214y y x y x y y ++=-+=---,联立得()()1242124212y x y y x y ⎧-=-⎪+⎪⎨⎪+=-⎪-⎩,解得()1212121212424y y y y x y y y y y y y -+⎧=⎪-+⎪⎨+⎪=⎪-+⎩,则()12121212122,44y y y y y y E y y y y +⎛⎫-+ ⎪-+-+⎝⎭,所以()()()()1212121212121212121212122224441144EKy y y y y y y y y y k y y y y y y y y y y y y y y +++-+-+===-+-++--+-+-+, 则直线BC 的方程为:()()12112421,21214y y x y x y y ++=-+=---,直线AD 的方程为:()()22222421,21214y y x y x y y --=--=-+-,联立得()()1242124212y x y y x y ⎧+=-⎪-⎪⎨⎪-=-⎪+⎩,解得()1221211221424y y y y x y y y y y y y -+⎧=⎪-+⎪⎨+⎪=⎪-+⎩,则()12122121212,44y y y y y y G y y y y +⎛⎫-+ ⎪-+-+⎝⎭,所以()()()()1212122121122112211221212224441144GKy y y y y y y y y y k y y y y y y y y y y y y y y +++-+-+===-+-++--+-+-+,则EK GK k k =, 所以E ,K ,G 三点共线.七、圆锥曲线中的探索性问题“肯定顺推法”解决探索性问题,即先假设结论成立,用待定系数法列出相应参数的方程,倘若相应方程有解,则探索的元素存在(或命题成立),否则不存在(或不成立).【典例1】(2023下·河南开封·通许一中高三校考阶段练习)已知椭圆2222:1(0)x y C a b a b +=>>过点⎛- ⎝⎭和2⎛ ⎝⎭. (1)求C 的方程;(2)不过原点O 的直线l 与C 交于不同的,P Q 两点,且直线,,OP PQ OQ 的斜率成等比数列.在C 上是否存在一点M ,使得四边形OPMQ 为平行四边形?若存在,求出直线l 的方程;若不存在,请说明理由.【答案】(1)2212x y +=;(2)存在;)12y x =+或)12y x =-或)12y x =-+或)12y x =-.【解析】(1)由题意可得2222112113241a ba b ⎧⎪+=⎪⎪⎨⎪⎪+=⎪⎩,解得2221a b ⎧=⎨=⎩,故C 的方程为2212x y +=;(2)由题意知直线l 的斜率一定存在,设直线的l 方程为0),(0y kx m k m ≠+≠=,设())(1122,,,P x y Q x y ,由2212x y y kx m ⎧+=⎪⎨⎪=+⎩,得()222214220k x kmx m +++-=, 需满足228(21)0k m ∆=-+>,则()2121222214,2121-+=-=++m km x x x x k k , 所以()()()2222121212122221m k y y kx m kx m k x x km x x m k -=++=+++=+,故()2212212221y y m k x x m -=-;由于直线,,OP PQ OQ 的斜率成等比数列,即2()PQ OP OQ k k k =,即21212y y k x x =, 故()2222221m k k m -=-,解得212k =, 存在点M ,使得四边形OPMQ 为平行四边形,理由如下:四边形OPMQ 为平行四边形,则())(1122,,OM OP OQ x y x y =+=+, 故()1212,M x x y y ++,又点M 在椭圆C 上,故()()22121212x x y y +++=,因为()()2222122216221k m x x m k+==+,()()()()22222212121212244y y k x x m k x x km x x m m +=++=++++=⎡⎤⎣⎦所以221m m +=,即212m =, 当2211,22==k m ,满足228(21)0k m ∆=-+>,所以直线l 的方程为)21y x =+或)21y x =-或)21y x =+或)21y x =-.【典例2】(2023上·重庆·高三统考阶段练习)已知抛物线2:2C y px =经过点(2,6-,直线1:(0)l y kx m km =+≠与C 交于A ,B 两点(异于坐标原点O ).(1)若0OA OB ⋅=,证明:直线1l 过定点.(2)已知2k =,直线2l 在直线1l 的右侧,12//l l ,1l 与2l 之间的距离5d =2l 交C 于M ,N 两点,试问是否存在m ,使得||||10MN AB -=?若存在,求m 的值;若不存在,说明理由.24【解析】(1)证明:将点(2,26-代入22y px =,得244p =,即6p .联立212,,y x y kx m ⎧=⎨=+⎩得212120ky y m -+=,由0km ≠,设()11,A x y ,()22,B x y ,则1212m y y k =,()222212121221212144y y y y m x x k =⋅==.因为0OA OB ⋅=,所以212122120m mx x y y k k+=+=恒成立,则12m k =-,所以1l 的方程为(12)y k x =-, 故直线1l 过定点(12,0).(2)联立212,2,y x y x m ⎧=⎨=+⎩得224(412)0x m x m +-+=,则122123,,4x x m m x x +=-+⎧⎪⎨=⎪⎩且22(412)1648(32)0m m m ∆=--=->,即32m <, ()222121212||12124596AB x x x x x m =+-=++--设2:2l y x n =+,同理可得||596MN n =- 因为直线2l 在1l 的右侧,所以n m <, 则55d ==5n m =-. 所以||||596(5)9610MN AB m m ⎡-=---=⎣, 3962596m m --3124m =,因为313242<,所以满足条件的m 存在,3124m =.【典例3】(2023上·重庆·南开中学高三校考阶段练习)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右顶点分别为A 、B ,渐近线方程为12y x =±,焦点到渐近线距离为1,直线:l y kx m =+与C 左右两支分别交于P ,Q ,且点2323m k ⎝⎭在双曲线C 上.记APQ △和BPQ 面积分别为1S ,2S ,AP ,BQ 的斜率分别为1k ,2k(1)求双曲线C 的方程;(2)若12432S S =,试问是否存在实数λ,使得1k -,k λ,2k .成等比数列,若存在,求出λ的值,不存在说明理由.4【解析】(1)由题可得222121b a c a b ⎧=⎪⎪==+⎪⎩,解得21a b =⎧⎨=⎩,所以双曲线C 的方程为2214x y -=; (2)由点⎝⎭在22:14x C y -=上可得:2243m k -=. 联立y kx m =+和22:14x C y -=整理得:()()222148410k x kmx m ---+=,设11(,)P x y ,22(,)Q x y ,则有:122814km x x k +=-,21224(1)14m x x k -+⋅=-, ()22Δ1641640m k =-+=>,又由直线交左右两支各一点可得:21224(1)014m x x k -+⋅=<-,所以2140k ->,即214k <,所以12PQ x =-==, 又()2,0A -到直线:l y kx m =+的距离1d =()2,0B 到直线:l y kx m =+的距离2d =所以2212224311m k d d k k -==++,所以()12122211484322214S S PQ d PQ d k ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭-, 所以23(14)1k -=(2140k ->),解得216k =, 又121212121221222()4y y y y k k x x x x x x =⋅=+-+--, 其中2222121212122243()()()1414m k y y kx m kx m k x x km x x m k k -=++=+++==--, 212212224(1)842()424141414m x x x x k k k -+-+--=+-=---, 所以1212122132()44y y k k x x x x ==-+--,假设存在实数λ,使得1k -,k λ,2k 成等比数列, 则有2212k k k λ=-,所以21364λ=,解得λ=λ=.易错点2 忽视直线与双曲线相交的特殊性点拨:直线与双曲线的位置关系分为:相交、相离、相切三种。
圆锥曲线综合问题第一讲 最值、范围问题1.圆锥曲线中常见的最值问题及其解法(1)两类最值问题①涉及距离、面积的最值以及与之相关的一些问题;①求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些问题.(2)两种常见解法①几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决;①代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解.【例1】已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的两个焦点与短轴的一个端点是等边三角形的三个顶点,且长轴长为4.(1)求椭圆E 的方程;(2)若A 是椭圆E 的左顶点,经过左焦点F 的直线l 与椭圆E 交于C ,D 两点,求△OAD 与△OAC 的面积之差的绝对值的最大值.(O 为坐标原点)解析:(1)由题意得2a =4,即a =2,2c =a ,即c =1,又b 2=a 2-c 2,∴b 2=3.故椭圆E 的方程为x 24+y 23=1. (2)设△OAD 的面积为S 1,△OAC 的面积为S 2,直线l 的方程为x =ky -1,C (x 1,y 1),D (x 2,y 2),由⎩⎪⎨⎪⎧ x =ky -1,x 24+y 23=1,整理得(3k 2+4)y 2-6ky -9=0, 由根与系数的关系可知y 1+y 2=6k 3k 2+4,∴|S 1-S 2|=12×2×||y 1|-|y 2||=|y 1+y 2|=6|k |3k 2+4. 当k =0时,|S 1-S 2|=0,当k ≠0时,|S 1-S 2|=63|k |+4|k |≤62 3|k |·4|k |=32,当且仅当3|k |=4|k |,即k =±233时等号成立.∴|S 1-S 2|的最大值为32.【变式训练】 1.已知椭圆x 2a 2+y 2b2=1(a >b >0),F 1,F 2为它的左、右焦点,P 为椭圆上一点,已知∠F 1PF 2=60°,S △F 1PF 2=3,且椭圆的离心率为12. (1)求椭圆方程;(2)已知T (-4,0),过T 的直线与椭圆交于M ,N 两点,求△MNF 1面积的最大值.解 (1)由已知,得|PF 1|+|PF 2|=2a ,①|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°=4c 2,即|PF 1|2+|PF 2|2-|PF 1||PF 2|=4c 2,①12|PF 1||PF 2|sin 60°=3,即|PF 1||PF 2|=4,① 联立①①①解得a 2-c 2=3.又c a =12,①c 2=1,a 2=4, b 2=a 2-c 2=3,椭圆方程为x 24+y 23=1. (2)根据题意可知直线MN 的斜率存在,且不为0.设M (x 1,y 1),N (x 2,y 2),直线MN 的方程为x =my -4,代入椭圆方程,整理得(3m 2+4)y 2-24my +36=0,则Δ=(24m )2-4×36×(3m 2+4)>0,所以m 2>4.y 1+y 2=24m 3m 2+4,y 1y 2=363m 2+4, 则①MNF 1的面积S ①MNF 1=|S ①NTF 1-S ①MTF 1|=12|TF 1|·|y 1-y 2|=32(y 1+y 2)2-4y 1y 2 =32431444324222+-⎪⎭⎫ ⎝⎛+m m m =18m 2-44+3m 2 =6×1m 2-4+163m 2-4=6×1m 2-4+163m 2-4≤62163=334. 当且仅当m 2-4=163m 2-4,即m 2=283时(此时适合Δ>0的条件)取得等号. 故①MNF 1面积的最大值为334.2.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 在椭圆上(异于椭圆C 的左、右顶点),过右焦点F 2作①F 1PF 2的外角平分线L 的垂线F 2Q ,交L 于点Q ,且|OQ |=2(O 为坐标原点),椭圆的四个顶点围成的平行四边形的面积为43.(1)求椭圆C 的方程;(2)若直线l :x =my +4(m ①R )与椭圆C 交于A ,B 两点,点A 关于x 轴的对称点为A ′,直线A ′B 交x 轴于点D ,求当①ADB 的面积最大时,直线l 的方程.解 (1)由椭圆的四个顶点围成的平行四边形的面积为4×12ab =43,得ab =23. 延长F 2Q 交直线F 1P 于点R ,因为F 2Q 为①F 1PF 2的外角平分线的垂线,所以|PF 2|=|PR |,Q 为F 2R 的中点,所以|OQ |=|F 1R |2=|F 1P |+|PR |2=|F 1P |+|PF 2|2=a , 所以a =2,b =3,所以椭圆C 的方程为x 24+y 23=1. (2)联立⎩⎪⎨⎪⎧ x =my +4,x 24+y 23=1,消去x ,得(3m 2+4)y 2+24my +36=0, 所以Δ=(24m )2-4×36×(3m 2+4)=144(m 2-4)>0,即m 2>4.设A (x 1,y 1),B (x 2,y 2),则A ′(x 1,-y 1),由根与系数的关系,得y 1+y 2=-24m 3m 2+4,y 1y 2=363m 2+4, 直线A ′B 的斜率k =y 2-(-y 1)x 2-x 1=y 2+y 1x 2-x 1, 所以直线A ′B 的方程为y +y 1=y 1+y 2x 2-x 1(x -x 1), 令y =0,得x D =x 1y 2+x 2y 1y 1+y 2=(my 1+4)y 2+y 1(my 2+4)y 1+y 2=2my 1y 2y 1+y 2+4, 故x D =1,所以点D 到直线l 的距离d =31+m 2, 所以S ①ADB =12|AB |·d =32(y 1+y 2)2-4y 1y 2=18·m 2-43m 2+4. 令t =m 2-4(t >0),则S ①ADB =18·t 3t 2+16=183t +16t≤1823×16=334, 当且仅当3t =16t ,即t 2=163=m 2-4,即m 2=283>4,m =±2213时,①ADB 的面积最大, 所以直线l 的方程为3x +221y -12=0或3x -221y -12=0.【例2】在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点P (2,1),且离心率e =32.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点,求△P AB 的面积的最大值. 解 (1)因为e 2=c 2a 2=a 2-b 2a 2=34,所以a 2=4b 2. 又椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点P (2,1), 所以4a 2+1b 2=1.所以a 2=8,b 2=2. 故所求椭圆方程为x 28+y 22=1. (2)设l 的方程为y =12x +m ,点A (x 1,y 1),B (x 2,y 2), 联立⎩⎨⎧y =12x +m ,x 28+y 22=1消去y 整理得x 2+2mx +2m 2-4=0. 所以x 1+x 2=-2m ,x 1x 2=2m 2-4.又直线l 与椭圆相交,所以Δ=4m 2-8m 2+16>0,解得|m |<2.则|AB |=1+14×(x 1+x 2)2-4x 1x 2=5(4-m 2). 点P 到直线l 的距离d =|m |1+14=2|m |5. 所以S ①P AB =12d |AB |=12×2|m |5×5(4-m 2)=m 2(4-m 2)≤m 2+4-m 22=2. 当且仅当m 2=2,即m =±2时,①P AB 的面积取得最大值为2.【变式训练】1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)与双曲线x 23-y 2=1的离心率互为倒数,且直线x -y -2=0经过椭圆的右顶点.(1)求椭圆C 的标准方程;(2)设不过原点O 的直线与椭圆C 交于M ,N 两点,且直线OM ,MN ,ON 的斜率依次成等比数列,求△OMN 面积的取值范围.解:(1)①双曲线的离心率为233, ①椭圆的离心率e =c a =32. 又①直线x -y -2=0经过椭圆的右顶点,①右顶点为点(2,0),即a =2,c =3,b =1,①椭圆方程为x 24+y 2=1. (2)由题意可设直线的方程为y =kx +m (k ≠0,m ≠0),M (x 1,y 1),N (x 2,y 2).联立⎩⎪⎨⎪⎧ y =kx +m ,x 24+y 2=1, 消去y ,并整理得(1+4k 2)x 2+8kmx +4(m 2-1)=0,则x 1+x 2=-8km 1+4k 2,x 1x 2=4(m 2-1)1+4k 2, 于是y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2.又直线OM ,MN ,ON 的斜率依次成等比数列,故y 1x 1·y 2x 2=k 2x 1x 2+km (x 1+x 2)+m 2x 1x 2=k 2, 则-8k 2m 21+4k 2+m 2=0.由m ≠0得k 2=14,解得k =±12. 又由Δ=64k 2m 2-16(1+4k 2)(m 2-1)=16(4k 2-m 2+1)>0,得0<m 2<2,显然m 2≠1(否则x 1x 2=0,x 1,x 2中至少有一个为0,直线OM ,ON 中至少有一个斜率不存在,与已知矛盾).设原点O 到直线的距离为d ,则S ①OMN =12|MN |d =12·1+k 2·|x 1-x 2|·|m |1+k 2=12|m |(x 1+x 2)2-4x 1x 2=-(m 2-1)2+1. 故由m 的取值范围可得①OMN 面积的取值范围为(0,1).2.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且点⎪⎭⎫ ⎝⎛213,在椭圆C 上. (1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b2=1,P 为椭圆C 上任意一点,过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q .①求|OQ ||OP |的值; ②求△ABQ 面积的最大值.解 (1)由题意知3a 2+14b 2=1.又a 2-b 2a =32, 解得a 2=4,b 2=1.所以椭圆C 的方程为x 24+y 2=1. (2)由(1)知椭圆E 的方程为x 216+y 24=1. ①设P (x 0,y 0),|OQ ||OP |=λ(λ>0),由题意知Q (-λx 0,-λy 0). 因为x 204+y 20=1,又(-λx 0)216+(-λy 0)24=1,即λ24⎪⎪⎭⎫ ⎝⎛+20204y x =1, 所以λ=2,即|OQ ||OP |=2 ①设A (x 1,y 1),B (x 2,y 2).将y =kx +m 代入椭圆E 的方程,可得(1+4k 2)x 2+8kmx +4m 2-16=0,由Δ>0,可得m 2<4+16k 2,(*)则有x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-161+4k 2.所以|x 1-x 2|=416k 2+4-m 21+4k 2. 因为直线y =kx +m 与y 轴交点的坐标为(0,m ),所以①OAB 的面积S =12|m ||x 1-x 2|=216k 2+4-m 2|m |1+4k 2=2(16k 2+4-m 2)m 21+4k 2=2 222241414k m k m +⎪⎪⎭⎫ ⎝⎛+-. 设m 21+4k 2=t ,将y =kx +m 代入椭圆C 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-4=0,由Δ≥0,可得m 2≤1+4k 2.(**)由(*)和(**)可知0<t ≤1,因此S =2(4-t )t =2-t 2+4t ,故0<S ≤23,当且仅当t =1,即m 2=1+4k 2时取得最大值23.由①知,①ABQ 的面积为3S ,所以①ABQ 面积的最大值为63.【例3】已知动圆E 经过点F (1,0),且和直线l :x =-1相切.(1)求该动圆圆心E 的轨迹G 的方程;(2)已知点A (3,0),若斜率为1的直线l ′与线段OA 相交(不经过坐标原点O 和点A ),且与曲线G 交于B ,C 两点,求△ABC 面积的最大值.解 (1)由题意可知点E 到点F 的距离等于点E 到直线l 的距离,①动点E 的轨迹是以F (1,0)为焦点,直线x =-1为准线的抛物线,故轨迹G 的方程是y 2=4x .(2)设直线l ′的方程为y =x +m ,其中-3<m <0,C (x 1,y 1),B (x 2,y 2),联立得方程组⎩⎪⎨⎪⎧y =x +m ,y 2=4x 消去y ,得x 2+(2m -4)x +m 2=0,Δ=(2m -4)2-4m 2=16(1-m )>0恒成立.由根与系数的关系得x 1+x 2=4-2m ,x 1·x 2=m 2,①|CB |=42(1-m ),点A 到直线l ′的距离d =3+m 2, ①S ①ABC =12×42(1-m )×3+m 2=21-m ×(3+m ), 令1-m =t ,t ①(1,2),则m =1-t 2,①S ①ABC =2t (4-t 2)=8t -2t 3,令f (t )=8t -2t 3,①f ′(t )=8-6t 2,令f ′(t )=0,得t =23(负值舍去). 易知y =f (t )在⎪⎪⎭⎫ ⎝⎛32,1上单调递增,在⎪⎪⎭⎫ ⎝⎛2,32上单调递减. ①y =f (t )在t =23,即m =-13时取得最大值为3239. ①①ABC 面积的最大值为3239.