注射模具设计强度和刚度计算例_.
- 格式:doc
- 大小:535.00 KB
- 文档页数:8
注射模设计步骤:1、工艺性分析从塑件尺寸、精度等级、塑件要求、方便加工和热处理等方面对塑件型腔数目、浇口型式、型芯与型腔结构形式作出分析。
2、确定型腔数目根据塑件的生产批量及尺寸精度要求确定型腔数目。
按照任务书塑件图(图附在计算说明书上),计算塑件体积(小沟、槽等部位简化),单位为3cm。
塑件体积:≈Vs根据查表4-1得知的塑料ABS密度,计算单件塑件重量,单位为g。
m单件塑件重量:=s3、型腔、型芯工作部位尺寸的确定ABS塑料的收缩率是%3.0,计算平均收缩率k。
%8.0~平均收缩率:=k分别计算型腔径向尺寸L、型腔深度尺寸H、型芯径向尺寸l、型芯高度尺寸h(按照教材P74~75计算公式计算)。
型腔径向尺寸:L=型腔深度尺寸:H=型芯径向尺寸:l=型芯高度尺寸:h=加收缩率后各工作部位尺寸计算结果附图表示。
通常,塑件中1mm和小于1mm并带有大于0.05mm公差的部位以及2mm和小于2mm并带有大于0.1mm公差的部位不需要进行收缩率计算。
4、浇注系统设计(1)确定分型面位置根据塑件结构,确定分型面形式。
必须加粗标出分型面位置。
(2)确定浇口型式及位置浇口直径可以根据经验公式计算:42)20.0~14.0(A d δ=式中 d —浇口直径(mm );δ—塑件在浇口处的壁厚(mm );A —型腔表面积(2mm )分型面及浇口位置附图表示。
(3)确定型腔位置的排布布置形式附图表示。
(4)初步设计主流道及分流道形状和尺寸由教材P 77~80确定主流道及分流道形状和尺寸,并附图表示。
根据流道设计参数校核流动比∑=Φi i t L /式中 Φ —流动距离比;i L —模具中各段料流通道及各段模腔的长度(mm );i t —模具中各段料流通道及各段模腔的截面厚度(mm )。
影响流动比的因素主要是塑料的流动性,ABS 塑料与聚甲醛的流动性均为中等,查表4-3参考聚甲醛的允许流动比[Φ]=210~110,判断是否满足Φ<[Φ]。
第二章 注塑模具设计实例实例一:单分型面注塑模具设计一、塑件工艺性分析该塑件是一塑料瓶盖,如图2一1所示,塑件壁厚属薄壁塑件,生产批量很大,材料为聚乙烯(PE ,在高密度聚乙烯中掺入了部分低密度聚乙烯,改善塑件的柔韧性),成型工艺性很好,可以注射成型。
二、塑成型设备的选择与成型工艺规程的编制 1. 注射机的选用 1)注射量的计算通过计算或Pro/E 建模分析,塑件质量m 为2.8g ,塑件体积V 1=3.077cm 3流道凝料的质量m 2还是个未知数,可按塑件质量的0.6倍来估算。
从上述分析中确定为一模八腔,所以注射量为:m =1.6nm = 1.6 ×8 ×2.8=35. 84g2)塑件和流道凝料在分型面上的投影面积及所需锁模力的计算流道凝料(包括浇口)在分型面上的投影面积A 2,在模具设计前是个未知值,根据多型腔模的统计分析,A 2是每个塑件在分型面上的投影面积A 1的0.2倍~0.5倍,因此可用0. 35 nA 1来进行估算,所以A=nA 1+A 2=nA 1+0. 35nA 1=1.35nA 1=8412. 336mm2式中 A 1=24d= 0. 785 ×31. 52=778. 92mm 2F m =A p 型=8412. 336 ×30=252370N =252. 37kN 式中型腔压力p 型取30MPa (因是薄壁塑件,浇口又是潜伏式浇口,压力损失大,取大一些)。
3)选择注射机根据每一生产周期的注射量和锁模力的计算值,可选用SZ 一60/450卧式注射机,见表2一12. 注塑成型工艺参数选用图2—1三、塑模具结构方案设计1.型腔数量的确定及型腔的排列1)型腔数量的确定该塑件精度要求不高,又是大批大量生产,可以采用一模多腔的形式。
考虑到模具制造费用、设备运转费用低一些,初定为一模八腔的模具形式。
2)型腔排列形式的确定该塑件有两圈内螺纹,要使螺纹型芯从塑件上脱出,必须设计一套自动脱螺纹的齿轮传动结构,并且型腔的分布圆直径和齿轮分布圆直径相吻合,若采用一模八腔,型腔分布圆直径就相当大了,这样模具结构尺寸就比较大,加上齿轮传动系统,模具结构复杂,制造费用也很高。
1.塑件结构及工艺分析图1是我公司开发的某冰箱上的门控开关盒零件,门控开关盒用于固定门控开关,是冰箱上的可见外观件,要求外表面光亮美观,无外观缺陷,材料为ABS,乳白色,一模多腔,采用HT-500注射成型机生产。
从产品结构上分析,塑件外形为长方形盒状,大小尺寸适中,壁厚均匀,成型的难点在于一是普通浇口难以成型,二是塑件两侧面分别有三处侧凹槽需要侧向抽芯。
要实现一模多腔,合理的模具结构和布局及抽芯机构的合理选择是简化模具结构,降低模具成本的关键所在。
2.棋具结构分析和确定根据产品的工艺分析,结合现有设备和产品外观要求及从产品的生产效率和经济性能考虑,模具采用一模四腔进行设计。
分型面选在D-D处。
根据产品形状,若采用侧浇口进料,会造成塑件进料不平衡,远离浇口的一侧不易成型,且产品边沿处会留有浇口痕迹,为保证产品外观质量和考虑到进料均匀平衡及便于成型,模具采用点浇口进料,双分型面结构。
若两侧面的抽芯均采用斜导柱抽芯,会造成模板尺寸外形增大,加工成本增大。
为使模具外形紧凑,节省模具空间,减小模具外形尺寸,充分利