【变式训练】1.如图,已知抛物线x 2=y ,点A ⎪⎭⎫ ⎝⎛-41,21,B ⎪⎭⎫ ⎝⎛4923,,抛物线上的点P (x ,y )⎪⎭⎫ ⎝⎛<<-2321x .过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围;(2)求|P A |·|PQ |的最大值.解析 (1)设直线AP 的斜率为k ,则k =x 2-14x +12=x -12. 因为-12<x <32,所以直线AP 斜率的取值范围是(-1,1). (2)联立直线AP 与BQ 的方程可得⎩⎨⎧ kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标是x Q =-k 2+4k +32(k 2+1). 因为|P A |=1+k 2⎪⎭⎫ ⎝⎛+21x =1+k 2(k +1), |PQ |=1+k 2(x Q -x )=-(k -1)(k +1)2k 2+1, 所以|P A |·|PQ |=-(k -1)(k +1)3.令f (k )=-(k -1)(k +1)3=-k 4-2k 3+2k +1,因为f ′(k )=-(4k -2)(k +1)2,所以f (k )在区间⎪⎭⎫ ⎝⎛-21,1上单调递增,在区间⎪⎭⎫ ⎝⎛1,21上单调递减. 因此当k =12时,|P A |·|PQ |取得最大值2716.2.设抛物线y 2=4x 的焦点为F ,过点12,0的动直线交抛物线于不同两点P ,Q ,线段PQ 中点为M ,射线MF 与抛物线交于点A .(1)求点M 的轨迹方程;(2)求①APQ 的面积的最小值.解:(1)设直线PQ 方程为x =ty +12,代入y 2=4x ,得y 2-4ty -2=0. 设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=4t ,y 1y 2=-2,x 1+x 2=t (y 1+y 2)+1=4t 2+1,所以M 2t 2+12,2t . 设M (x ,y ),由⎩⎪⎨⎪⎧ x =2t 2+12,y =2t消去t ,得中点M 的轨迹方程为y 2=2x -1. (2)设F A →=λFM →(λ<0),A (x 0,y 0),又F (1,0),M 2t 2+12,2t , 则(x 0-1,y 0)=λ⎪⎭⎫ ⎝⎛-t t 2,2122,即⎩⎪⎨⎪⎧ x 0=2λt 2-12λ+1,y 0=2λt .由点A 在抛物线y 2=4x 上,得4λ2t 2=8λt 2-2λ+4,化简得(λ2-2λ)t 2=-12λ+1. 又λ<0,所以t 2=-12λ. 因为点A 到直线PQ 的距离d =|4λt 2-λ+2-4λt 2-1|21+t 2=|λ-1|21+t 2, |PQ |=1+t 2|y 1-y 2|=2(1+t 2)(4t 2+2).所以①APQ 的面积S =12·|PQ |·d =222t 2+1|λ-1|=22 (λ-1)3λ.设f (λ)=(λ-1)3λ,λ<0,则f ′(λ)=(λ-1)2(2λ+1)λ2, 由f ′(λ)>0,得λ>-12; 由f ′(λ)<0,得λ<-12, 所以f (λ)在-∞,-12上是减函数,在-12,0上是增函数,因此,当λ=-12时,f (λ)取到最小值. 所以①APQ 的面积的最小值是364.2.解决圆锥曲线中范围问题的方法圆锥曲线的有关几何量的取值范围问题一直是高考的热点,解决这类问题的基本途径:先要恰当地引入变量(如点的坐标、角、斜率等),建立目标函数,然后利用函数的有关知识和方法进行求解.一般有五种思考方法:(1)利用判别式来构造不等式,从而确定参数的取值范围;(2)利用已知参数的取值范围,求新参数的取值范围,解决这类问题的关键是在两个参数之间建立起相应的联系;(3)利用隐含的不等关系建立不等式,从而求参数的取值范围;(4)利用已知不等关系构造不等式,从而求参数的取值范围;(5)利用函数的值域,确定参数的取值范围.【例3】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,短轴长为2. (1)求椭圆C 的标准方程;(2)设直线l :y =kx +m 与椭圆C 交于M ,N 两点,O 为坐标原点,若k OM ·k ON =54,求原点O 到直线l 的距离的取值范围.解 (1)由题知e =c a =32,2b =2,又a 2=b 2+c 2,①b =1,a =2, ①椭圆C 的标准方程为x 24+y 2=1. (2)设M (x 1,y 1),N (x 2,y 2),联立方程⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2-4=0,依题意,Δ=(8km )2-4(4k 2+1)(4m 2-4)>0,化简得m 2<4k 2+1,①x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1, y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2.若k OM ·k ON =54,则y 1y 2x 1x 2=54,即4y 1y 2=5x 1x 2, ①(4k 2-5)x 1x 2+4km (x 1+x 2)+4m 2=0,①(4k 2-5)·4(m 2-1)4k 2+1+4km ·⎪⎭⎫ ⎝⎛+-1482k km +4m 2=0, 即(4k 2-5)(m 2-1)-8k 2m 2+m 2(4k 2+1)=0,化简得m 2+k 2=54,① 由①①得0≤m 2<65,120<k 2≤54. ①原点O 到直线l 的距离d =|m |1+k 2,①d 2=m 21+k 2=54-k 21+k 2=-1+94(1+k 2), 又120<k 2≤54,①0≤d 2<87,①原点O 到直线l 的距离的取值范围是⎪⎪⎭⎫⎢⎢⎣⎡71420,. 【变式训练】1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (1,0),且点P ⎪⎭⎫ ⎝⎛231,在椭圆C 上,O 为坐标原点. (1)求椭圆C 的标准方程;(2)设过定点T (0,2)的直线l 与椭圆C 交于不同的两点A ,B ,且∠AOB 为锐角,求直线l 的斜率k 的取值范围.解析:(1)由题意,得c =1, 所以a 2=b 2+1.因为点P ⎪⎭⎫ ⎝⎛231,在椭圆C 上, 所以1a 2+94b 2=1,所以a 2=4,b 2=3. 则椭圆C 的标准方程为x 24+y 23=1. (2)设直线l 的方程为y =kx +2,点A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +2得(4k 2+3)x 2+16kx +4=0. 因为Δ=48(4k 2-1)>0,所以k 2>14, 由根与系数的关系,得x 1+x 2=-16k 4k 2+3,x 1x 2=44k 2+3. 因为∠AOB 为锐角,所以OA →·OB →>0,即x 1x 2+y 1y 2>0.所以x 1x 2+(kx 1+2)(kx 2+2)>0,即(1+k 2)x 1x 2+2k (x 1+x 2)+4>0,所以(1+k 2)·44k 2+3+2k ·-16k 4k 2+3+4>0, 即-12k 2+164k 2+3>0, 所以k 2<43. 综上可知14<k 2<43, 解得-233<k <-12或12<k <233. 所以直线l 的斜率k 的取值范围为⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--332,2121,332 .2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点分别是F 1(-2,0),F 2(2,0),点E ⎪⎪⎭⎫ ⎝⎛2332,在椭圆C 上. (1)求椭圆C 的方程;(2)设P 是y 轴上的一点,若椭圆C 上存在两点M ,N 使得MP →=2PN →,求以F 1P 为直径的圆的面积的取值范围.解:(1)由题意知,半焦距c =2,2a =|EF 1|+|EF 2|=8+92+322=42, 所以a =22,所以b 2=a 2-c 2=8-2=6, 所以椭圆C 的方程是x 28+y 26=1. (2)设点P 的坐标为(0,t ),当直线MN 的斜率不存在时,可得M ,N 分是是短轴的两端点,得到t =±63. 当直线MN 的斜率存在时,设直线MN 的方程为y =kx +t ,M (x 1,y 1),N (x 2,y 2),则由MP →=2PN →得x 1=-2x 2, ①联立,得⎩⎪⎨⎪⎧y =kx +t ,x 28+y 26=1,整理得(3+4k 4)x 2+8ktx +4t 2-24=0, 由Δ>0得64k 2t 2-4(3+4k 2)(4t 2-24)>0,整理得t 2<8k 2+6.由根与系数的关系得x 1+x 2=-8kt 3+4k 2,x 1x 2=4t 2-243+4k 2,② 由①②,消去x 1,x 2得k 2=-t 2+612t 2-8,由⎩⎪⎨⎪⎧ -t 2+612t 2-8≥0,t 2<8·-t 2+612t 2-8+6,得23<t 2<6. 综上23≤t 2<6. 因为以F 1P 为直径的圆的面积S =π. ·2+t 24,所以S 的取值范围是⎪⎭⎫⎢⎣⎡ππ2,32.3.已知椭圆C 1:y 2a 2+x 2b 2=1(a >b >0)与抛物线C 2:x 2=2py (p >0)有一个公共焦点,抛物线C 2的准线l 与椭圆C 1有一交点坐标是(2,-2).(1)求椭圆C 1与抛物线C 2的方程;(2)若点P 是直线l 上的动点,过点P 作抛物线的两条切线,切点分别为A ,B ,直线AB 与椭圆C 1分别交于点E ,F ,求OE →·OF →的取值范围.[解析] (1)抛物线C 2的准线方程是y =-2,所以-p 2=-2,即p =4,所以抛物线C 2的方程为x 2=8y . 椭圆C 1:y 2a 2+x 2b 2=1(a >b >0)的焦点坐标分别是(0,-2),(0,2),所以c =2. 2a =2+0+2+(2+2)2=42,解得a =22,则b =2,所以椭圆C 1的方程为y 28+x 24=1. (2)设点P (t ,-2),A (x 1,y 1),B (x 2,y 2),E (x 3,y 3),F (x 4,y 4),抛物线方程可化为y =18x 2,求导得y ′=14x , 所以AP 的方程为y -y 1=14x 1(x -x 1), 将P (t ,-2)代入,得-2-y 1=14x 1t -2y 1,即y 1=14tx 1+2. 同理,BP 的方程为y 2=14tx 2+2,所以直线AB 的方程为y =14tx +2. 由⎩⎨⎧ y =14tx +2,y 28+x 24=1消去y ,整理得(t 2+32)x 2+16tx -64=0,则Δ=256t 2+256(t 2+32)>0,且x 3+x 4=-16t t 2+32,x 3x 4=-64t 2+32所以OE →·OF →=x 3x 4+y 3y 4=(1+t 216)x 3x 4+t 2(x 3+x 4)+4=-8t 2+64t 2+32=320t 2+32-8. 因为0<320t 2+32≤10,所以OE →·OF →的取值范围是(-8,2].4.已知椭圆C :x 23+y 22=1,直线l :y =kx +m (m ≠0),设直线l 与椭圆C 交于A ,B 两点.(1)若|m |>3,求实数k 的取值范围;(2)若直线OA ,AB ,OB 的斜率成等比数列(其中O 为坐标原点),求△OAB 的面积的取值范围.[解](1)联立方程x 23+y 22=1和y =kx +m , 得(2+3k 2)x 2+6kmx +3m 2-6=0,所以Δ=(6km )2-4(2+3k 2)(3m 2-6)>0,所以m 2<2+3k 2,所以2+3k 2>3,即k 2>13,解得k >33或k <-33. 所以实数k 的取值范围为⎪⎪⎭⎫ ⎝⎛-∞-33,∪⎪⎪⎭⎫ ⎝⎛∞+,33. (2)设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-6km 2+3k 2,x 1x 2=3m 2-62+3k 2. 设直线OA ,OB 的斜率分别为k 1,k 2,因为直线OA ,AB ,OB 的斜率成等比数列,所以k 1k 2=y 1y 2x 1x 2=k 2,即(kx 1+m )(kx 2+m )x 1x 2=k 2(m ≠0), 化简得2+3k 2=6k 2,即k 2=23. 因为|AB |=1+k 2|x 1-x 2|=⎪⎭⎫ ⎝⎛-223635m , 点O 到直线l 的距离h =|m |1+k 2=35|m |, 所以S △OAB =12|AB |·h =66·⎪⎭⎫ ⎝⎛-2223623m m ≤66×2622362322=⎪⎭⎫ ⎝⎛-+m m ,当m =±2时,直线OA 或OB 的斜率不存在,等号取不到,所以△OAB 的面积的取值范围为⎪⎪⎭⎫ ⎝⎛260,.【课后巩固】1.已知点P 是圆O :x 2+y 2=1上任意一点,过点P 作PQ ⊥y 轴于点Q ,延长QP 到点M ,使QP →=PM →.(1)求点M 的轨迹E 的方程;(2)过点C (m,0)作圆O 的切线l ,交(1)中的曲线E 于A ,B 两点,求△AOB 面积的最大值.解 (1)设M (x ,y ),①QP →=PM →,①P 为QM 的中点,又有PQ ①y 轴,①P ⎪⎭⎫ ⎝⎛y x ,2, ①点P 是圆O :x 2+y 2=1上的点,①22⎪⎭⎫ ⎝⎛x +y 2=1, 即点M 的轨迹E 的方程为x 24+y 2=1. (2)由题意可知直线l 与y 轴不垂直,故可设l :x =ty +m ,t ①R ,A (x 1,y 1),B (x 2,y 2),①l 与圆O :x 2+y 2=1相切, ①|m |t 2+1=1,即m 2=t 2+1,① 由⎩⎪⎨⎪⎧x 2+4y 2=4,x =ty +m 消去x ,并整理得(t 2+4)y 2+2mty +m 2-4=0,其中Δ=4m 2t 2-4(t 2+4)(m 2-4)=48>0,①y 1+y 2=-2mt t 2+4,y 1y 2=m 2-4t 2+4.① ①|AB |=(x 1-x 2)2+(y 1-y 2)2=t 2+1(y 1+y 2)2-4y 1y 2,将①①代入上式得|AB |=t 2+1 4m 2t 2(t 2+4)2-4(m 2-4)t 2+4=43|m |m 2+3,|m |≥1, ①S ①AOB =12|AB |·1=12·43|m |m 2+3 =23|m |+3|m |≤2323=1, 当且仅当|m |=3|m |,即m =±3时,等号成立, ①①AOB 面积的最大值为1.2.已知椭圆C 的方程为x 24+y 22=1,A 是椭圆上的一点,且A 在第一象限内,过A 且斜率等于-1的直线与椭圆C 交于另一点B ,点A 关于原点的对称点为D .(1)证明:直线BD 的斜率为定值;(2)求△ABD 面积的最大值.【解】 (1)证明:设D (x 1,y 1),B (x 2,y 2),则A (-x 1,-y 1),直线BD 的斜率k =y 2-y 1x 2-x 1, 由⎩⎨⎧x 214+y 212=1,x 224+y 222=1,两式相减得y 2-y 1x 2-x 1=-12×x 1+x 2y 1+y 2, 因为k AB =y 1+y 2x 1+x 2=-1,所以k =y 2-y 1x 2-x 1=12,故直线BD 的斜率为定值12. (2)连接OB ,因为A ,D 关于原点对称,所以S △ABD =2S △OBD ,由(1)可知BD 的斜率k =12,设BD 的方程为y =12x +t , 因为D 在第三象限,所以-2<t <1且t ≠0,O 到BD 的距离d =|t |1+14=2|t |5, 由⎩⎨⎧y =12x +t ,x 24+y 22=1,整理得3x 2+4tx +4t 2-8=0, 所以x 1+x 2=-4t 3,x 1x 2=4(t 2-2)3, 所以S △ABD =2S △OBD =2×12×|BD |×d =52(x 1+x 2)2-4x 1x 2·2|t |5=|t|·(x1+x2)2-4x1x2=|t|·96-32t23=423·t2(3-t2)≤2 2.所以当且仅当t=-62时,S△ABD取得最大值2 2.3.如图,已知抛物线C 1:x 2=4y 与椭圆C 2:x 2a 2+y 2b 2=1(a >b >0)交于点A ,B ,且抛物线C 1在点A 处的切线l 1与椭圆C 2在点A 处的切线l 2互相垂直.(1)求椭圆C 2的离心率;(2)设l 1与C 2交于点P ,l 2与C 1交于点Q ,求△APQ 面积的最小值.解:(1)设点A (x 0,y 0),B (-x 0,y 0),其中x 0>0,y 0>0,则抛物线C 1在点A 处的切线方程为l 1:x 0x =2(y 0+y ),椭圆C 2在点A 处的切线方程为l 2:x 0x a 2+y 0y b2=1. 由题意可知,l 1⊥l 2,则有x 02·⎪⎪⎭⎫ ⎝⎛-0202y a x b =-1, 且x 20=4y 0,所以a 2=2b 2,从而椭圆C 2的离心率e =c a =1-b 2a 2=22. (2)由椭圆C 2的离心率为22,可设椭圆方程为x 22b 2+y 2b2=1, 设A (2t ,t 2),l 1:y =tx -t 2,联立⎩⎪⎨⎪⎧y =tx -t 2,x 2+2y 2=2b 2,得(1+2t 2)x 2-4t 3x +2t 4-2b 2=0, 所以|AP |=1+t 2·|x P -x A |=t 2+1t tt 22122++, 设l 2:y =-1tx +t 2+2,同理可得|AQ |=1+1t 2·|x Q -x A |=1+1t 2·t t t 242++, 所以S △APQ =12|AP ||AQ |=221⎪⎭⎫ ⎝⎛+t t ·4t +4t 31+2t 2=8(t 2+1)3(1+2t 2)t. 令f (t )=(t 2+1)3(1+2t 2)t ,t >0,则f ′(t )=(t 2+1)2(2t 2-1)(3t 2+1)(1+2t 2)2t 2.令f ′(t )=0,得t =22,所以函数f (t )在⎪⎪⎭⎫ ⎝⎛220,上单调递减, 在⎪⎪⎭⎫ ⎝⎛∞+,22上单调递增.所以f (t )≥f ⎪⎪⎭⎫ ⎝⎛22=2782, 所以S ①APQ ≥2722. 故①APQ 面积的最小值为2722. 4.已知抛物线E :y 2=2px (p >0)的焦点为F ,过点F 且倾斜角为π4的直线l 被E 截得的线段长为8. (1)求抛物线E 的方程;(2)已知点C 是抛物线上的动点,以C 为圆心的圆过点F ,且圆C 与直线x =-12相交于A ,B 两点,求|F A |·|FB |的取值范围.解析:(1)由题意,直线l 的方程为y =x -p 2. 联立⎩⎪⎨⎪⎧y =x -p 2,y 2=2px ,消去y 整理得x 2-3px +p 24=0. 设直线l 与抛物线E 的交点的横坐标分别为x 1,x 2,则x 1+x 2=3p ,故直线l 被抛物线E 截得的线段长为x 1+x 2+p =4p =8,得p =2,∴抛物线E 的方程为y 2=4x .(2)由(1)知,F (1,0),设C (x 0,y 0),则圆C 的方程是(x -x 0)2+(y -y 0)2=(x 0-1)2+y 20.令x =-12,得y 2-2y 0y +3x 0-34=0. 又∵y 20=4x 0,∴Δ=4y 20-12x 0+3=y 20+3>0恒成立.设A ⎪⎭⎫ ⎝⎛-3,21y ,B ⎪⎭⎫ ⎝⎛-4,21y ,则y 3+y 4=2y 0,y 3y 4=3x 0-34. ∴|F A |·|FB |= y 23+94· y 24+94= (y 3y 4)2+94(y 23+y 24)+8116= 1681433244943302020+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-x y x =9x 20+18x 0+9=3|x 0+1|.∵x 0≥0,∴|F A |·|FB |∈[3,+∞).5.设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过点B 作AC 的平行线交AD 于点E .(1)证明EB EA +为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹方程为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围。
专题10 圆锥曲线综合问题(2)直线l:y=kx-1与C1的左支有两个相异的公共点,求k的取值范围.(1)求椭圆C的标准方程;(2)设过定点T(0,2)的直线l与椭圆C交于不同的两点A,B,且∠AOB为锐角,求直线l的斜率k的取值范围.【答案】见解析所以椭圆C 的标准方程为x 24+y 23=1.(2)设直线l 的方程为y =kx +2,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +2,x 24+y23=1得(4k 2+3)x 2+16kx +4=0,因为Δ=16(12k 2-3)>0,所以k 2>14,则x 1+x 2=-16k 4k 2+3,x 1x 2=44k 2+3.因为∠AOB 为锐角,所以OA →·OB →>0,即x 1x 2+y 1y 2>0,所以x 1x 2+(kx 1+2)(kx 2+2)>0,所以(1+k 2)x 1x 2+2k (x 1+x 2)+4>0,即(1+k 2)·44k 2+3+2k ·-16k 4k 2+3+4>0,解得k 2<43.又k 2>14,所以14<k 2<43,解得-233<k <-12或12<k <233.所以直线l 的斜率k 的取值范围为⎝ ⎛⎭⎪⎫-233,-12∪⎝ ⎛⎭⎪⎫12,2333.在平面直角坐标系xOy 中,过点C (2,0)的直线与抛物线y 2=4x 相交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2).(1)求证:y 1y 2为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线方程和弦长;如果不存在,说明理由. 【答案】见解析【解析】(1)证明:设直线AB 的方程为my =x -2,由⎩⎪⎨⎪⎧my =x -2,y 2=4x 得y 2-4my -8=0,所以y 1y 2=-8.因此有y 1y 2=-8为定值.(2)设存在直线l :x =a 满足条件,则AC 的中点E ⎝⎛⎭⎪⎫x 1+22,y 12,|AC |=(x 1-2)2+y 21.点A 在抛物线上,所以y 21=4x 1,因此以AC 为直径的圆的半径r =12|AC |=12(x 1-2)2+y 21=12x 21+4,又点E 到直线x =a 的距离d =⎪⎪⎪⎪⎪⎪x 1+22-a .故直线l 被圆截得的弦长为2r 2-d 2=214(x 21+4)-⎝ ⎛⎭⎪⎫x 1+22-a 2=x 21+4-(x 1+2-2a )2=-4+(1-a )x 1+8a -4a 2.当1-a =0,即a =1时,弦长为定值2,这时直线方程为x =1.4.已知长轴长为4的椭圆x 2a 2+y 2b 2=1(a >b >0)过点P ⎝ ⎛⎭⎪⎫263,1,点F 是椭圆的右焦点.(1)求椭圆方程;(2)是否存在x 轴上的定点D ,使得过D 的直线l 交椭圆于A ,B 两点.设点E 为点B 关于x 轴的对称点,且A ,F ,E 三点共线?若存在,求出D 点坐标;若不存在,请说明理由.【答案】见解析(1)求椭圆C 的方程;(2)若不过点A 的动直线l 与椭圆C 相交于P ,Q 两点,且AP →·AQ →=0,求证:直线l 过定点,并求出该定点N 的坐标.【答案】见解析6kx =0,解得x =0或x =-6k 1+3k 2,因此P 的坐标为⎝ ⎛⎭⎪⎫-6k 1+3k 2,-6k 21+3k 2+1,即⎝ ⎛⎭⎪⎫-6k 1+3k 2,1-3k 21+3k 2.将上式中的k 换成-1k ,得Q ⎝ ⎛⎭⎪⎫6k k 2+3,k 2-3k 2+3.所以直线l 的方程为y =k 2-3k 2+3-1-3k 21+3k 26k k 2+3+6k 1+3k2·⎝ ⎛⎭⎪⎫x -6k k 2+3+k 2-3k 2+3,化简得直线l 的方程为y =k 2-14k x -12.因此直线l 过定点N ⎝⎛⎭⎪⎫0,-12. 6.(2019·湖南师大附中期中)已知椭圆C :y 2a 2+x 2b2=1(a >b >0)的短轴长为2,且椭圆C 的顶点在圆M :x2+⎝ ⎛⎭⎪⎫y -222=12上. (1)求椭圆C 的方程;(2)过椭圆的上焦点作相互垂直的弦AB ,CD ,求|AB |+|CD |的最小值. 【答案】见解析【解析】(1)由题意可知2b =2,b =1.又椭圆C 的顶点在圆M 上,则a =2,故椭圆C 的方程为y 22+x 2=1.(2)当直线AB 的斜率不存在或为零时,|AB |+|CD |=32;当直线AB 的斜率存在,且不为零时,设直线AB的方程为y =kx +1,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +1,y 22+x 2=1,消去y ,整理得(k 2+2)x 2+2kx -1=0,则x 1+x 2=-2k k 2+2,x 1x 2=-1k 2+2,故|AB |=1+k 2·(x 1+x 2)2-4x 1x 2=22(k 2+1)k 2+2.同理可得|CD |=22(k 2+1)2k 2+1,所以|AB |+|CD |=62(k 2+1)2(2k 2+1)(k 2+2).令t =k 2+1,则t >1,0<1t <1,所以|AB |+|CD |=62t2(2t -1)(t +1)=62⎝ ⎛⎭⎪⎫2-1t ⎝ ⎛⎭⎪⎫1+1t =62-⎝ ⎛⎭⎪⎫1t -122+94,当0<1t <1时,2<-⎝ ⎛⎭⎪⎫1t -122+94≤94,所以823≤|AB |+|CD |<32,综上可知,823≤|AB |+|CD |≤32,所以|AB |+|CD |的最小值8 23.。
解析几何【8】圆锥曲线的综合应用1、定值、最值、取值范围问题(1)在圆锥曲线中,还有一类曲线方程,对其变量取不同值时,曲线本身的性质不变;或形态发生某些变化,但其某些固有的共同性质始终保持着,这就是定值问题.(2)当变量取不同值时,相关几何量达到最大或最小,这就是最值问题.通常有两类:一类是有关长度和面积的最值问题;一类是圆锥曲线中有关的几何元素的最值问题,曲线遵循某种条件时,变量有相应的允许取值范围,即取值范围问题.求解时有两种方法:①代数法:引入新的变量,通过圆锥曲线的性质、韦达定理、方程思想等,用新的变量表示(计算)最值、范围问题,再用函数思想、不等式方法得到最值、范围.②几何法:若问题的条件和结论能明显地体现曲线几何特征,则利用图形性质来解决最值与取值范围问题.2、对称、存在性问题、圆锥曲线有关的证明问题涉及线段相等,角相等,直线平行、垂直的证明方法,及定点、定值问题的判断方法等.3、实际应用解决的关键是建立坐标系,合理选择曲线模型,然后转化为相应的数学问题,作出定量或定性分析与判断,解题的一般思想是【温馨点睛】1、圆锥曲线经常和函数、三角函数、平面向量、不等式等结合,还有解析思想的应用,这些问题有较高的能力要求,这是每年高考必考的一道解答题,平时加强训练,认真审题,挖掘题目的隐含条件作为解题的突破口.2、利用函数思想,讨论有关最值时,特别要注意圆锥曲线自身范围的限定条件.3、涉及弦长的问题时,在熟练地利用根与系数的关系,设而不求计算弦长;涉及垂直关系往往也是利用根与系数的关系设而不求简化运算;涉及过焦点的弦的问题,可考虑利用圆锥曲线的定义求解.4、圆锥曲线综合问题要四重视;①定义;②平面几何知识;③根与系数的关系;④曲线的几何特征与方程的代数特征.【例1】设1F 、2F 是椭圆22:12x C y 的左、右焦点,P 为椭圆C 上任意一点.(1)求12PF PF 的取值范围;(2)设过点1F 且不与坐标轴垂直的直线交椭圆C 于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.设点1F C 上任意一点,且12PF PF (1)(2)满足AD BD ,【例2】如图,已知抛物线2:4C x y ,过点 0,2M 任作一直线与C 相交于A 、B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴)与直线2y 相交于点1N ,与(1)中的定直线相交于点2N ,证明:2221MN MN 为定值,并求此定值.(1)(2)C 、D 两点(A 、【例3】已知抛物线2y x 上的动点 00,M x y ,过M 分别作两条直线交抛物线于P 、Q 两点,交直线x t 于A 、B 两点.(1)若点M ,求M 与焦点的距离;(2)若1t , 1,1P , 1,1Q ,求证:A B y y 为常数;(3)是否存在t ,使得1A B y y 且P Q y y 为常数?若存在,求t 的所有可能值;若不存在,请说明理由.x .(1)(2)(3)使得PM PN 为【例4】为了考察冰川的融化状况,一支科考队在某冰川上相距8km 的A 、B 两点各建一个考察基地.视冰川面为平面形,以过A 、B 两点的直线为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系(如图).在直线2x 的右侧,考察范围为到点B 的距离不超过5km 的区域;在直线2x 的左侧,考察范围为到A 、B两点的距离之和不超过km 的区域.(1)求考察区域边界曲线的方程;(2)如图,设线段12PP 、23P P 是冰川的部分边界线(不考虑其他边界),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动0.2km ,以后每年移动的距离为前一年的2倍,求冰川边界线移动到考察区域所需的最短时间.【同类变式】某市为改善市民出行,大力发展轨道交通建设,规划中的轨道交通s号线线路示意图如图,已知M、N是东西方向主干道边两个景点,P、Q是南北方向主干道边两个景点,四个景点距离城市中心O均为km,线路AB段上的任意一点到景点N的距离比到景点M的距离都多10km,线路BC段上的任意一点到O的距离都相等,线路CD段上的任意一点到景点Q的距离比到景点P的距离都多10km,以O为原点建立平面直角坐标系xOy.(1)求轨道交通s号线线路示意图所在曲线的方程;(2)规划中的线路AB段上需建一站点G到景点Q的距离最近,问如何设置站点G的位置?【真题自测】1.设A 、B 是椭圆22:13x y C m长轴的两个端点,若C 上存在点M 满足120AMB ,则m 的取值范围是().A 0,19, ;.B 9, ;.C 0,14, ;.D 4, .2.① ②P .A 13.②若 111,P x y 、 222,P x y 为曲线C 上任意两点,则有12120x x .下列判断正确的是().A ①和②均为真命题;.B ①和②均为假命题;.C ①为真命题,②为假命题;.D ①为假命题,②为真命题.4.设圆C 位于抛物线22y x 与直线3x 所围成的封闭区域(包含边界)内,则圆C 的半径能取到的最大值为.5.114c ,则c6.Q 使得AP AQ 07.如图,已知椭圆2221x y ,过原点的两条直线1l 和2l 分别与椭圆交于点A 、B 和C 、D ,记AOC 的面积为S .(1)设 11,A x y , 22,C x y ,用A 、C 的坐标表示点C 到直线1l 的距离,并证明122112S x y x y ;(2)设1:l y kx ,若,33C ,13S ,求k 的值.(3)设1l 与2l 的斜率之积为m ,求m 的值,使得无论1l 和2l 如何变动,面积S 保持不变.。
12021高考数学专题复习:椭圆1.定义:122.PF PF a +=()()()()()()12122222122222222212,,,0,,0220,021 1.00,2P x y F c F c a PF PF a a c x y y x a A a A A a x y a a c a b x y b B b B B b b a c -⇒=+⇒=>⎧=⇒=±⇒±⇒=⎧+=⎪⎪-⇒⇒+=⎨⎨=⇒=±⇒±⇒=⎪⎪⎩=-⎩令2.标准方程:()()2222222211x y F x a b y x F y ab ⎧+=⎪⎪⎪⎨⎪⎪+=⎪⎩在轴在轴 222222222222242222112x y cy y a c a b a b b a x c b b b y y MN a a a⎧+=-⎪⇒+=⇒=⎨⎪=⎩⇒=⇒=±⇒=3.长轴长:2a 短轴长:2b 焦距:2c 通径:22b MN a=4.勾股关系: 222a b c =+,1BF a5.离心率: ce a=取值范围: ()0,1 6.椭圆上点P 到焦点1F 的距离最大值为 a c + ,最小值为 a c -7.椭圆22221+=x y a b的左右焦点为,,21F F 过点1F 的弦,AB 则2ABF ∆的周长为 4a ,直线m x =与椭圆交于D C ,两点,当m 时CD F 1,∆的周长最大值为 4a21.定义:()()()121221222PF PF a PF PF a PF PF a ⎧-=⎪⇒-=⎨⎪-=⎩右支双曲线左支()()()()()()1212222212222222222212,,,0,,0220,021 1.0........0,2P x y F c F c a PF PF a a c x y y x a A a A A a x y a c a a b x y b B b B B b b c aφ-⇒=-⇒=<⎧=⇒=±⇒±⇒=⎧-=⎪⎪-⇒⇒-=⎨⎨=⇒=-⇒±⇒=⎪⎪⎩=-⎩令2.标准方程:()()2222222211x yF x a b y x F y a b⎧-=⎪⎪⎪⎨⎪⎪-=⎪⎩在轴在轴 222222222222242222112x y cy y c a a ba b b a x c b b b y y MN a a a⎧-=-⎪⇒-=⇒=⎨⎪=⎩⇒=⇒=±⇒=3.实轴长:2a 虚轴长:2b 焦距:2c 通径:22b a4.勾股关系: 222c b a =+,5.离心率: ce a=取值范围: ()1,+∞ 6.渐近线()()..b y x F x aa y x F yb ⎧=±⎪⎪⎨⎪=±⎪⎩在轴在轴 ()()22222222222222222222222211x y x y b x b y y x F x a b a b a a y x y x a x a y y x F y a b a b b b ⎧-=⇒=⇒=⇒=±⎪⎪⎨⎪-=⇒=⇒=⇒=±⎪⎩在轴在轴7.双曲线右支上点P 到左焦点1F 的距离最小值为,a c +P 到右焦点2F 的距离最小值为 c a - 双曲线上点P 到焦点距离最小值为3一.定义:.MF d =()2222,,,0,:2.22222p p p p p M x y F l x x x y x y px ⎛⎫⎛⎫⎛⎫⎛⎫=-⇒=--⇒-+=+⇒= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭二.抛物线px y 22=一点()A A y x A ,焦半径2p x d AF A +== 抛物线px y 22-=一点()A A y x A ,焦半径22p x p x AF A A +-=+= 三.过焦点的直线l 与抛物线px y 22=交于()()B B A A y x B y x A ,,,两点()00,,y x M 是AB 的中点,则: 焦半径2px d AF A +==,,2p x BF B +=焦点弦()p x p x x BF AF AB B A +=++=+=02过焦点的直线l 与抛物线px y 22-=交于()()B B A A y x B y x A ,,,两点()00,,y x M 是AB 的中点,则: 焦半径2px d AF A +==,,2p x BF B += 焦点弦()p x p x p x x BF AF AB B A +-=+=++=+=002241.椭圆的两个焦点为()(),0,1,0,1-椭圆的长轴长为4,则椭圆方程为 ( )A.2214x y += B.2214y x +=C.22134x y +=D.22143x y +=2.椭圆221925x y +=的长轴长是 ( ) A.5 B.6 C.10 D.503.椭圆2212516x y +=上有一点P 到左焦点的距离是4,则点P 到右焦点的距离是 ( ) A.3 B.4 C.5 D.64.已知椭圆的焦点为()()()0,3,1,0,1,0P-在椭圆上,则椭圆的方程为 ( )A.13422=+y xB.1422=+y x C.14322=+y x D.1422=+x y5.椭圆63222=+y x 的焦距是 ( )A.2B.()232- C.52D.()232+6.椭圆长轴长为,33该椭圆的方程为 ( ) A.221128x y += B.221128x y +=或221128y x += C.22132x y += D.22132x y +=或22132y x +=57.椭圆141622=+y x 上的两个焦点是,,21F F 弦AB 过焦点,1F 则2ABF ∆的周长为 ( ) A .8 B .16 C .24 D .328.21,F F 是椭圆191622=+y x 两焦点,过2F 的直线交椭圆于点B A ,,若5=AB ,则=+11BF AF ( ) A.9 B.10 C.11 D.16 9.椭圆的焦距等于2,则=m ( ) A.5或3B.8C.5D.1610.椭圆2214x y +=的左焦点为,F P 为椭圆上一点,其横坐标为,3则=PF ( ) A.12 B.32 C.52 D.7211.()()22223310x y x y +++-=表示的曲线的标准方程为12.椭圆06322=-+m y mx 的一个焦点为(),2,0则=m ( )A.2B.3C.5D.613.椭圆5522=+ky x 的一个焦点是(),1,0那么=k14.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为 ( )A.116922=+y x B.1162522=+y x C.1162522=+y x 或1251622=+y xD.以上都不对615.椭圆的焦点坐标为()(),0,1,0,121F F -过2F 垂直于长轴的直线交椭圆于Q P ,两点,且3=PQ ,求椭圆的方程16.椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于 ( ) A.22 B.2 C.21D.2317.已知中心在原点的椭圆C 的右焦点为(),0,1F 离心率等于21,则C 的方程是 ( ) A.14322=+y xB.13422=+y xC.12422=+y xD.13422=+y x18.焦点在x 轴的椭圆过,21,3,22,2⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-B A 则椭圆的离心率为 ( ) A.23 B.21C.26D.3319.若椭圆的两焦点为()(),0,2,0,2-且椭圆过点,23,25⎪⎭⎫⎝⎛-则椭圆方程是720.椭圆221x my +=的焦点在y 轴上,长轴长是短轴长的两倍,则=m ( )A.41B.21C.2D.421.椭圆121022=-+-m y m x 焦点在y 轴上,若焦距为4,则=m ( )A.4B.5C.8D.1422.21,F F 是椭圆125922=+y x 的焦点,直线AB 是过点(),4,0-若8=AB ,则=+B F A F 22 ( )A.12B.16C.4D.823.已知椭圆离心率为31,长轴长为12,则椭圆方程为24.已知椭圆焦点在x 轴上,短轴的一个端点与两个焦点组成一个正三角形,焦点到椭圆上点的最短 距离为3,这个椭圆方程为825.已知椭圆的离心率32=e ,短轴顶点坐标为()54,0±,椭圆的方程26.已知椭圆C: ()222210x y a b a b+=>>的左顶点和下顶点分别为,,A B AB =过椭圆焦点且与长轴垂直的弦的长为2求椭圆C 的方程27.已知椭圆2222:1x y C a b+=过点()2,1A --,且2a b =.求椭圆C 的方程28.圆()()(),.164:22+∈=-+-N m m y x C 直线43160x y --=过椭圆()0,1:2222>>=+b a by a x E的右焦点,交圆C 所得弦长为()32,3,15A 在椭圆E 上.=m ,椭圆E 方程9()()()()()()()()()()()222221122221242,13.2255210.35410.41,2.511.32612.74416.84416,511.91,4/4.110.2115,3162a a c b D a a a C a PF D c b a C x y c A a c b D a l a B a l a AB AF BF C c a b A P D x y a c =⇒==⇒=⇒=⇒=⇒=⇒=⇒+=⇒==⇒=⇒+=⇒=⇒==⇒=⇒=⇒==⇒=⇒===⇒+=⇒===⇒⎫⇒⎪⎭==⇒+()()()()()()()()2222222222222 1.51212645.6255131115294141.539221315323202143116::.1171,2.212181x y m m C my x k k k a b b a b C a c a b b a x y a a a b aa c abc A c e a b D m mx ny =+=⇒=+⇒=⇒+=⇒=+⇒=+==⎧⎧⇒-=⇒⇒⎨⎨==⇒-=⎩⎩⎧-=⎪⇒=⇒--=⇒=⇒=+=⎨⎪=⎩=⇒==⇒=⇒=++=⇒()()()()()()()()2222122222222222112141421314192110612014.112124108.22420812:113632236,2323:3632n m x y e n m n x y a PF PF A C x y A mmm m m C F A F B AB a F A F B Ax y x a e c b y x y ⎧=⎧⎪=⎪⎪⇒⇒+=⇒=⎨⎨⎪⎪=+=⎩⎪⎩=+===+=+=⇒=⇒-=+-⇒=⇒++=⇒+=-=⇒+===⇒=⇒=⇒+=1⎧⎪⎪⎨⎪⎪⎩10()()()()()()2222222222222222122::2:243 1.1292::232512 1.144802026 1.16412712148242823,12a b c a x y b a c c e a b c x y a b a b x y bax y x y b b b c a a AF AF A E b ⎧⎧==⎪⎪⇒=⇒+=⎨⎨-==⎪⎪⎩⎩⎧=⇒=⎪⇒=⇒+=⎨⎪=⎩⎧+=⎪⇒+=⎨=⎪⎩+=⇒=⇒+=⎧=⎧=⎪⇒=+=⇒⎨⎨∈=⎪⎩224: 1.1618251631612455r x y E l m d m =⎧⎪⎪⇒+=⇒⎨=⎪⎪⎩⎩--===⇒=2021高考数学专题复习:双曲线(2)1.双曲线22145x y -=的离心率为 ( ) A.23 B.43 C.32D.22.以双曲线2213x y -=的一个焦点为圆心,离心率为半径的圆的方程可以是 ( ) A.()2224x y -+= B.()2222x y +-= C.()2222x y -+= D.()2224x y +-=3.双曲线221412x y -=的离心率等于 ;渐近线方程为 .4.双曲线2291x y -=-的渐近线方程为 .5.双曲线方程为2221x y -=,则它的右焦点坐标为 ( )A.,02⎛⎫ ⎪ ⎪⎝⎭B.⎫⎪⎪⎝⎭C.⎫⎪⎪⎝⎭D.)6.双曲线8222=-y x 的实轴长是 ( ) A.2 B.22 C.4 D.247.已知双曲线15222=-y ax 的右焦点为()0,3,则该双曲线的离心率等于 ( )A.14 B.4 C.32 D.438.双曲线122=-x my 与椭圆2215y x +=有相同的焦点,则该双曲线的渐近线方程为 ( )A.y =B.3y x =±C.13y x =± D.3y x =±9.双曲线12222=-bx a y 的两条渐近线互相垂直,则离心率=e ( )A.2B.3C.2D.2310.与双曲线2214y x -=有共同的渐近线,且过点()2,2的双曲线方程为 ( )A.221312x y -= B.18222=-x y C.18222=-y x D.221312y x -=11.双曲线122=+y mx 的虚轴长是实轴长的2倍,则=m ( )A.41- B.4- C.4 D.4112.以15422=-y x 的焦点为顶点,顶点为焦点的椭圆的方程为13.双曲线116922=-y x 上的点M 到点()0,5-的距离为,7则M 到点()0,5的距离为 ( ) A.1或13 B.15 C.13 D.114.双曲线122=-my x 的一个焦点坐标为(),0,5-则双曲线的渐近线方程为 ( )A. x y 41±=B. xy 21±=C. x y 2±=D. x y 4±=15.双曲线1322=-y m x 的离心率为,2则=m .16.经过点()62,62-M 且与双曲线22134y x -=有共同渐近线的双曲线方程为 ( ) A.22186y x -= B.22168x y -=C.22186x y -=D.22168y x -=17.已知双道曲线()0,0.1:2222>>=-b a by a x C 的离心率为2,则双曲线C 的渐近线方程为 ( )A .y x =±B .y x =C .y =D .y x =18.焦点在y 轴上的双曲线的离心率为,3则它的渐近线方程为 ( )A.2y x =±B.2y x =± C.x y 2±= D.x y 22±=19.已知中心在原点,焦点在x 轴上的双曲线的离心率为3,2实轴长为4,则双曲线的方程为 .20.已知双曲线1822=-y m x 的离心率为,3则实数=m .21.以椭圆192522=+y x 的焦点为焦点,离心率2=e 的双曲线方程是 ( )A.112622=-y x B.114622=-y x C.114422=-y x D.112422=-y x22.双曲线122=-y mx 的焦点到它的渐近线的距离为23.设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为 ( )A .22144x y -= B .2214y x -= C .2214x y -= D .221x y -=24.双曲线过点()(),6,3,3,2B A -则该双曲线的方程为25.设P 是双曲线19222=-y ax 上一点,该双曲线的一条渐近线方程是043=+y x 21,,F F 分别是 双曲线的左、右焦点,若101=PF ,则=2PF( )A.2B.18C.2或18D.1626.已知双曲线焦点在x 20y -+=平行,若点()3,2在双曲线上,求 双曲线的标准方程27.已知双曲线13222=-by x 的右焦点到一条渐近线的距离为1,则该双曲线的离心率为 ( ) A.2 B.3 C.332 D. 22328.双曲线()0,0,12222>>=-b a b y a x 和椭圆191622=+y x 有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,求双曲线的方程29.若双曲线112422=-y x 上的一点P 到它的右焦点的距离为,8则点P 到它的左焦点的距离是 ( ) A .4B .12C .4或12D .630.中心在原点,焦点在x 轴上的双曲线的一条渐近线与直线112yx =+平行,则它的离心率为( )31.与椭圆1121622=+x y 共焦点且过点()3,1的双曲线的标准方程为32.F 为双曲线22:1916x y C -=的左焦点,,P Q 为C 上的点,若PQ 的长等于虚轴长,点()5,0A 在线段PQ 上,则PQF ∆的周长为33.已知双曲线22:13x C y -=的左,右焦点分别为,,21F F 过点2F 的直线与双曲线C 的右支相交于 Q P ,两点,且点P 的横坐标为,2则Q PF 1∆的周长为 ( )A .3B .C .3D .34.0241022=+-+x y x 的圆心是()0.19222>=-a y ax 的一个焦点,此双曲线渐近线方程为 ( ) A.x y 34±= B.x y 43±= C.x y 53±= D.x y 54±=35.双曲线223x y m m -1=的一个焦点是()2,0,椭圆221y x n m-=的焦距等于,4则=n36.与双曲线12422=-y x 共焦点,且过点()2,3的椭圆方程37.双曲线与椭圆1641622=+y x 有相同的焦点,它的一条渐近线为,x y -=双曲线方程38.与椭圆1422=+y x 共焦点且过点()1,2Q 的双曲线方程39.已知12,F F 为双曲线22:1916x y C -=的左右焦点,点P 在C 的渐近线上12,0,PF PF P ⋅<横坐标取值 范围40.已知椭圆()()102222=++++-y c x y c x 的短轴长为2,b 那么直线:30l bx cy ++=截圆122=+y x 所得的弦长为41.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐进线上,O 为坐标原点,若=PO PF ,则△PFO的面积为42青花瓷是中华陶瓷烧制工艺的珍品,也是中国瓷器的主流品种之一.如图,是一青花瓷花瓶,其外形上下对称,可看成是双曲线的一部分绕其虚轴旋转所形成的曲面.若该花瓶的瓶口直径为瓶身最小直径的2倍,花瓶恰好能放入与其等高的正方体包装箱内,则双曲线的离心率为 ( ) A .3B .62C .213D .7243.(多选)12,F F 为双曲线()2222:1,,0x y C a b a b-=>的左右焦点,点P 在C 上,若渐进线方程为30,x y ±=焦距为42,下列说法正确的是 A.实轴长2 B.离心率2C.双曲线焦点到渐近线距离6D.存在点P ,使得21F P =44.(单选)双曲线221:14x C y -=,双曲线22222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F 、2F ,M 是双曲线2C 的一条渐近线上的点,且2OM MF ⊥,O 为坐标原点,若216OMF S =△,且双曲线12,C C 的离心率相同,则双曲线2C 的实轴长是 ( ) A .32 B .16 C .8 D .4()()()()()()()()()()()()()()()()()()()()()()()()222222222222212.32,.43.351.11226 1.9579542.841.319.10.11.12.13.14.151.16.17.18.19 1.45204.2122123.49112413613C D e y y x x y c e C x y a a C y x c A C A A C C C D C D x y D D m n m mx ny x m n n ===±-=⇒=⇒=⇒+==-=⇒=⇒=⇒-=⇒-=+==⎧⎧+=⇒⇒⇒⎨⎨+==-⎩⎩()()()()()()2222221 2.325.26 1.327.2814329.130::2:1:2y e C y x C x y C b a b c e D a -=⇒=-=-==⇒==⇒()()()()()()()()()2222222222231310,211344421442232216,42121628.233242345,04.353411,253236166Py x y x F t t t t t t t t t t m b l a m b x c PQ x PQ l a PQ A a F a B y m m m x c n nx y c t t t t ±⇒-=⇒-=⇒+-=-+⇒=⇒=⇒-=--===+=+===⇒⊥⇒==⇒=+=⇒⇒=⇒-+=⇒=-⇒+==⇒==⇒+=⇒+=++()()()()()()()())222222222221213122612031.93::1:1:37 1.2424483812 1.323953,43,3.338405.5541,:t t t t t t t x y a b a b c y x a b c c x y x F t y t t PF PF OP c P a d l a PO PFF l ⇒++=+⇒+-=⇒=⇒+=⎧=⇒=⎪==-=⎨=⇒=⎪⎩⇒-=⇒=⇒-=-⊥⇒==⇒⇒-=⇒===⇒===()()()()()222222222122224214424143::22,20::1:243.2.2181632442:2:12P S y x x y a a b a b c e a bb P a a y a bc BC a b e PF c a c c a S ab ab b a b a b⎧⎛⎪⇒⇒== ⎨ =⎝⎭⎪⎩⎧-=⎪⇒-=⇒=⇒=⇒=⎨⎪⎩±=⇒=⇒===≥-==⇒=⎪⎩⎧===⇒=⎪⇒⎨⎪=⇒=⎩.4B ⎧⇒⎨=⎩2021高考数学专题复习:抛物线(3)1.抛物线24y x =的准线方程是 ( ) A.1y = B.1y =- C.116y = D.116y =-2.已知抛物线22y px =的准线方程是2,x =-则=p ( ) A.2 B.4 C.2- D.4-3.抛物线x y 122=上与焦点的距离等于6的点横坐标是 ( )A.1B.2C.3D.44.已知抛物线x y 42=的焦点,F 该抛物线上的一点A 到y 轴的距离为3,则=AF( )A.4B.5C.6D.75.过抛物线24y x =的焦点F 的直线交该抛物线于点,A 若3,AF =则点A 的坐标为 ( )A.()22,2B.()22,2-C.()22,2± D.()2,1±6.抛物线x y 412=上的一点M 到焦点的距离为1,则点M 到y 轴的距离是 ( ) A .1716 B.78 C.1 D .15167.O 为坐标原点,直线x =2与抛物线()2:2,0C y px p =>交于D ,E 两点,若,OD OE ⊥则C 的焦点坐标为8.抛物线x y 82-=的准线与双曲线12822=-y x 的两条渐近线所围成的三角形的面积为 ( ) A.8 B.6 C.4 D.29.已知点P 在抛物线y x 42=上,且点P 到x 轴的距离与点P 到此抛物线的焦点的距离之比为1:3, 则点P 到x 轴的距离是 ( ) A.41 B.12 C.1 D.210.若抛物线212y x m=的焦点与椭圆12622=+y x 的右焦点重合,则m =11.点P 是抛物线x y 42=上一点P ,到该抛物线焦点的距离为4,则点P 的横坐标为 ( ) A .2 B. 3 C. 4 D.512.抛物线x y 42=上一点P 到焦点F 的距离为10,则P 的坐标为 ( ) A.()9,6± B.()6,9 C.()6,9± D.()9,613.双曲线122=-my x 与抛物线x y 82=的一个交点为F P ,为抛物线的焦点,若,5=PF 则 双曲线的渐近线方程为 ( ) A.02=±y x B.02=±y x C.03=±y x D.03=±y x14.过抛物线24y x =的焦点作直线交抛物线于()()2211,,,y x B y x A 两点,若==+AB x x ,821( )A.10B.8C.6D.415.过抛物线24y x =的焦点作直线l 交抛物线与B A ,两点,若中点的横坐标为3,则=AB ( ) A.10 B.8 C.6 D.416.过24y x =的焦点直线l 交抛物线于()()2211,,,y x Q y x P 两点,如果,621=+x x 则=PQ17.()0.22>=p px y 上一点M 到准线和抛物线的对称轴的距离分别为10和6,该点横坐标为 ( )A.10或 1B.9或 1C.10或2D.9或218.已知双曲线()0,0.12222>>=-b a by a x 的一个焦点与抛物线x y 42=的焦点重合,且双曲线的离心率等于5,则该双曲线的方程为19.抛物线y x 22=上有一点,P 它到()3,1A 的距离与到焦点的距离之和最小,则点P 的坐标是( )A.()1,2-B.11,2⎛⎫⎪⎝⎭C.()1,2D.()2,1-20.双曲线2221x y a-=()0>a 的一个焦点与抛物线218x y =的焦点重合,则此双曲线的离心率为( )A .332 B .3 C .233 D .43321.已知点P 是抛物线28y x =-上一点,设P 到此抛物线准线的距离是1d ,到直线100x y +-= 的距离是,2d 则12d d +的最小值是 ( ) A.3B.23C.62D.322. 点()2,1A -x y 4,2-=的焦点是P F ,是24y x =-上的动点,为使PA PF +取得最小值,则P 点坐标为 ( ) A.⎪⎭⎫ ⎝⎛-1,41 B.()22,2- C.⎪⎭⎫⎝⎛--1,41 D.()22,2--23.双曲线22214x y b-=右焦点与抛物线x y 122=焦点重合,双曲线的焦点到其渐近线距离等于 ( )A.5B.24C.3D.524.440kx y k --=与x y =2交B A ,两点,若,4=AB 弦AB 的中点到直线102x +=的距离 ( ) A .74 B.2 C .94D.425.抛物线焦点在x 轴,经过点()O y M ,,20为坐标原点,若点M 到该抛物线焦点的距离为3,则=OM ( )A ...4 D .26.24x y =焦点为,F 上有两点()()1122,,,A x y B x y 满足2AF BF -=,则221122y x y x +--=( )A.4 B .6 C.8 D .1027.双曲线()2222 1.0,0-=>>x y a b a b与抛物线28y x =有一个共同焦点F ,两曲线的一个交点为P ,若5,=PF 则点F 到双曲线的渐进线的距离为 ( )B.2D.328.抛物线mx y =2的焦点为,F 点()22,2P 在此抛物线上M ,为线段PF 的中点,则点M 到该抛物线准线的距离为 ( ) A.1 B.23 C.2 D. 2529.()0,22>=p px y 焦点为()()()333222111,,,,,,y x P y x P y x P F 在抛物线上,2132x x x =+,则有( )A.123FP FP FP +=B.222123FP FP FP +=C.2132FP FP FP =+D.3122FP FP FP ⋅=30.双曲线22221x y a b-=()0,0a b >>的一条渐近线方程是,3x y =它的一个焦点在抛物线x y 682=的准线上,求双曲线的方程31.抛物线x y 42=的焦点为F ,准线为l ,点P 为抛物线上一点,且在第一象限,l PA ⊥,垂足为A ,4PF =, 则直线AF 的倾斜角等于 ( ) A .712π B .23π C .34π D .56π32.等轴双曲线C 的焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,34,=AB 则C 的 方程为33.双曲线C 的焦点在x 轴上,离心率为,25C 与抛物线x y 82=的准线交于,A B 两点,2,=AB 则C 的 方程为34.某桥的桥洞呈抛物线形,桥下水面宽16米,当水面上涨2米后达到警戒水位,水面宽变12米,此时 桥洞顶部距水面高度约为 米35.已知抛物线2:12C y x =的焦点为,F A 为C 上一点且在第一象限,以F 为圆心,FA 为半径的圆交C 的准线于,B D 两点,且,,A F B 三点共线,则FA =( )A .16B .10C .12D .836.设抛物线的顶点为O ,焦点为F ,准线为l ,P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线 ( )A. 经过点OB.经过点PC.平行于直线OPD.垂直于直线OP37.F 为24y x =的焦点,C B A ,,为该抛物线上三点,若0=++FC FB FA ,FA FB FC ++=( ) A .9 B .6 C .4 D .338.(2020青岛模拟15)已知直线():1l y k x =-与抛物线()2:2,0C y px p =>在第一象限交点为,A l 过C 的焦点,3,F AF =则抛物线的准线方程为 ,k =39.圆058:22=-+++ay x y x C 经过抛物线:E y x 42=焦点E ,的准线与圆C 相交所得弦长为40.已知点P 是抛物线22y x =上的一个动点,则点P 到点()2,0A 的距离与P 到该抛物线准线的距离d 之 和的最小值为 ( )A B .3 CD .9241.抛物线()0.2:2>=p px y C 的准线为l ,过()0,1M l 相交于点A ,与C 的一个 交点为B ,若,=则p = .()()()()()()()()()()()()()()(()()()()()()()()()201.2.3.4.5.6.172,22,0.28.9.110.1611.12.133,3.148210.152********181,61710,6362101820.2229,6118D B C A C D D y x D B B C P m y D AB A AB x p B PQ p M p p M p p p B p M c ⎛⎫⇒=⇒ ⎪⎝⎭⇒=⇒=⇒=+=⇒=+=+=⇒=+==⇒±⎧⎪⎛⎫⎛⎫-±⇒=-⇒--=⇒⇒⎨⎪ ⎪=⇒±⎝⎭⎝⎭⎪⎩=()()()()22255 1.4::1:2:1191.22082.212,0,y a b x a b c x y B y x c a C F d C⎧⎪==⇒-=⎨=⎪⎩=⇒=⇒=⇒=⇒=-==⇒()()()()(()()()()0022212121212121221.4233,2.1792442.2442532242,.2261122,4448.y x A c a b d A x x d C pp y x M OM A y y y y x x y y y y D =⇒=-⇒==⇒=⇒=⇒=+⇒=⇒=⇒=+⇒=⇒=⇒±⇒=⇒+-+=⇒-=⇒-=-=-=⇒31()(()()()()()()((1221313222213213222273,,2,0221.352841,0.22292222230 1.618::2313,1,AF P F a PF PF a b A y x F M d D FP FP x x pp FP x FP x p FP FP FP Cx x x c x y a b a b c P A k ±⇒=-=⇒=⇒=⎛=⇒⇒⇒=⇒⎝+=++⎧⎪⎪=+⇒=+⇒+=⇒⎨⎪+=⎪⎩⎧=⎪⇒==-=⎨=⎪⎩⇒-⇒=()(()()()()()()()2222222.1612321,4,1422411331,2,11141222228,64181834,14146,.776,2362359,9312.36B x y A t a a t t tx y x y A t t m am x ay a x y d y m am AF FB A y AF PQ ⇒--=-⇒=⇒=⇒=⇒=⎛-=-⇒-=⇒=⇒-= ⎝⎭⇒=⎧⎪⎛⎫=⇒=-⇒=-⇒⇒-⇒==⎨⎪+⇒=+⎝⎭⎪⎩=⇒⇒=+==()()()()()()()(()()()()()()()123123123222min.371110336.381,0:4, 1.32,54225390,1421:140.241,2PF B x x x x x x FA FB FC x x x B F C y xx AFA k r x yF a AB l d l y PA d PA PF PA PFAF A p A ⇒⇒-+-+-=⇒++=⇒++=+++=⇒⇒==-=⇒⇒=⎧=⎧+++=⎪⇒=⇒⇒⇒==⎨⎨==-⎩⎪⎩+=+⇒+==⇒-())22222222,1,0,1241202B A p p p x B y M AM MB y x y pxp p p ⎧⎛⎫⎧⎫=+++⎪⎪⎛⎫⎪ ⎪=⇒⇒⇒⎭⎝⎭⎨⎨⎪⎝⎭⎪⎪=-=⎩⎩+-=⇒=322021高考数学专题复习:面积方程问题1.点P在椭圆1222=+yx上21,,FF两焦点012,90,F PF∠=则21PFF∆的面积是2.21,FF为双曲线141622=-yx两焦点,双曲线上点P满足021120=∠PFF,21PFF∆的面积为( )A.334B.25C.2D.53.21,FF为椭圆22214x yb+=两个焦点,,221=FF点P在双曲线上且,90021=∠PFF21PFF∆的面积是4.P为椭圆13422=+yx上的一点,21,FF为该椭圆的两个焦点,若,60021=∠PFF则21PFF∆的面积等于 ( )A.3B.3C.32 D.25.椭圆C两焦点()()0,4,0,421FF-P,在C上,若21FPF∆面积的最大值为C,12方程为336.已知21,F F 为双曲线1:22=-y x C 左右焦点,点P 在C 上,=⋅=∠21021,60PF PF PF F ( )A .2 B.4 C.6 D.87.21,F F 是14922=+y x 的两焦点,P 是椭圆上的点,且,1:2:21=PF PF 21F PF ∆面积为 ( ) A.4 B.6 C.22 D.248.2218y x -=两个焦点为12,F F P ,是双曲线上的一点,,4:3:21=PF PF 则=∆21F PF S ( ) A.310 B.38 C.58 D.5169.设21,F F 是椭圆1422=+y x 的两个焦点,点P 在椭圆上,0,21=⋅PF PF=3410.1422=+y x 焦点为21,F F ,P 为其上的动点,当021120=∠PF F 时,=∆21PF F S . 当21PF F ∠为钝角时,点P 横坐标取值范围11.椭圆22221x y a b+=两焦点为()(),0,1,0,1-满足P b a ,4322=在椭圆上,1,21=-PF PF 椭圆方程 =∠21cos PF F12.已知点P 是椭圆22184x y +=上一点,21,F F 分别为左右焦点,若12PF F ∆的面积为,312cos F PF ∠=3513.双曲线15422=-y x 与椭圆1162522=+y x 交于点,P 左右焦点分别为12,,F F=14.已知()(),0,5,0,5BA -动点C 到B A ,两点的距离之和为6,设P 为C 上一点,0,=⋅=15.设双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1,F 2P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =16.21,F F 是椭圆12222=+by a x 的左右焦点,()4,3P 是椭圆上一点,,21PF PF ⊥椭圆方程36()()()()()()()()()000022220121211tan 45142.tan 6033tan 45 3.43tan 30.1512835 1.22592414286cos 604.222274,2,4.6:3:486,2S S A S S B x y b b a m n mn c mn mn B mn mnm nm n F F PF PF S A m n m n m n m =⋅===⇒=⋅==⋅=⇒=⋅⋅⇒=⇒=⇒+=-+-+-=⇒=⇒=⇒=⎧⇒===⊥⇒=⇒⎨+=⎩=⎧⇒=⎨-=⎩()()()122200221221121218,68.249 2.121101tan 6012.22::211 1.431534,2212A A A n F F S C m n mn m n S S c y y x x a x y a b c c b PF PF PF PF PF PF F F c ==⇒=⋅⋅=⇒+=⎧⇒=⎨+=⎩⎛=⋅===⋅⋅⇒=⇒=⇒∈ ⎝⎭=⎧⎧=⎪⎪⇒⇒+=⎨⎨==⎪⎪⎩⎩⎧⇒+===⎪⇒⎨-=⎪⎩==()()()()2222121122122222203cos .252347124tan3tancos cos 2cos 1.2242522510134100168421.4146321208.94tan 454215::1:PF PF F F F PF PF PF m n mn mn m n x y m n a b m n mn S b b e a b c θθθθθ⎧+-⎪⇒∠==⎨⋅⎪⎩⋅=⇒=⇒=⇒=-=+=⎧⇒=-=⇒=⎨-=⎩+=⇒=⇒=⇒+=⇒+=⇒===⇒===()222221219161624415 1.2444520a x y S cb bc c c c c ⎧⎪⇒=⎨⎪⎩=⋅=⇒=⇒+=⇒=⇒+=+372021高考数学专题复习:离心率1.若椭圆的短轴为AB ,它的一个焦点为1F ,则满足1ABF ∆为等边三角形的椭圆的离心率是( )A.41B.21C.22D.232.椭圆的一个顶点与两个焦点构成等边三角形,则该椭圆的离心率为 ( ) A.51 B.43 C.33 D.213.直线:220l x y -+=与坐标轴的交点分别是一个椭圆的焦点和顶点,椭圆的离心率为 ( )A.5B.5C.5或5 D.254.椭圆()5.15222>=+a y ax 的的左焦点为,F 直线x m =与椭圆相交于点,,B A FAB ∆的周长的最大值 是12,则该椭圆的离心率=e38 5.已知点12,F F分别是椭圆()2222:1,0x yC a ba b+=>>的左右焦点,O为坐标原点,点P在椭圆上,且满足12212,3,F F OP tan PF F=∠=则C的离心率为6.已知P是以21,FF为焦点的双曲线()0,,12222>=-babyax上一点,若21tan,2121=∠⊥FPFPFPF,则双曲线的离心率为7.设21,FF分别是双曲线()0,0,12222>>=-babyax的左右焦点,若双曲线右支上存在一点P,使()OPFOFOP,022=⋅+为坐标原点,=则该双曲线的离心率为()1B.12++2+8.设双曲线()0,0.1:2222>>=-babyaxC的左右焦点分别为21,FF P,是C上的点,,212FFPF⊥,45021=∠FPF则C的离心率为399.已知21,F F 是双曲线22221-=x y a b的左右焦点,点P 是以21,F F 为直径的圆与双曲线的一个交点,且12215,PF F PF F ∠=∠则双曲线离心率为10.已知双曲线()0,0.1:2222>>=-b a by a x C 的一条渐近线截圆()11:22=+-y x M,则该双曲线的离心率为 ( ) A.43B.3C.35311.已知21,F F 是双曲线()0,0.1:2222>>=-b a by a x C 的左、右焦点,过1F 的直线与C 的左支交于B A ,两点.若5:4:3::22=AF BF AB ,则双曲线的离心率为.12.已知抛物线x y 82=的准线与双曲线1:222=-y ax C 相切,则双曲线C 的离心率为 ( )A.25B.23C.552D.33240 13.设点P是双曲线(abyax12222=-)0,0>>b与圆2222bayx+=+在第一象限的交点,其中21,FF分别是双曲线的左右焦点,且212PFPF=,则该双曲线的离心率为14.21,FF是双曲线22221x ya b-=的左右两个焦点,过点1F作垂直于x轴的直线与双曲线的两条渐近线分别交于BA,两点2,ABF∆是直角三角形,则该双曲线的离心率为15.已知21,FF是双曲线22221x ya b-=的左右两个焦点,过点1F作垂直于x轴的直线与双曲线分别交于BA,两点2,ABF∆是直角三角形,则该双曲线的离心率是16.过双曲线()0,0.12222>>=-b a b y a x 的右焦点F 作垂直于x 轴的直线,交双曲线的渐近线于,A B 两点, 若OAB ∆(O 为坐标原点)是等边三角形,则双曲线的离心率为 ( )D.217.21,F F 是双曲线12222=-b y a x 左右焦点,过2F 作与x 轴垂直的弦,PQ 且==∠e Q PF ,6001 ( ) A.3 B.2 C.2 D.2618.过双曲线()0,0.12222>>=-b a b y a x 的一个焦点F 作一条渐近线的垂线,若垂足恰在线段OF的垂直平分线上,则双曲线的离心率为 ( )A .2BC .3D .219.椭圆22221x y a b +=的左、右顶点分别是B A ,,左右焦点分别是21,F F 若B F F F AF 1211,,成等比数列,则此椭圆的离心率为20.椭圆2222+=1x y a b的左右焦点分别是,,21F F 过2F 作倾斜角为0120的直线与椭圆的一个交点为,M 若1MF 垂直于x 轴,则椭圆的离心率为21.双曲线()0,0.12222>>=-b a by a x 的渐近线与抛物线21y x =+相切,该双曲线的离心率为 ( )B.2C.5D.622.双曲线()0,0,12222>>=-b a b y a x 焦距为1161,1022+=x y 与其渐近线相切,双曲线方程为( ) A.22182x y -= B.22128x y -= C.2214x y -= D.2214y x -=23.点P 在椭圆12222=+by a x 上21,,F F 是椭圆的两个焦点,90,021=∠PF F 且21PF F ∆的三条边长成等差数列, 则此椭圆的离心率是24.已知双曲线一个焦点为(),0,51-F 点P 在双曲线上,且线段1PF 的中点坐标为()2,0,则此双曲线 的离心率是 .25.双曲线的中心为原点O ,实轴在x 轴上,虚轴顶点为A ,左右焦点分别为,,21F F 线段12,OF OF 的中点 分别为12,B B ,且21B AB ∆是直角三角形,该双曲线的离心率为26.设12,F F 是双曲线1:2222=-b y a x C 的两个焦点.若在C 上存在一点,P 使,30,02121=∠⊥F PF PF PF则C 的离心率为 .27.椭圆22221+=x y a b 上一点与其中心及长轴的一个端点构成等腰直角三角形,则此椭圆的离心率为28.点A 是抛物线()0,2:21>=p px y C 与双曲线:2C 22221x y a b -=的一条渐近线的交点,若点A 到 抛物线1C 的准线的距离为,p 则双曲线2C 的离心率等于 ( ) A.2 B.3 C.5 D.629.设双曲线的一个焦点为,F 虚轴的一个端点为,B 如果直线FB 与该双曲线的一条渐进线垂直,那么此 双曲线的离心率为 ( )30.椭圆的两个焦点和短轴两顶点是一个含060角的菱形的四个顶点,则椭圆离心率为31.若双曲线()0,0,12222>>=-b a by a x 离心率[],2,2∈e 则两条渐近线夹角θ的取值范围是32.12,F F 是双曲线()22221,0,0-=>>x y a b a b 的两个焦点,过2F 作x 轴的垂线交双曲线于,A B 两点,若1,3AF B π∠<则双曲线离心率取值范围为33.已知双曲线()22221,0,0-=>>x y a b a b 的左顶点为,A 右焦点为(),0,c F 直线c x =与双曲线C 在第一象限的交点为,P 过F 的直线l 与双曲线C 过二、四象限的渐近线平行,且与直线AP 交于点,B 若ABF ∆与PBF ∆的面积的比值为2,则双曲线C 的离心率为34.已知1,F 2F 是双曲线()2222:1,0,0x y C a b a b-=>>的左右焦点,若直线2y x =与双曲线C 交于,P Q 两点,且四边形12PF QF 是矩形,则双曲线的离心率为 ( )A .525-B .525+C .5+25D .525-35.若双曲线()0,0,12222>>=-b a by a x 的左右焦点分别为,,21F F 线段21F F 被抛物线22y bx =的焦点 分成5:7的两段,则此双曲线的离心率为36.已知抛物线()0,22>=p px y 与双曲线12222=-b y a x 有相同的焦点,F 点A 是两曲线的交点, 且x AF ⊥轴,则双曲线的离心率为 ( )51+2131+ D.221237.双曲线()0,0,12222>>=-b a b y a x 左右焦点分别为A F F ,,21是双曲线上一点122,,⊥F F AF 若直线1AF 与圆22229++=a b x y 相切,切点为,M 则双曲线离心率为38.椭圆22221+=x y a b 的左焦点1,F 该椭圆上一点A 满足1OAF ∆是等边三角形,则椭圆离心率为39.双曲线()22221,,0x y a b a b -=>的左、右焦点分别为为12,,F F 过2F 作倾斜角为60︒的直线与y 轴和双曲 线的左支分别交于点,,A B 若()21,2OA OB OF =+则该双曲线的离心率为40.已知双曲线()22221,,0x y a b a b-=>的左右焦点分别为12,,F F 圆222x y b +=与双曲线在第一象限内的交点为,M 若123,MF MF =则该双曲线的离心率为41.设双曲线()2222:1,0,0x y C a b a b-=>>的左焦点为1,F 直线:43200l x y -+=过点1F 且与双曲线C 在第二象限的交点为P ,O 为原点1,,OP OF =则双曲线C 的右焦点的坐标为 ,离心率为 .42.已知F 为双曲线()2222:10x y C a b a b-=>>的右焦点,,A B 是双曲线C 的一条渐近线上关于原点对称的两点,0AF BF ⋅=且AF 的中点在双曲线C 上,则C 的离心率为 ( )1B.1- 1+ 143.已知O 为坐标原点,双曲线()2222:10,0x y C a a b-=>>的右焦点为F ,过点F 且与x 轴垂直的直线与双曲线C 的一条渐近线交于点A (点A 在第一象限),点B 在双曲线C 的渐近线上,且BF//OA ,若0AB OB ⋅=,则双曲线C 的离心率为 ( )D.244.已知双曲线22221(0,0)x y a b a b-=>>的渐近线分别为1l ,2l ,点A 是x 轴上与坐标原点O 不重合的一点,以OA 为直径的圆交直线1l 于点O ,B ,交直线2l 于点O ,C ,若2BC OA =,则该双曲线的离心率是45.已知双曲线()2222:10,0x y C a b a b-=>>的右顶点为A , 以A 为圆心的圆与双曲线C 的某一条渐近线交于两点,P Q .若60PAQ ∠=,且3OQ OP =(其中O 为原点),则双曲线C 的离心率为 ( )A .2 B .7 C D .46.已知,,A B C 是双曲线()22221,0,0x y a b a b-=>>上的三个点,AB 经过坐标原点,O AC 经过双曲线的右焦点2,F 若22,2,BF AC AF CF ⊥=则该双曲线的离心率是 ( ) A.53 B.17 C.17 D.9447.设双曲线()222210x y C a b a b-=>0,>:的左、右焦点分别为12122,,2,F F FF c F =过作x 轴的垂线,与双曲线 在第一象限的交点为A ,点Q 坐标为3,2a c ⎛⎫ ⎪⎝⎭且满足22F Q F A >,若在双曲线C 的右支上存在点P 使得11276PF PQ F F +<成立,则双曲线的离心率的取值范围是___________.48.双曲线()222210x y a b a b-=>0,>的左、右焦点分别为12,,F F 过2F 作一条渐近线的垂线,垂足为,A 交另一条渐近线于点,B 且221,3AF F B =则双曲线的离心率为 ( ) A.53 17 17 D.9449.已知12,F F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且123PF F π∠=,记椭圆和双曲线的离心率分别为12,,e e 则221213e e +的值为 ( ) A.1 B.2512C.4D.16。
专题10 圆锥曲线易错点1 混淆“轨迹”与“轨迹方程”如图,已知点0(1)F ,,直线:1l x =-,P 为平面上的动点,过P 作直线l 的垂线,垂足为点Q ,且QP QF FP FQ ⋅=⋅,求动点P 的轨迹.【错解】设点P (x ,y ),则Q (-1,y ),由QP QF FP FQ ⋅=⋅,得(x +1,0)·(2,-y )=(x -1,y )·(-2,y ),化简得y 2=4x .【错因分析】错解中求得的是动点的轨迹方程,而不是轨迹,混淆了“轨迹”与“轨迹方程”的区别. 【试题解析】设点P (x ,y ),则Q (-1,y ),由QP QF FP FQ ⋅=⋅,得(x +1,0)·(2,-y )=(x -1,y )·(-2,y ),化简得y 2=4x . 故动点P 的轨迹为焦点坐标为(1,0)的抛物线.【参考答案】动点P 的轨迹为焦点坐标为(1,0)的抛物线.1.求轨迹方程时,若题设条件中无坐标系,则需要先建立坐标系,建系时,尽量取已知的相互垂直的直线为坐标轴,或利用图形的对称性选轴,或使尽可能多的点落在轴上.求轨迹方程的方法有:(1)直接法:直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性.(2)定义法:求轨迹方程时,若动点与定点、定直线间的等量关系满足圆、椭圆、双曲线、抛物线的定义,则可直接根据定义先确定轨迹类型,再写出其方程.(3)相关点法:动点所满足的条件不易得出或转化为等式,但形成轨迹的动点,()P x y 却随另一动点(),Q x y ''的运动而有规律地运动,而且动点Q 的轨迹方程为给定的或容易求得的,则可先将x ',y '表示成关于x ,y 的式子,再代入Q 的轨迹方程整理化简即得动点P 的轨迹方程.(4)参数法:若动点,()P x y 坐标之间的关系不易直接找到,且无法判断动点,()P x y 的轨迹,也没有明显的相关动点可用,但较易发现(或经分析可发现)这个动点的运动受到另一个变量的制约,即动点,()P x y 中的x ,y 分别随另一变量的变化而变化,我们可称这个变量为参数,建立轨迹的参数方程,这种求轨迹方程的方法叫做参数法.2.求轨迹方程与求轨迹是有区别的,若是求轨迹,则不仅要求出方程,而且还要说明和讨论所求轨迹是什么样的图形,即说出图形的形状、位置等.1.已知定点(1,0)A -及直线:2l x =-,动点P 到直线l 的距离为d ,若||PA d =. (1)求动点P 的轨迹C 方程;(2)设,M N 是C 上位于x 轴上方的两点,B 坐标为(1,0),且AM BN ∥,MN 的延长线与x 轴交于点(3,0)D ,求直线AM 的方程.【答案】(1)2212x y +=;(2)(1)2y x =+.【解析】(1)设(,)P x y ,则由(1,0)A -,知||PA = 又:2l x =-,∴|2|d x =+,2=∴2221(1)(2)2x y x ++=+, ∴2222x y +=,∴点P 的轨迹方程为2212x y +=.(2)设1122(,),(,)M x y N x y ()120,0y y >>,∵(1,0)(1,0),(3,0)A B D -,, ∴B 为AD 中点, ∵//AM BN ,∴1212,322x x y y +==, ∴1223x x =-,又221112x y +=,∴()222223412x y -+=, 又222212x y +=,∴2151,42x x ==-,∵0y >,∴14y =,∴1112AM y k x ==+, ∴直线AM的方程为1)2y x =+. 【名师点睛】本题考查椭圆的轨迹方程,直线与椭圆的位置关系,求轨迹方程用的是直接法,另外还有定义法、相关点法、参数法、交轨法等.易错点2 求轨迹方程时忽略变量的取值范围已知曲线C :y=x 2-2x +2和直线l :y =kx (k ≠0),若C 与l 有两个交点A 和B ,求线段AB 中点的轨迹方程.【错解】依题意,由⎩⎨⎧y =x 2-2x +2,y =kx ,分别消去x 、y 得,(k 2-1)x 2+2x -2=0,① (k 2-1)y 2+2ky -2k 2=0.②设AB 的中点为P (x ,y ),则在①②中分别有12212212121x x x k y y k y k +⎧==⎪⎪-⎨+⎪==⎪-⎩,故线段AB 中点的轨迹方程为220x y x --=.【错因分析】消元过程中,由于两边平方,扩大了变量y 的允许范围,故应对x ,y 加以限制.【试题解析】依题意,由⎩⎨⎧y =x 2-2x +2y =kx,分别消去x 、y 得,(k 2-1)x 2+2x -2=0,① (k 2-1)y 2+2ky -2k 2=0.②设AB 的中点为P (x ,y ),则在①②中分别有⎩⎪⎨⎪⎧x =x 1+x 22=11-k 2, ③y =y 1+y 22=k1-k 2, ④又对②应满足222212221221044(2)(1)0201201k k k k k y y k k y y k ∆⎧-≠⎪=-⨯-⨯->⎪⎪⎨+=>-⎪⎪⎪=>-⎩,解得22<k <1.结合③④,则有x >2,y > 2.所以所求轨迹方程是x 2-y 2-x =0(x >2,y >2). 【参考答案】轨迹方程是x 2-y 2-x =0(x >2,y >2).1.一般地,在直角坐标系中,如果某曲线C (看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程(,)0f x y =的实数解建立了如下的关系: (1)曲线上点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线.2.要注意有的轨迹问题包含一定的隐含条件,由曲线和方程的概念可知,在求曲线时一定要注意它的“完备性”和“纯粹性”,即轨迹若是曲线的一部分,应对方程注明x 的取值范围,或同时注明x ,y的取值范围.2.已知圆221:(3)1C x y ++=和圆222:(3)9C x y -+=,动圆M 同时与圆1C 及圆2C 相外切,则动圆圆心M的轨迹方程为A .2218y x -=B .221(1)8y x x -=≤-C .2218x yD .221(1)8y x x -=≥【答案】B【解析】设动圆的圆心M 的坐标为(,)x y ,半径为r , 则由题意可得121,3MC r MC r =+=+,相减可得21122MC MC C C -=<,所以点M 的轨迹是以12,C C 为焦点的双曲线的左支, 由题意可得22,3a c ==,所以b =,故点M 的轨迹方程为221(1)8y x x -=≤-,故选B.【名师点睛】本题主要考查了圆与圆的位置关系,以及双曲线的定义、性质和标准方程的应用,其中解答中根据圆与圆的位置关系,利用双曲线的定义得到动点的轨迹是以12,C C 为焦点的双曲线的左支是解答的关键,着重考查了转化思想,以及推理与计算能力,属于基础题.易错点3 忽略椭圆定义中的限制条件若方程22186x y k k +=--表示椭圆,则实数k 的取值范围为________________.【错解】由8060k k ->⎧⎨->⎩,可得68k <<,所以实数k 的取值范围为(6,8).【错因分析】忽略了椭圆标准方程中a >b >0这一限制条件,当a =b >0时表示的是圆的方程.【试题解析】由806086k k k k ->⎧⎪->⎨⎪-≠-⎩,可得68k <<且7k ≠,所以实数k 的取值范围为(6,7)∪(7,8).【方法点睛】准确理解椭圆的定义,明确椭圆定义中的限制条件,才能减少解题过程中的失误,从而保证解题的正确性.【参考答案】(6,7)∪(7,8).平面上到两定点12,F F 的距离的和为常数(大于两定点之间的距离)的点P 的轨迹是椭圆. 这两个定点叫做椭圆的焦点,两个定点之间的距离叫做椭圆的焦距,记作122F F c =. 定义式:12122(2)PF PF a a F F +=>. 要注意,该常数必须大于两定点之间的距离,才能构成椭圆.3.已知F 1,F 2为两定点,|F 1F 2|=8,动点M 满足|MF 1|+|MF 2|=8,则动点M 的轨迹是A .椭圆B .直线C .圆D .线段【答案】D【解析】虽然动点M 到两个定点F 1,F 2的距离为常数8,但由于这个常数等于|F 1F 2|,故动点M 的轨迹是线段F 1F 2,故选D .平面上到两定点12,F F 的距离的和为常数(大于两定点之间的距离)的点P 的轨迹是椭圆.若忽略了椭圆定义中|F 1F 2|<2a 这一隐含条件,就会错误地得出点M 的轨迹是椭圆.易错点4 忽略对椭圆焦点位置的讨论已知椭圆的标准方程为2221(0)36x ykk+=>,并且焦距为8,则实数k的值为_____________.1.解决已知椭圆的焦点位置求方程中的参数问题,应注意结合焦点位置与椭圆方程形式的对应关系求解.②表示焦点在y 轴上的椭圆⇔0,0m n >>且m n <; ③表示椭圆⇔0,0m n >>且m n ≠.对于形如:Ax 2+By 2=1(其中A >0,B >0,A ≠B )的椭圆的方程,其包含焦点在x 轴上和在y 轴上两种情况,当B >A 时,表示焦点在x 轴上的椭圆;当B <A 时,表示焦点在y 轴上的椭圆. 2.求椭圆的方程有两种方法:(1)定义法.根据椭圆的定义,确定a 2,b 2的值,结合焦点位置可写出椭圆方程. (2)待定系数法.这种方法是求椭圆的方程的常用方法,其一般步骤是:第一步,做判断.根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能(这时需要分类讨论).第二步,设方程.根据上述判断设方程为22221(0)x y a b a b +=>>或22221(0)y x a b a b+=>>.第三步,找关系.根据已知条件,建立关于,,a b c 的方程组(注意椭圆中固有的等式关系222c a b =-). 第四步,得椭圆方程.解方程组,将解代入所设方程,即为所求.3.用待定系数法求椭圆的方程时,要“先定型,再定量”,不能确定焦点的位置时,需要分焦点在x 轴上和在y 轴上两种情况讨论,也可设椭圆的方程为Ax 2+By 2=1(其中A >0,B >0,A ≠B ).求椭圆的标准方程的方法可以采用待定系数法,此时要注意根据焦点的位置选择椭圆的标准方程;也可以利用椭圆的定义及焦点位置或点的坐标确定椭圆的标准方程.4.关于曲线C :222214x y a a +=-性质的叙述,正确的是A .一定是椭圆B .可能为抛物线C .离心率为定值D .焦点为定点【答案】D【解析】因为曲线方程没有一次项,不可能为抛物线,故B 错误;因为24a -可正也可负,所以曲线可能为椭圆或双曲线.若曲线为椭圆,则()22244c a a =--=,∴2c =,2e a=,离心率不是定值,焦点()2,0,()2,0-,为定点. 若曲线为双曲线,方程为222214x y a a-=-,则()22244c a a =+-=,∴2c =,2e a =,离心率不是定值,焦点()2,0,()2,0-为定点,故选D.【名师点睛】本题考查了圆锥曲线的标准方程和性质,体现了分类讨论的思想.易错点5 忽略椭圆的范围设椭圆的中心是坐标原点,长轴在x 轴上,离心率32e =,已知点3(0,)2P 到椭圆的最远距离为7,求椭圆的标准方程.1.椭圆22221(0)x ya ba b+=>>的范围就是方程中变量x,y的范围,由22221x ya b+=得222211x ya b=-≤,则||x a≤;222211y xb a=-≤,则||y b≤.故椭圆落在直线x=±a,y=±b围成的矩形内,因此用描点法画椭圆的图形时就可以不取“矩形”范围以外的点了.同时,在处理椭圆的一些参数或最值问题时要注意x,y的取值范围.2.设椭圆22221(0)x y a b a b+=>>上任意一点,()P x y ,则当0x =时,||OP 有最小值b ,P 点在短轴端点处;当x a =±时,||OP 有最大值a ,P 点在长轴端点处. 3.(1)解决椭圆x 2a 2+y 2b 2=1(a >b >0)中的范围问题常用的关系有:①-a ≤x ≤a ,-b ≤y ≤b ; ②离心率0<e <1;③一元二次方程有解,则判别式0∆≥.(2)解决与椭圆有关的最值问题常用的方法有以下几种: ①利用定义转化为几何问题处理;②利用三角替代(换元法)转化为三角函数的最值问题处理; ③利用数与形的结合,挖掘数学表达式的几何特征,进而求解;④利用函数最值的研究方法,将其转化为函数的最值问题来处理,此时,应注意椭圆中x 、y 的取值范围,常常是化为闭区间上的二次函数的最值来求解.5.已知椭圆2222:1(0)x y C a b a b +=>>的上顶点为(0,1)B ,且过点2P . (1)求椭圆C 的方程及其离心率;(2)斜率为k 的直线l 与椭圆C 交于,M N 两个不同的点,当直线,OM ON 的斜率之积是不为0的定值时,求此时MON △的面积的最大值.【答案】(1)2214x y +=,2e =;(2)1. 【解析】(1)由题意可得1b =.又2P 在椭圆C 上,所以22212a +=,解得2a =,所以椭圆C 的方程为2214x y +=,所以c C 的离心率2c e a ==.(2)设直线l 的方程为()0y kx m m =+≠.由22,14y kx m x y =+⎧⎪⎨+=⎪⎩,消去y ,得()222418440k x kmx m +++-=, 所以22222(8)4(41)(44)6416160km k m k m ∆=-+-=-+>,设()()1122,,,M x y N x y ,则2121222844,4141km m x x x x k k --+==++. ()()()2212121212121212OM ONkx m kx m k x x km x x my y k k x x x x x x +++++===222222244841414441m kmk km m k k m k --⨯+⨯+++=-+222444m k m -=-, 由题意,OM ON k k 为定值,所以21444k -=-,即214k =,解得12k =±.此时MN===, 点O 到直线y kx m =+的距离|5m d =.11||22MON S MN d m ==△== 显然,当21m =(此时214k =,21m =满足226416160k m ∆=-+>),即1m =±时,S 取得最大值,最大值为1.易错点6 忽略双曲线定义中的限制条件已知F 1(-5,0),F 2(5,0),动点P 满足|PF 1|-|PF 2|=2a ,当a 为3和5时,点P 的轨迹分别为A .双曲线和一条直线B .双曲线和一条射线C .双曲线的一支和一条直线D .双曲线的一支和一条射线在求解与双曲线有关的轨迹问题时,准确理解双曲线的定义,才能正确解题.当||MF 1|-|MF 2||=2a <|F 1F 2|(a >0),即|MF 1|-|MF 2|=±2a ,0<2a <|F 1F 2|时,点M 的轨迹是双曲线,其中取正号时为双曲线的右(上)支,取负号时为双曲线的左(下)支;当||MF 1|-|MF 2||=2a =|F 1F 2|(a >0)时,点M 的轨迹是以点F 1,F 2为端点的两条射线; 当||MF 1|-|MF 2||=2a >|F 1F 2|(a >0)时,点M 的轨迹不存在.6.如图,在ABC △中,已知||AB =A ,B ,C 满足2sin sin 2sin A C B +=,以AB 边所在的直线为x 轴,AB 的垂直平分线为y 轴,建立平面直角坐标系,求顶点C 的轨迹方程.【答案】221(26x y x -=>.【解析】由题意可得(A -,B .因为2sin sin 2sin A C B +=,由正弦定理可得||||||22BC AB AC +=,故|||||12|||AC BC AB AB -=<=, 由双曲线的定义知,点C 的轨迹为双曲线的右支(除去与x 轴的交点).由题意,设所求轨迹方程为22221()x y x a a b-=>,因为a =c =2226b c a =-=,故所求轨迹方程为221(26x y x -=>.【名师点睛】求解与双曲线有关的轨迹问题时要特别注意:(1)双曲线的焦点所在的坐标轴;(2)检验所求的轨迹对应的是双曲线的一支还是两支.易错点7 忽略双曲线中的隐含条件已知M 是双曲线2216436x y -=上一点,F 1,F 2是双曲线的左、右焦点,且1||17MF =,则2MF =_____________.1.在求解双曲线上的点到焦点的距离d 时,一定要注意d c a ≥-这一隐含条件.2.双曲线方程中,a b 的大小关系是不确定的,但必有0,0c a c b >>>>.3.由22221(0,0)x y a b a b-=>>,知x 2a2≥1,所以x ≤-a 或x ≥a ,因此双曲线位于不等式x ≥a 和x ≤-a 所表示的平面区域内,同时,也指明了坐标系内双曲线上点的横坐标的取值范围.7.过双曲线的一个焦点2F 作垂直于实轴的直线,交双曲线于,P Q ,1F 是另一焦点,若1=3PFQ π∠,则双曲线的离心率e 等于 A 1 BC 1D 2+【答案】B【解析】由双曲线的对称性可知,12PF F △是以点2F 为直角顶点,且126PF F π∠=,则122PF PF =,由双曲线的定义可得1222PF PF PF a -==, 在12Rt PF F △中,212122tan 2PF a PF F F F c ∠===c e a∴== B. 【名师点睛】本题考查双曲线的离心率的求解,要充分研究双曲线的几何性质,在遇到焦点时,善于利用双曲线的定义来求解,考查逻辑推理能力和计算能力,属于中等题.易错点8 忽略双曲线的焦点所在位置的讨论已知双曲线的渐近线方程是23y x=±,焦距为226,求双曲线的标准方程. 2b1.求解双曲线的标准方程时,先确定双曲线的类型,也就是确定双曲线的焦点所在的坐标轴是x 轴还是y 轴,从而设出相应的标准方程的形式,然后利用待定系数法求出方程中的22,a b 的值,最后写出双曲线的标准方程.2.在求双曲线的方程时,若不知道焦点的位置,则进行讨论,或可直接设双曲线的方程为221(0)Ax By AB +=<.8.已知双曲线的一条渐近线方程为0x y ±=,且过点()12P ,--,则该双曲线的标准方程为__________.【答案】22133y x -=【解析】根据题意,双曲线的一条渐近线方程为0x y ±=,可设双曲线方程为()220x y λλ-=≠,∵双曲线过点()12P ,--,∴14λ-=,即3λ=-.∴所求双曲线方程为22133y x -=,故答案为22133y x -=.【名师点睛】本题考查双曲线的标准方程的求法,需要学生熟练掌握已知渐近线方程时,如何设出双曲线的标准方程.易错点9 忽略直线与双曲线只有一个公共点的特殊情况若过点(1,1)P 且斜率为k 的直线l 与双曲线2214y x -=只有一个公共点,则k =___________.【方法点睛】解决直线与双曲线的位置关系的题目时,要注意讨论联立直线与双曲线的方程消元后得到的方程是否为一元一次方程,即二次项系数是否为0,因为直线与双曲线有一个公共点包含直线与双曲线的渐21. 直线与双曲线有三种位置关系:(1)无公共点,此时直线有可能为双曲线的渐近线. (2)有一个公共点,分两种情况:①直线是双曲线的切线,特别地,直线过双曲线一个顶点,且垂直于实轴;②直线与双曲线的一条渐近线平行,与双曲线的一支有一个公共点. (3)有两个公共点,可能都在双曲线一支上,也可能两支上各有一点.2.研究直线与双曲线位置关系的一般思路仍然是联立二者的方程,解方程组或者转化为一元二次方程,依据根的判别式和根与系数的关系求解.要注意讨论转化以后的方程的二次项系数,即若二次项系数为0,则直线与双曲线的渐近线平行或重合;若二次项系数不为0,则进一步研究二次方程的根的判别式∆,得到直线与双曲线的交点个数.9.已知直线y kx =与双曲线22416x y -=.当k 为何值时,直线与双曲线: (1)有两个公共点;(2)有一个公共点;(3)没有公共点. 【答案】见解析.【解析】由22416x y y kx -==⎧⎨⎩消去y 得22(4)160k x --= ①,当240k -=,即2k =±时,方程①无解;当240k -≠时,2204(4)(16)64(4)k k ∆=---=-, 当0∆>,即22k -<<时,方程①有两解; 当0∆<,即2k <-或2k >时,方程①无解; 当0∆=,且240k -≠时,这样的k 值不存在.综上所述,(1)当22k -<<时,直线与双曲线有两个公共点; (2)不存在使直线与双曲线有一个公共点的k 值; (3)当2k ≤-或2k ≥时,直线与双曲线没有公共点.【名师点睛】研究直线与双曲线位置关系的一般思路仍然是联立二者的方程,解方程组或者转化为一元二次方程,依据根的判别式和根与系数的关系求解.要注意讨论转化以后的方程的二次项系数,即若二次项系数为0,则直线与双曲线的渐近线平行或重合;若二次项系数不为0,则进一步研究二次方程的根的判别式∆,得到直线与双曲线的交点个数.易错点10 忽略抛物线定义中的限制条件已知点P 到F (4,0)的距离与到直线5x =-的距离相等,求点P 的轨迹方程.【参考答案】2189y x =+.1.抛物线的标准方程是特殊的抛物线方程,对坐标轴的位置有严格的要求.若从题意中无法判断方程是否为标准方程,可按求曲线方程的一般步骤求解.2.抛物线定义中要求直线l 不经过点F ,若l 经过F 点,则轨迹为过定点F 且垂直于定直线l 的一条直线.因此当动点P 到定点F 的距离与它到定直线l 的距离相等时,不能盲目套用抛物线定义.10.已知圆C 的方程22100x y x +-=,求与y 轴相切且与圆C 外切的动圆圆心P 的轨迹方程.【答案】220(0)y x x =>或)00(y x =<.【解析】设P 点坐标为(x ,y ),动圆的半径为R ,∵动圆P 与y 轴相切,∴R x =,∵动圆与定圆C :2252)5(x y -+=外切,∴5PC R =+,∴5PC x =+.当点P 在y 轴右侧,即x >0时,5PC x =+,点P 的轨迹是以(5,0)为焦点的抛物线,则圆心P 的轨迹方程为220(0)y x x =>;当点P 在y 轴左侧,即x <0时, 5PC x =-+,此时点P 的轨迹是x 轴的负半轴,即方程)00(y x =<.故点P 的轨迹方程为220(0)y x x =>或)00(y x =<.【名师点睛】抛物线的轨迹问题,既可以用轨迹法直接求解,也可以转化为利用抛物线的定义求解,利用抛物线的定义求解的关键是找到条件满足动点到定点的距离等于到定直线的距离,需要依据条件进行转化.易错点11 忽略抛物线的焦点所在位置的讨论设抛物线y 2=mx 的准线与直线x =1的距离为3,求抛物线的方程.【错解】易知准线方程为x =-m4,因为准线与直线x =1的距离为3, 所以准线方程为x =-2, 所以-m4=-2,解得m =8,故抛物线方程为y 2=8x .【错因分析】题目条件中未给出m 的符号,当m >0或m <0时,抛物线的准线是不同的,错解中考虑问题欠周到.【试题解析】当m >0时,准线方程为x =-m4,由条件知1-(-m4)=3,所以m =8.此时抛物线方程为y 2=8x ; 当m <0时,准线方程为x =-m4,由条件知-m4-1=3,所以m =-16,此时抛物线方程为y 2=-16x .所以所求抛物线方程为y 2=8x 或y 2=-16x . 【参考答案】y 2=8x 或y 2=-16x .1.抛物线的四种标准方程与对应图形如下表所示:图 形标准方程22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =->焦点坐标(,0)2p (,0)2p -(0,)2p(0,)2p -准线方程2p x =-2p x =2p y =-2p y =注:抛物线标准方程中参数p 的几何意义是:抛物线的焦点到准线的距离,所以p 的值永远大于0. 2.求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点的位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.用待定系数法求抛物线标准方程的步骤:若无法确定抛物线的位置,则需分类讨论.特别地,已知抛物线上一点的坐标,一般有两种标准方程.11.顶点在原点,且过点(1,1)-的抛物线的标准方程是A .2y x =-B .2x y =C .2y x =-或2x y =D .2y x =或2x y =-【答案】C【解析】当焦点在x 轴上时,设方程为2y ax =,将(1,1)-代入得1a =-,2y x ∴=-;当焦点在y 轴上时,设方程为2x ay =,将(1,1)-代入得1a =,2x y ∴=.故选C .本题若只考虑焦点在x 轴的负半轴上的情况,而忽略了焦点也可能在y 轴的正半轴上的情况,则会出现漏解.易错点12 忽略直线与抛物线有一个公共点的特殊情况求过定点(11)P -,,且与抛物线22y x =只有一个公共点的直线l 的方程.直线l y kx b =+:与抛物线22(0)y px p =>公共点的个数等价于方程组22y x p bxy k ⎧⎨==+⎩的解的个数.(1)若0k ≠,则当0∆>时,直线和抛物线相交,有两个公共点;当0∆=时,直线和抛物线相切,有一个公共点;当0∆<时,直线和抛物线相离,无公共点.(2)若0k =,则直线y b =与抛物线22(0)y px p =>相交,有一个公共点.特别地,当直线l 的斜率不存在时,设x m =,则当0m >时,直线l 与抛物线相交,有两个公共点;当0m =时,直线l 与抛物线相切,有一个公共点;当0m <时,直线l 与抛物线相离,无公共点.12.“直线与抛物线相切”是“直线与抛物线只有一个公共点”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】“直线与抛物线相切”可得“直线与抛物线只有一个公共点”,“直线与抛物线只有一个公共点”时,直线可能与对称轴平行,此时不相切,故“直线与抛物线相切”是“直线与抛物线只有一个公共点”的充分不必要条件.故选A .本题易忽略直线平行于抛物线的对称轴时,直线与抛物线也只有一个交点,而漏掉k =0.一、曲线与方程 1.求曲线方程的步骤求曲线的方程,一般有下面几个步骤:(1)建立适当的坐标系,用有序实数对(x ,y )表示曲线上任意一点M 的坐标; (2)写出适合条件p 的点M 的集合{|()}P M p M =; (3)用坐标表示条件p (M ),列出方程(,)0f x y =; (4)化方程(,)0f x y =为最简形式;(5)说明以化简后的方程的解为坐标的点都在曲线上.一般地,化简前后方程的解集是相同的,步骤(5)可以省略不写.若遇到某些点虽适合方程,但不在曲线上时,可通过限制方程中x ,y 的取值范围予以剔除.另外,也可以根据情况省略步骤(2),直接列出曲线方程. 2.两曲线的交点(1)由曲线方程的定义可知,两条曲线交点的坐标应该是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;反过来,方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点.(2)两条曲线有交点的充要条件是它们的方程所组成的方程组有实数解.可见,求曲线的交点问题,就是求由它们的方程所组成的方程组的实数解问题.二、椭圆 1.椭圆的定义平面上到两定点12,F F 的距离的和为常数(大于两定点之间的距离)的点P 的轨迹是椭圆. 这两个定点叫做椭圆的焦点,两个定点之间的距离叫做椭圆的焦距,记作122F F c =. 定义式:12122(2)PF PF a a F F +=>. 要注意,该常数必须大于两定点之间的距离,才能构成椭圆. 2.椭圆的标准方程焦点在x 轴上,22221(0)x y a b a b +=>>;焦点在y 轴上,22221(0)y x a b a b+=>>.说明:要注意根据焦点的位置选择椭圆方程的标准形式,知道,,a b c 之间的大小关系和等量关系:222,0,0a c b a b a c -=>>>>.3.椭圆的几何性质标准方程22221x y a b +=(a >b >0) 22221y x a b +=(a >b >0) 图形范围 a x a -≤≤,b y b -≤≤ b x b -≤≤,a y a -≤≤对称性 对称轴:x 轴、y 轴;对称中心:原点焦点 左焦点F 1 (-c ,0),右焦点F 2 (c ,0)下焦点F 1 (0,-c ),上焦点F 2 (0,c )顶点1212(,0),(,0),(0,),(0,)A a A a B b B b -- 1212(0,),(0,),(,0),(,0)A a A a B b B b --三、双曲线 1. 双曲线的定义(1)定义:平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于|F 1F 2|且大于零)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两个焦点间的距离叫做双曲线的焦距.(2)符号语言:1212202,MF MF a a F F =<-<. (3)当122MF MF a -=时,曲线仅表示焦点2F 所对应的双曲线的一支; 当122MF MF a -=-时,曲线仅表示焦点1F 所对应的双曲线的一支;当12||2a F F =时,轨迹为分别以F 1,F 2为端点的两条射线; 当12||2a F F >时,动点轨迹不存在. 2.双曲线的标准方程(1)焦点在x 轴上的双曲线的标准方程为22221x y a b-=(a >0,b >0),焦点分别为F 1(-c ,0),F 2(c ,0),焦距为2c ,且222c a b =+.(2)焦点在y 轴上的双曲线的标准方程为22221y x a b-=(a >0,b >0),焦点分别为F 1(0,-c ),F 2(0,c ),焦距为2c ,且222c a b =+. 3.双曲线的几何性质标准方程22221x y a b -=(a >0,b >0) 22221y x a b -=(a >0,b >0) 图形范围 ||x a ≥,y ∈R ||y a ≥,x ∈R对称性 对称轴:x 轴、y 轴;对称中心:原点焦点 左焦点F 1(-c ,0),右焦点F 2(c ,0)下焦点F 1(0,-c ),上焦点F 2(0,c )顶点12(,0),(,0)A a A a - 12(0,),(0,)A a A a -轴线段A 1A 2是双曲线的实轴,线段B 1B 2是双曲线的虚轴;实轴长|A 1A 2|=2a ,虚轴长|B 1B 2|=2b渐近线 b y x a=±a y x b=±离心率e22c ce a a==(1)e >在解决双曲线中与焦点三角形有关的问题时,首先要注意定义中的条件12||||||2PF PF a -=的应用;其次是要利用余弦定理、勾股定理等知识进行运算,在运算中要注意整体思想和一些变形技巧的应用. 4.等轴双曲线四、抛物线 1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F ) 距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.抛物线关于过焦点F 与准线垂直的直线对称,这条直线叫抛物线的对称轴,简称抛物线的轴.注意:直线l 不经过点F ,若l 经过F 点,则轨迹为过定点F 且垂直于定直线l 的一条直线. 2.抛物线的标准方程(1)顶点在坐标原点,焦点在x 轴正半轴上的抛物线的标准方程为22(0)y px p =>;(2)顶点在坐标原点,焦点在x 轴负半轴上的抛物线的标准方程为22(0)y px p =->;(3)顶点在坐标原点,焦点在y 轴正半轴上的抛物线的标准方程为22(0)x py p =>;(4)顶点在坐标原点,焦点在y 轴负半轴上的抛物线的标准方程为22(0)x py p =->.注意:抛物线标准方程中参数p 的几何意义是抛物线的焦点到准线的距离,所以p 的值永远大于0,当抛物线标准方程中一次项的系数为负值时,不要出现p <0的错误. 3.抛物线的几何性质标准方程22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =->图 形几 何 性质范 围 0,x y ≥∈R0,x y ≤∈R0,y x ≥∈R0,y x ≤∈R对称性 关于x 轴对称关于x 轴对称关于y 轴对称关于y 轴对称焦点(,0)2p F (,0)2p F -(0,)2p F(0,)2p F -准线方程 2p x =-2p x =2p y =-2p y =顶 点 坐标原点(0,0)离心率1e =4.抛物线的焦半径抛物线上任意一点00(),P x y 与抛物线焦点F 的连线段,叫做抛物线的焦半径. 根据抛物线的定义可得焦半径公式如下表:抛物线方程22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =->。
2021年高考数学圆锥曲线的综合问题解析几何是数形结合的典范,是高中数学的主要知识板块,是高考考查的重点知识之一,在解答题中一般会综合考查直线、圆、圆锥曲线等.试题难度较大,多以压轴题出现.解答题的热点题型有:(1)直线与圆锥曲线位置关系;(2)圆锥曲线中定点、定值、最值及范围的求解;(3)圆锥曲线中的判断与证明.第1课时 圆锥曲线中的最值、范围、证明问题考点一 圆锥曲线中的最值问题[例1] (2019·全国卷Ⅱ)已知点A (-2,0),B (2,0),动点M (x ,y )满足直线AM 与BM的斜率之积为-12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连接QE 并延长交C 于点G .①证明:△PQG 是直角三角形;②求△PQG 面积的最大值.(2019·河北省九校第二次联考)已知抛物线C :y 2=2px (p >0)的焦点为F ,若过点F 且斜率为1的直线与抛物线相交于M ,N 两点,且|MN |=8.(1)求抛物线C 的方程;(2)设直线l 为抛物线C 的切线,且l ∥MN ,P 为l 上一点,求PM ―→·PN ―→的最小值.考点二 圆锥曲线中的范围问题[例2] (2019·安徽五校联盟第二次质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点坐标分别为F 1(-1,0),F 2(1,0),P 为椭圆C 上一点,满足3|PF 1|=5|PF 2|且cos ∠F 1PF 2=35. (1)求椭圆C 的标准方程;(2)设直线l :y =kx +m 与椭圆C 交于A ,B 两点,点Q ⎝⎛⎭⎫14,0,若|AQ |=|BQ |,求k 的取值范围.1.(2019·洛阳模拟)已知A ,B 是x 轴正半轴上两点(A 在B 的左侧),且|AB |=a (a >0),过A ,B 分别作x 轴的垂线,与抛物线y 2=2px (p >0)在第一象限分别交于D ,C 两点.(1)若a =p ,点A 与抛物线y 2=2px 的焦点重合,求直线CD 的斜率;(2)若O 为坐标原点,记△OCD 的面积为S 1,梯形ABCD 的面积为S 2,求S 1S 2的取值范围.2.已知A ,B 分别为曲线C :x 2a 2+y 2=1(y ≥0,a >0)与x 轴的左、右两个交点,直线l 过点B 且与x 轴垂直,M 为l 上位于x 轴上方的一点,连接AM 交曲线C 于点T .(1)若曲线C 为半圆,点T 为AB ︵的三等分点,试求出点M 的坐标.(2)若a >1,S △MAB =2,当△TAB 的最大面积为43时,求椭圆的离心率的取值范围.考点三 圆锥曲线中的证明问题[例3] (2018·全国卷Ⅰ)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程;(2)设O 为坐标原点,证明:∠OMA =∠OMB .(2019·福州市第一学期抽测)已知点A ⎝⎛⎭⎫1,-32在椭圆C :x 2a 2+y 2b 2=1(a >b >0)上,O 为坐标原点,直线l :x a 2-3y 2b 2=1的斜率与直线OA 的斜率乘积为-14. (1)求椭圆C 的方程;(2)不经过点A 的直线y =32x +t (t ≠0且t ∈R )与椭圆C 交于P ,Q 两点,P 关于原点的对称点为R (与点A 不重合),直线AQ ,AR 与y 轴分别交于两点M ,N ,求证:|AM |=|AN |.【课后专项练习】1.(2019·湖南省五市十校联考)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为22,右焦点为F,以原点O为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.(1)求椭圆C的方程;(2)如图,过定点P(2,0)的直线l交椭圆C于A,B两点,连接AF并延长交C于M,求证:∠PFM=∠PFB.2.(2019·广东六校第一次联考)已知椭圆D :x 2a 2+y 2b 2=1(a >b >0)的离心率为e =22,点(-2,1)在椭圆D 上.(1)求椭圆D 的方程;(2)过椭圆D 内一点P (0,t )的直线l 的斜率为k ,且与椭圆D 交于M ,N 两点,设直线OM ,ON (O 为坐标原点)的斜率分别为k 1,k 2,若对任意k ,存在实数λ,使得k 1+k 2=λk ,求实数λ的取值范围.3.已知抛物线C :y 2=2px (p >0)的准线l 1与x 轴交于点M ,直线l 2:4x -3y +6=0与抛物线C 没有公共点,动点P 在抛物线C 上,点P 到l 1,l 2的距离之和的最小值等于2.(1)求抛物线C 的方程;(2)过点M 的直线与抛物线C 交于两个不同的点A ,B ,设MA ―→=λMB ―→ ⎝⎛⎭⎫13≤λ<1,求|AB |的取值范围.4.(2019·重庆七校联考)椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,其左焦点到点P(2,1)的距离为10.不经过原点O的直线l与椭圆C相交于A,B两点,且线段AB被直线OP 平分.(1)求椭圆C的方程;(2)求△ABP的面积取最大值时,直线l的方程.第2课时 圆锥曲线中的定点、定值、探索性问题考点一 定点问题[例1] (2019·郑州市第一次质量预测)设M 点为圆C :x 2+y 2=4上的动点,点M 在x轴上的投影为N .动点P 满足2PN ―→=3MN ―→,动点P 的轨迹为E .(1)求E 的方程;(2)设E 的左顶点为D ,若直线l :y =kx +m 与曲线E 交于A ,B 两点(A ,B 不是左、右顶点),且满足|DA ―→+DB ―→|=|DA ―→-DB ―→|,求证:直线l 恒过定点,并求出该定点的坐标.1.(2019·北京高考)已知抛物线C:x2=-2py经过点(2,-1).(1)求抛物线C的方程及其准线方程;(2)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=-1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.2.(2019·安徽省考试试题)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的上顶点为P ,右顶点为Q ,直线PQ 与圆x 2+y 2=45相切于点M ⎝⎛⎭⎫25,45. (1)求椭圆C 的方程;(2)若不经过点P 的直线l 与椭圆C 交于A ,B 两点,且P A ―→·PB ―→=0,求证:直线l 过定点.考点二定值问题[例2]已知椭圆C:x2a2+y2b2=1(a>b>0),过A(2,0),B(0,1)两点.(1)求椭圆C的方程及离心率;(2)设P为第三象限内一点且在椭圆C上,直线P A与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.如图所示,已知点M(a,3)是抛物线y2=4x上一定点,直线AM,BM的斜率互为相反数,且与抛物线另交于A,B两个不同的点.(1)求点M到其准线的距离;(2)求证:直线AB的斜率为定值.考点三探索性问题[例3](2019·重庆市学业质量调研)如图,已知椭圆C:x2a2+y2b2=1(a>b>0),其左、右焦点分别为F1(-2,0)及F2(2,0),过点F1的直线交椭圆C于A,B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D,E两点,且|AF1|,|F1F2|,|AF2|构成等差数列.(1)求椭圆C的方程;(2)记△GF 1D的面积为S1,△OED(O为坐标原点)的面积为S2.试问:是否存在直线AB,使得S1=S2?请说明理由.(2019·广州市调研测试)已知动圆C过定点F(1,0),且与定直线x=-1相切.(1)求动圆圆心C的轨迹E的方程;(2)过点M(-2,0)的任一条直线l与轨迹E交于不同的两点P,Q,试探究在x轴上是否存在定点N(异于点M),使得∠QNM+∠PNM=π?若存在,求点N的坐标;若不存在,请说明理由.【课后专项练习】1.(2019·开封模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,上顶点为M ,△MF 1F 2为等腰直角三角形,且其面积为1.(1)求椭圆C 的方程;(2)过点M 分别作直线MA ,MB 交椭圆C 于A ,B 两点,设这两条直线的斜率分别为k 1,k 2,且k 1+k 2=2,证明:直线AB 过定点.2.(2019·南昌市第一次模拟测试)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为12,P 是C 上的一个动点,且△F 1PF 2面积的最大值为4 3. (1)求C 的方程;(2)设C 的左、右顶点分别为A ,B ,若直线P A ,PB 分别交直线x =2于M ,N 两点,过点F 1作以MN 为直径的圆的切线,证明:切线长为定值,并求该定值.3.(2019·福州市质量检测)已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1的焦点,且l 1与C 2相切.(1)求p 的值;(2)动点M 在C 1的准线上,动点A 在C 1上,若C 1在A 点处的切线l 2交y 轴于点B ,设MN ―→=MA ―→+MB ―→,求证:点N 在定直线上,并求该定直线的方程.4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),点A ⎝⎛⎭⎫1,22在椭圆C 上.(1)求椭圆C 的标准方程;(2)是否存在斜率为2的直线,使得当直线与椭圆C 有两个不同交点M ,N 时,能在直线y =53上找到一点P ,在椭圆C 上找到一点Q ,满足PM ―→=NQ ―→?若存在,求出直线的方程;若不存在,说明理由.已知F 为椭圆C :x 24+y 23=1的右焦点,M 为C 上的任意一点. (1)求|MF |的取值范围;(2)P ,N 是C 上异于M 的两点,若直线PM 与直线PN 的斜率之积为-34,证明:M ,N 两点的横坐标之和为常数.。
墨达哥州易旺市菲翔学校2021年高考试题解析数学〔理科〕分项10圆锥曲线一、选择题:1.(2021年高考卷理科8)双曲线22221(0b 0)x y a a b-=>,>的两条渐近线均和圆C:22650xy x +-+=相切,且双曲线的右焦点为圆C 的圆心,那么该双曲线的方程为(A)22154x y -=(B)22145x y -=(C)22136x y -=(D)22163x y -=3.(2021年高考全国卷理科7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A,B 两点,AB为C 的实轴长的2倍,那么C 的离心率为〔A 2B 3C 〕2〔D 〕3答案:B解析:由题意知,AB为双曲线的通径,所以,AB a a b 422==,222=∴ab又3122=+=ab e ,应选B.点评:此题考察双曲线HY 方程和简单几何性质,通过通经与长轴的4倍的关系可以计算出离心率的关键22ab 的值,从而的离心率。
4.(2021年高考卷理科8)椭圆22122:1(0)x y C a b a b +=>>与双曲线222:14y C x -=有公一共的焦点,2C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,假设1C 恰好将线段AB 三等分,那么〔A 〕2132a=〔B 〕213a =〔C 〕212b =〔D 〕22b =【答案】C【解析】由1C 恰好将线段AB 三等分得133A A x x x x =⇒=,由222A y x x x y =⎧⇒=⎨+⎩,x ∴=y =52(,)aa 在椭圆上,1=2211a b ⇒=又225,a b -= 212b ∴=,应选C 5.(2021年高考卷理科2)双曲线xy 222-=8的实轴长是〔A 〕2(B)【答案】A【解析】x y 222-=8可变形为22148x y -=,那么24a =,2a =,24a =.应选C.6.(2021年高考卷理科5)设双曲线()019222>=-a y ax 的渐近线方程为023=±y x ,那么a 的值是A.4B.3C.2D.18.(2021年高考卷理科2)设抛物线的顶点在原点,准线方程为2x =-,那么抛物线的方程是〔A 〕28y x =-〔B 〕28y x =〔C 〕24y x =-〔D 〕24y x =【答案】B【解析】:设抛物线方程为2y ax =,那么准线方程为4a x =-于是24a-=-8a ⇒= 9.(2021年高考卷理科10)在抛物线25(0)y x ax a ==-≠上取横坐标为14x =-,22x =的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,那么抛物线顶点的坐标为()〔A 〕(2,9)--〔B 〕(0,5)-〔C 〕(2,9)-〔D 〕(1,6)-10.(2021年高考全国卷理科10)抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.那么cos AFB ∠= (A)45(B)35(C)35-(D)45- 【答案】D【解析】:24(1,0)y x F =得,准线方程为1x =-,由24(1,2),(4,4)24y xA B y x ⎧=-⎨=-⎩得 那么221212()()35AB x x y y =-+-=,由抛物线的定义得2,5AF BF ==由余弦定理得22252(35)4cos 5AFB +-∠==-应选D11.(2021年高考卷理科7)设圆锥曲线r 的两个焦点分别为F 1,F 2,假设曲线r 上存在点P 满足1122::PF F F PF =4:3:2,那么曲线r 的离心率等于A .1322或 B .23或者2 C .12或2 D .2332或 【答案】A 二、填空题:1.(2021年高考卷理科13)点〔2,3〕在双曲线C :1by -a x 2222=〔a >0,b >0〕上,C 的焦距为4,那么它的离心率为_____________.3.(2021年高考卷理科14)假设椭圆22221x y a b +=的焦点在x 轴上,过点〔1,12〕作圆22+=1x y 的切线,切点分别为A,B ,直线AB 恰好经过椭圆的右焦点和上顶点,那么椭圆方程是【答案】22154x y +=【解析】因为一条切线为x=1,且直线AB 恰好经过椭圆的右焦点和上顶点,所以椭圆的右焦点为(1,0),即1c =,设点P 〔1,12〕,连结OP,那么OP ⊥AB,因为12OP k =,所以2AB k =-,又因为直线AB 过点(1,0),所以直线AB 的方程为220x y +-=,因为点(0,)b 在直线AB 上,所以2b =,又因为1c =,所以25a =,故椭圆方程是22154x y +=.4.(2021年高考全国卷理科14)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,。
2021年高考数学(理)解析几何突破性讲练10圆锥曲线综合问题(2)-最值、范围、证明问题一、考点传真:1.掌握解决直线与椭圆、抛物线的位置关系的思想方法;2.了解圆锥曲线的简单应用;3.理解数形结合的思想.二、知识点梳理:1.圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是几何方法,即通过利用圆锥曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是代数方法,即把要求最值的几何量或代数表达式表示为某个(些)变量的函数(解析式),然后利用函数方法、不等式方法等进行求解.2.解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.3.圆锥曲线中的证明问题常见的有:(1)位置关系方面的:如证明直线与曲线相切,直线间的平行、垂直,直线过定点等.(2)数量关系方面的:如存在定值、恒成立、相等等.在熟悉圆锥曲线的定义与性质的前提下,一般采用直接法,通过相关的代数运算证明,但有时也会用反证法证明. 三、例题:例1.(2020年江苏卷,18)在平面直角坐标系xOy 中,若椭圆22:143x y E +=的左、右焦点分别为1F ,2F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥,直线1AF 与椭圆E 相交于另一点B .(1)求12AF F 的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值;(3)设点M 在椭圆E 上,记OAB 与MAB 的面积分别是1S ,2S ,若213S S =,求M 的坐标.【解析】(1)设椭圆22:143x y E +=的长轴长为2a ,短轴长为2b ,焦距为2c ,则2224,3,1a b c ===.所以12AF F 的周长为226a c +=. (2)椭圆E 的右准线为4x =. 设(,0),(4,)P x Q y ,则(,0),(4,)OP x QP x y ==--, 在2x =时取等号.所以OP QP ⋅的最小值为-4.(3)因为椭圆22:143x y E +=的左、右焦点分别为12,F F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥,则123(1,0),(1,0),1,2F F A ⎛⎫- ⎪⎝⎭,所以直线:343AB x y -+. 设(,)M x y ,因为213S S =,所以点M 到直线AB 距离等于点O 到直线AB 距离的3倍. 由此得|343||30403|355x y -+⨯-⨯+=⨯, 则34120x y -+=或3460x y --=.由2234120143x x x y -+=⎧⎪⎨+=⎪⎩,得2724320x x ++=,此方程无解; 由223460143x y x y --=⎧⎪⎨+=⎪⎩,得271240x x --=,所以2x =或27x =-. 代入直线3460l x y --=:,对应分别得0y =或127y =-. 因此点M 的坐标为(2,0)或212,77⎛⎫--⎪⎝⎭.例2.(2020年上海卷,20)双曲线22122:14x y C b-=,圆2222:4(0)C x y b b +=+>在第一象限交点为A ,(,)A A A x y ,曲线2222221,44,A A x y x x b x y b x x⎧-=>⎪Γ⎨⎪+=+>⎩.(1)若A x =b ;(2)若b =2C 与x 轴交点记为12F F 、,P 是曲线Γ上一点,且在第一象限,并满足18PF =,求∠12F PF ;(3)过点2(0,2)2b S +且斜率为2b-的直线l 交曲线Γ于.M N 两点,用b 的代数式表示OM ON ⋅,并求出OM ON ⋅的取值范围.【解析】(1)若A x =A 为曲线1C 与曲线2C 的交点, 222222144A A x y bx y b⎧-=⎪⎨⎪+=+⎩,解得2y b ⎧=⎪⎨=⎪⎩ 2b =(2)方法一:由题意易得12F F 、为曲线的两焦点, 由双曲线定义知:212PF PF a =-,18,24PF a ==,24PF ∴=又5b =,126F F ∴=在12PF F △中由余弦定理可得:2221212121211cos 216PF PF F F F PF PF PF +-∠==⋅⋅ 方法二:5b =,可得2222145(3)64x y x y ⎧-=⎪⎨⎪++=⎩,解得P ,12(7,15),(1,PF PF ∴=--=-,12121211cos(,)16||PF PF PF PF PF PF ⋅∴==⋅ (3)设直线24:22b b l y x +=-+可得原点O 到直线l 的距离d ==所以直线l 是圆的切线,切点为M ,所以2OM k b =,并设2:OM l y x b =,与圆2224x y b +=+联立可得222244x x b b+=+, 所以得,2x b y ==,即(,2)M b ,注意到直线l 与双曲线得斜率为负得渐近线平行, 所以只有当2A y >时,直线l 才能与曲线Γ有两个交点, 由222222144Ax y b x y b ⎧-=⎪⎨⎪+=+⎩,得422A b y a b =+, 所以有4244b b<+,解得22b >+22b <-(舍) 又因为OMON ⋅由ON OM 在上的投影可知:24OM ON b ⋅=+ 所以246OM ON b ⋅=+>+(625,)OM ON ⋅∈++∞.例3. (2019浙江卷)如图,已知点为抛物线的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 右侧.记的面积为.(1)求p 的值及抛物线的准线方程;(2)求的最小值及此时点G 的坐标. 【解析】 (I )由题意得,即p =2. 所以,抛物线的准线方程为x =−1.(Ⅱ)设,重心.令,则.由于直线AB 过F ,故直线AB 方程为,代入,得 ,故,即,所以.又由于及重心G 在x 轴上,故,得. 所以,直线AC 方程为,得.(10)F ,22(0)y px p =>ABC △,AFG CQG △△12,S S 12S S 12p=()()(),,,,,A A B B c c A x y B x y C x y (),G G G x y 2,0A y t t =≠2A x t =2112t x y t-=+24y x =()222140t y y t---=24B ty =-2B y t =-212,B tt ⎛⎫- ⎪⎝⎭()()11,33G A B c G A B c x x x x y y y y =++=++220c t y t-+=242211222,2,,03t t C t t G t t t ⎛⎫⎛⎫-+⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()222y t t x t-=-()21,0Q t-由于Q 在焦点F 的右侧,故.从而. 令,则m >0,.当时,取得最小值,此时G (2,0).例4.(2018·浙江卷)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+y 24=1(x <0)上的动点,求△PAB 面积的取值范围.【解析】(1)证明 设P (x 0,y 0),A ⎝ ⎛⎭⎪⎫14y 21,y 1,B ⎝ ⎛⎭⎪⎫14y 22,y 2. 因为PA ,PB 的中点在抛物线上,所以y 1,y 2为方程⎝ ⎛⎭⎪⎫y +y 022=4·14y 2+x 02,即y 2-2y 0y +8x 0-y 20=0的两个不同的实根.22t >4224221244242222211|2|||322221222211|||1||2|23A c t t t FG y t S t t t t t S t t QG y t t t t-+-⋅⋅--====--+--⋅--⋅-22m t =-1221222134342S m S mm m m m =-=--=++++m =12S S 12+所以y 1+y 2=2y 0,因此,PM 垂直于y 轴.(2)解 由(1)可知⎩⎪⎨⎪⎧y 1+y 2=2y 0,y 1y 2=8x 0-y 20,所以|PM |=18(y 21+y 22)-x 0=34y 20-3x 0,|y 1-y 2|=22(y 20-4x 0).因此,△PAB 的面积S △PAB =12|PM |·|y 1-y 2|=324(y 20-4x 0)32.因为x 20+y 204=1(x 0<0),所以y 20-4x 0=-4x 20-4x 0+4∈[4,5], 因此,△PAB 面积的取值范围是⎣⎢⎡⎦⎥⎤62,15104.例5. (2018·全国Ⅲ卷)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0).(1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0.证明:|FA →|,|FP →|,|FB →|成等差数列,并求该数列的公差.【解析】(1)证明 设A (x 1,y 1),B (x 2,y 2),则x 214+y 213=1,x 224+y 223=1. 两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x 24+y 1+y 23·k =0. 由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m.① 由于点M (1,m )(m >0)在椭圆x 24+y 23=1内,∴14+m 23<1,解得0<m <32,故k <-12. (2)解 由题意得F (1,0).设P (x 3,y 3),则(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0). 由(1)及题设得x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0.又点P 在C 上,所以m =34,从而P ⎝ ⎛⎭⎪⎫1,-32,|FP →|=32. 于是|FA →|=(x 1-1)2+y 21=(x 1-1)2+3⎝ ⎛⎭⎪⎫1-x 214=2-x 12. 同理|FB →|=2-x 22.所以|FA →|+|FB →|=4-12(x 1+x 2)=3.故2|FP →|=|FA →|+|FB →|, 即|FA →|,|FP →|,|FB →|成等差数列. 设该数列的公差为d ,则2|d |=||FB →|-|FA →||=12|x 1-x 2|=12(x 1+x 2)2-4x 1x 2.②将m =34代入①得k =-1.所以l 的方程为y =-x +74,代入C 的方程,并整理得7x 2-14x +14=0.故x 1+x 2=2,x 1x 2=128,代入②解得|d |=32128.所以该数列的公差为32128或-32128.例6. (2018·天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的右顶点为A ,上顶点为B .已知椭圆的离心率为53,|AB |=13.(1)求椭圆的方程;(2)设直线l :y =kx (k <0)与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若△BPM 的面积是△BPQ 面积的2倍,求k 的值.【解析】 (1)设椭圆的焦距为2c ,由已知有c 2a 2=59,又由a 2=b 2+c 2,可得2a =3b .由|AB |=a 2+b 2=13,从而a =3,b =2.所以,椭圆的方程为x 29+y 24=1.(2)设点P 的坐标为(x 1,y 1),点M 的坐标为(x 2,y 2), 由题意,x 2>x 1>0,点Q 的坐标为(-x 1,-y 1).由△BPM 的面积是△BPQ 面积的2倍,可得|PM |=2|PQ |, 从而x 2-x 1=2[x 1-(-x 1)],即x 2=5x 1. 易知直线AB 的方程为2x +3y =6,由方程组⎩⎪⎨⎪⎧2x +3y =6,y =kx ,消去y ,可得x 2=63k +2.由方程组⎩⎪⎨⎪⎧x 29+y 24=1,y =kx ,消去y ,可得x 1=69k 2+4. 由x 2=5x 1,可得9k 2+4=5(3k +2), 两边平方,整理得18k 2+25k +8=0,解得k =-89,或k =-12.当k =-89时,x 2=-9<0,不合题意,舍去;当k =-12时,x 2=12,x 1=125,符合题意.所以,k 的值为-12.四、巩固练习:1.平面直角坐标系xOy 中,过椭圆M:x 2a2+y 2b2=1(a>b>0)右焦点的直线x+y-√3=0交M 于A,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB,求四边形ACBD 面积的最大值.【解析】(1)设A(x 1,y 1),B(x 2,y 2),则x 12a2+y 12b2=1,x 22a2+y 22b2=1,两式相减,得(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0.因为y 1-y2x 1-x 2=-1,设P(x 0,y 0),又P 为AB 的中点,且OP 的斜率为12,所以y 0=12x 0,即y 1+y 2=12(x 1+x 2),解得a 2=2b 2,即a 2=2(a 2-c 2),即a 2=2c 2.又因为c=√3,所以a 2=6.所以M 的方程为x 26+y 23=1.(2)因为CD ⊥AB,直线AB 的方程为x+y-√3=0,设直线CD 的方程为y=x+m,将x+y-√3=0代入x 26+y 23=1,得2x 2-4√3x=0,解得x=0或x=4√33. 不妨令A(0,√3),B (4√33,-√33),可得|AB|=4√63.将y=x+m 代入x 26+y 23=1,得3x 2+4mx+2m 2-6=0,设C(x 3,y 3),D(x 4,y 4),则|CD|=√2·√(x 3+x 4)2-4x 3x 4=2√23√18−2m 2. 又因为Δ=16m 2-12(2m 2-6)>0,即-3<m<3,所以当m=0时,CD 取得最大值4,所以四边形ACBD 面积的最大值为12|AB|·|CD|=8√63.2.设椭圆C 1:x 2a2+y 2b2=1(a>b>0)的离心率为√32,F 1,F 2是椭圆的两个焦点,P 是椭圆上任意一点,且△PF 1F 2的周长是4+2√3.(1)求椭圆C 1的方程.(2)设椭圆C 1的左、右顶点分别为A 、B,过椭圆C 1上的一点D 作x 轴的垂线交x 轴于点E,若点C 满足AB ⊥BC,AD ∥OC,连接AC 交DE 于点P,求证:PD=PE.【解析】(1)由e=√32知,c a =√32,所以c=√32a.因为△PF 1F 2的周长是4+2√3, 所以2a+2c=4+2√3,所以a=2,c=√3, 所以b 2=a 2-c 2=1,所以椭圆C 1的方程为x 24+y 2=1.(2)由(1)得A(-2,0),B(2,0), 设D(x 0,y 0),所以E(x 0,0). 因为AB ⊥BC,设C(2,y 1),所以AD⃗⃗⃗⃗⃗ =(x 0+2,y 0),OC ⃗⃗⃗⃗⃗ =(2,y 1).由AD ∥OC,得(x 0+2)y 1=2y 0,即y 1=2y 0x0+2,所以直线AC 的方程为y 2y 0x 0+2=x+24,整理得y=y 02(x 0+2)(x+2).又点P 在直线DE 上,将x=x 0代入直线AC 的方程,可得y=y 02,即点P 的坐标为(x 0,y02),所以P 为DE 的中点,所以PD=PE.3.已知椭圆C:x 2a+y 2b=1(a>b>0),圆Q:(x-2)2+(y-√2)2=2的圆心Q 在椭圆C 上,点P(0,√2)到椭圆C 的右焦点的距离为√6.(1)求椭圆C 的方程;(2)过点P 作互相垂直的两条直线l 1,l 2,且l 1交椭圆C 于A,B 两点,直线l 2交圆Q 于C,D 两点,且M 为CD 的中点,求△MAB 面积的取值范围.【解析】(1)∵椭圆C 的右焦点F(c,0),|PF |=√6,∴c=2.∵点(2,√2)在椭圆C 上,∴4a2+2b2=1.由a 2-b 2=4得a 2=8,b 2=4,∴椭圆C 的方程为x 28+y 24=1.(2)由题意可得l 1的斜率不为零,当l 1垂直x 轴时,△MAB 的面积为12×4×2=4,当l 1不垂直x 轴时,设直线l 1的方程为y=kx+√2,则直线l 2的方程为y=-1k x+√2,A(x 1,y 1),B(x 2,y 2),由{x 28+y 24=1,y =kx +√2,消去y 得(1+2k 2)x 2+4√2kx-4=0, ∴x 1+x 2=-4√2k1+2k 2,x 1x 2=-41+2k 2, 则|AB |=√1+k 2|x 1-x 2|=4√(1+k 2)(4k 2+1)2k 2+1.由圆心Q(2,√2)到l 2的距离d 1=√1+k 2<√2得k 2>1, 又MP ⊥AB,QM ⊥CD,∴GM ∥AB,∴点M 到AB 的距离等于点Q 到AB 的距离,设为d 2,即d 2=√2+√2|√1+k 2=√1+k 2,∴△MAB 面积S=12|AB |d 2=4|k |√4k 2+12k 2+1=4√k 2(4k 2+1)(2k 2+1)2.令t=2k 2+1∈(3,+∞),则1t ∈(0,13),S=4√2t 2-3t+12t 2=4√12(1t -32)2-18∈(4√53,4),综上,△MAB 面积的取值范围为(4√53,4]. 4.如图,点M (√3,√22)在椭圆x 2a 2+y 2b 2=1(a>b>0)上,且点M 到两焦点的距离之和为4.(1)求椭圆的方程;(2)设与MO(O 为坐标原点)垂直的直线交椭圆于A,B(A,B 不重合)两点,求OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ 的取值范围. 【解析】(1)由已知得,2a=4,∴a=2.又点M (√3,√22)在椭圆x 2a 2+y 2b 2=1(a>b>0)上, ∴34+12b 2=1,解得b 2=2,∴所求椭圆的方程为x 24+y 22=1.(2)∵k O M=√66,∴k A B=-√6. 设直线AB 的方程为y=-√6x+m,联立方程{x 24+y 22=1,y =−√6x +m,消去y 得13x 2-4√6mx+2m 2-4=0.∵Δ=(4√6m)2-4×13(2m 2-4)=8(12m 2-13m 2+26)>0, ∴m 2<26.设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=4√6m 13,x 1x 2=2m 2-413.OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=7x 1x 2-√6m(x 1+x 2)+m 2=3m 2-2813. 结合0≤m 2<26,可得OA⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ 的取值范围是[-2813,5013). 5.(1)求点M 的轨迹C 的方程.(2)设C 与x 轴交于E,F 两点,P 是直线l 上一点,且点P 不在C 上,直线PE,PF 分别与C 交于另一点S,T,证明:A,S,T 三点共线.【解析】(1)设点M(x,y),依题意,|MA||MB|=√(x+4)2+y 222=2,化简得x 2+y 2=4,即轨迹C 的方程为x 2+y 2=4. (2)由(1)知曲线C 的方程为x 2+y 2=4,令y=0,得x=±2,不妨设E(-2,0),F(2,0),如图.设P(-1,y 0),S(x 1,y 1),T(x 2,y 2),则直线PE 的方程为y=y 0(x+2). 由{y =y 0(x+2),x 2+y 2=4,得(y 02+1)x 2+4y 02x+4y 02-4=0, 所以-2x 1=4y 02-4y 02+1,即x 1=2−2y 02y 02+1,y 1=4y 0y 02+1.直线PF 的方程为y=-y03(x-2).由{y =−y03(x -2),x 2+y 2=4,得(y 02+9)x 2-4y 02x+4y 02-36=0, 所以2x 2=4y 02-36y 02+9,即x 2=2y 02-18y 02+9,y 2=12y 0y 02+9.所以k A S=y 1x1+4=4y 0y 02+12−2y 02y 02+1+4=2yy 02+3, k A T=y 2x2+4=12y 0y 02+92y 02-18y 02+9+4=2yy 02+3, 所以k A S=k A T,所以A,S,T 三点共线.6.已知椭圆C 1:x 2a 2+y 2b 2=1(a>b>0)的焦距为4,左、右焦点分别为F 1、F 2,且C 1与抛物线C 2:y 2=x 的交点所在的直线经过F 2.(1)求椭圆C 1的方程.(2)分别过点F 1、F 2作平行直线m 、n,若直线m 与C 1交于A,B 两点,与抛物线C 2无公共点,直线n 与C 1交于C,D 两点,其中点A,D 在x 轴上方,求四边形AF 1F 2D 的面积的取值范围. 【解析】(1)依题意得2c=4,则左、右焦点分别为F(-2,0)、F 2(2,0).所以椭圆C 1与抛物线C 2的一个交点为P(2,√2), 于是2a=|PF 1|+|PF 2|=4√2,从而a=2√2. 又a 2=b 2+c 2,解得b=2,所以椭圆C 1的方程为x 28+y 24=1.(2)依题意,直线m 的斜率不为0,设直线m:x=ty-2, 由{x =ty -2,y 2=x,消去x 并整理,得y 2-ty+2=0, 由Δ=(-t)2-8<0,得t 2<8.由{x =ty -2,x 2+2y 2=8,消去x 并整理,得(t 2+2)y 2-4ty-4=0. 设A(x 1,y 1),B(x 2,y 2),则y 1+y 2=4tt 2+2,y 1y 2=-4t 2+2,所以|AB|=√1+t 2|y 1-y 2| =√1+t 2√(y 1+y 2)2-4y 1y 2=4√2(t 2+1)t 2+2. 因为直线m 与n 之间的距离d=√t 2+1(即点F 2到m 的距离),由椭圆的对称性知,四边形ABCD 为平行四边形,故S 四边形AF 1F 2D=12S 四边形ABCD=12·4√2(t 2+1)t 2+2·√t 2+1=8√2√t 2+1t 2+2. 令√t 2+1=s ∈[1,3),则S 四边形AF 1F 2D=8√2√t 2+1t 2+2=8√2s s 2+1=8√2s+1s∈(12√25,4√2], 所以四边形AF 1F 2D 的面积的取值范围为(12√25,4√2]. 7.已知椭圆C:x 2a 2+y 2b 2=1(a>b>0)过点M(2,1),且离心率为√32.(1)求椭圆C 的方程.(2)设A(0,-1),直线l 与椭圆C 交于P,Q 两点,且|AP|=|AQ|,当△OPQ(O 为坐标原点)的面积S 最大时,求直线l 的方程.【解析】(1)依题意得4a 2+1b 2=1,e=c a =√32,又a 2=b 2+c 2,解得a 2=8,b 2=2,所以椭圆C 的方程为x 28+y 22=1. (2)显然,直线l 的斜率k 存在.①当k=0时,可设直线l 的方程为y=y 0,P(-x 0,y 0),Q(x 0,y 0),则x 028+y 022=1. 所以S=12|2x 0|·|y 0|=|x 0|·|y 0|=2√y 02·(2-y 02)≤2·y 02+(2−y 02)2=2.当且仅当y 02=2-y 02,即|y 0|=1时取等号,此时直线l 的方程为y=±1.②当k ≠0时,可设直线l 的方程为y=kx+m,P(x 1,y 1),Q(x 2,y 2), 联立{y =kx +m,x 28+y 22=1,消去y 整理得(1+4k 2)x 2+8kmx+4(m 2-2)=0.由Δ=(8km)2-4(1+4k 2)·4(m 2-2)>0,得8k 2+2>m 2, (*)则有x 1+x 2=-8km1+4k2,x 1x 2=4(m 2-2)1+4k2,于是可得PQ 的中点坐标为(-4km 1+4k2,m 1+4k 2).因为|AP|=|AQ|,所以m1+4k 2+1-4km 1+4k 2-0=-1k ,化简得1+4k 2=3m,结合(*)可得0<m<6.又点O 到直线l 的距离d=√k 2+1,|PQ|=√1+k 2·|x 1-x 2|=4√1+k 2·√8k 2+2−m 21+4k 2,所以S=12|PQ|·d=12·√1+k2·4√1+k 2·√8k 2+2−m 21+4k 2.即S=23√6m -m 2=23√-(m -3)2+9, 所以当m=3时,S 取得最大值,此时k=±√2,直线l 的方程为y=±√2x+3. 综上所述,直线l 的方程为y=±1或y=±√2x+3.8.已知抛物线C:y 2=2px(p>0)过点M(m,2),其焦点为F,且|MF|=2.(1)求抛物线C 的方程.(2)设E 为y 轴上异于原点的任意一点,过点E 作不经过原点的两条直线分别与抛物线C 和圆F:(x-1)2+y 2=1相切,切点分别为A,B,求证:A,B,F 三点共线.【解析】(1)抛物线C 的准线方程为x=-p 2,∴|MF|=m+p2=2.又∵抛物线C:y 2=2px(p>0)过点M(m,2), ∴4=2pm,即4=2p (2−p2), ∴p 2-4p+4=0,∴p=2, ∴抛物线C 的方程为y 2=4x.(2)设点E(0,t)(t ≠0),已知切线不为y 轴.设直线EA:y=kx+t,联立{y =kx +t,y 2=4x,消去y,可得k 2x 2+(2kt-4)x+t 2=0.∵直线EA 与抛物线C 相切, ∴Δ=(2kt-4)2-4k 2t 2=0,即kt=1,代入k 2x 2+(2kt-4)x+t 2=0,得1t 2x 2-2x+t 2=0,∴x=t 2,即A(t 2,2t).设切点B(x 0,y 0),则点O,B 关于直线EF:y=-tx+t 对称,则{y 0x 0×t -00−1=−1,y2=−t ·x 02+t,解得{x 0=2t 2t 2+1,y 0=2t t 2+1, 即B (2t 2t 2+1,2tt 2+1).当t ≠±1时,直线AF 的斜率k A F=2tt 2-1,直线BF 的斜率k B F=2tt 2+1-02t2t 2+1-1=2tt 2-1,∴k A F=k B F,即A,B,F 三点共线.当t=±1时,A(1,±2),B(1,±1),此时A,B,F 三点共线. 综上可知,A,B,F 三点共线.9.以边长为4的等边△ABC 的顶点A 以及BC 边的中点D 为左、右焦点的椭圆过B,C 两点. (1)求该椭圆的标准方程.(2)过点D 且与x 轴不垂直的直线l 交椭圆于M,N 两点,求证:直线BM 与CN 的交点在一条直线上.【解析】(1)由题意可知两个焦点为(-√3,0)与(√3,0),且2a=6,因此椭圆的标准方程为x 29+y 26=1. (2)当MN 不与x 轴重合时,设MN 的方程为x=my+√3,且B(√3,2),C(√3,-2), 联立{2x 2+3y 2-18=0,x =my +√3,消去x,得(2m 2+3)y 2+4√3my-12=0,即y 1+y 2=-4√3m 2m 2+3,y 1y 2=-122m 2+3.设M(x 1,y 1),N(x 2,y 2),则直线BM:y-2=1x -√3(x-√3), ① 直线CN:y+2=2x -√3(x-√3). ②由②-①得4=(x-√3)(2x-√31x-√3)=(x-√3)·my 1(y 2+2)−my 2(y 1-2)m 2y 1y 2=(x-√3)2y 1+2y 2my 1y 2=(x-√3)·-8√3m2m 2+3-12m 2m 2+3=2√33(x-√3),则x-√3=2√3,即x=3√3.当MN 与x 轴重合时,即MN 的方程为x=0,即M(3,0),N(-3,0).则直线BM:y-2=3−√3(x-√3), ③直线CN:y+2=-3-3(x-√3). ④ 联立③④消去y,得x=3√3.综上可知,直线BM 与CN 的交点在直线x=3√3上.10.设直线l 与抛物线x 2=2y 交于A,B 两点,与椭圆x 24+y 23=1交于C,D 两点,直线OA,OB,OC,OD(O 为坐标原点)的斜率分别为k 1,k 2,k 3,k 4,若OA ⊥OB.(1)是否存在实数t,满足k 1+k 2=t(k 3+k 4)?并说明理由.(2)求△OCD 面积的最大值.【解析】设直线l 的方程为y=kx+b(b ≠0),A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),D(x 4,y 4).联立y=kx+b 和x 2=2y,得x 2-2kx-2b=0,则x 1+x 2=2k,x 1x 2=-2b,Δ=4k 2+8b>0.y 1y 2=(kx 1+b)(kx 2+b)=k 2x 1x 2+kb(x 1+x 2)+b 2=b 2.因为OA ⊥OB,所以x 1x 2+y 1y 2=-2b+b 2=0,得b=2.联立y=kx+2和3x 2+4y 2=12,得(3+4k 2)x 2+16kx+4=0,所以x 3+x 4=-16k 3+4k 2,x 3x 4=43+4k 2.由Δ2=192k 2-48>0,得k 2>14.(1)因为k 1+k 2=y 1x 1+y 2x 2=k,k 3+k 4=y 3x 3+y4x 4=-6k, 所以k 1+k 2k 3+k 4=-16,故存在实数t=-1b ,使得k 1+k 2=t(k 3+k 4). (2)根据弦长公式|CD|=√1+k 2|x 3-x 4|,得|CD|=4√3·√1+k 2·√4k 2-13+4k 2,根据点O 到直线CD 的距离公式,得d=√1+k 2,所以S △OCD=12|CD|·d=4√3·√4k 2-13+4k 2. 设√4k 2-1=t>0,则S △OCD=4√3t t 2+4≤√3,所以当t=2,即k=±√52时,S △OCD 有最大值,最大值为√3.11.如图,设抛物线C 1:y 2=-4mx(m>0)的准线l 与x 轴交于椭圆C 2:x 2a +y 2b =1(a>b>0)的右焦点F 2,F 1为C 2的左焦点.椭圆C 2的离心率为e=12,抛物线C 1与椭圆C 2交于x 轴上方一点P,连接PF 1并延长其交C 1于点Q,M 为C 1上一动点,且在P,Q 两点之间移动.(1)当a 2+√3b取最小值时,求C 1和C 2的方程; (2)若△PF 1F 2的边长恰好是三个连续的自然数,求△MPQ 面积的最大值以及此时直线MP 的方程.【解析】(1)因为c=m,e=c a =12,则a=2m,b=√3m,所以a 2+√3b 取最小值时m=1,所以抛物线C 1的方程为y 2=-4x.此时a=2,b 2=3,所以椭圆C 2的方程为x 24+y 23=1.(2)因为c=m,e=c a =12,所以a=2m,b=√3m,设椭圆的标准方程为x 24m 2+y 23m 2=1,点P(x 0,y 0),Q(x 1,y 1), 由{x 24m 2+y 23m 2=1,y 2=−4mx,得3x 2-16mx-12m 2=0, 所以x 0=-23m 或x 0=6m(舍去).代入抛物线方程得y 0=2√63m,即P (-2m 3,2√6m 3), 所以|PF 1|=5m 3,|PF 2|=2a-|PF 1|=7m 3,|F 1F 2|=2m=6m 3.又△PF 1F 2的边长恰好是三个连续的自然数,所以m=3. 此时抛物线的方程为y 2=-12x,F 1(-3,0),P(-2,2√6), 则直线PQ 的方程为y=2√6(x+3).联立{y =2√6(x+3),y 2=−12x,得x 1=-92或x 1=-2(舍去), 于是Q (-92,-3√6). 所以|PQ|=√(-2+92)2+(2√6+3√6)2=252. 设M (-t 212,t)(t ∈(-3√6,2√6))到直线PQ 的距离为d,则d=√630×|(t +√62)2-752|,当t=-√62时,d m ax=√630×752=5√64, 所以△MPQ 面积的最大值为12×252×5√64=125√616. 此时直线MP:y=-4√63x-2√63.。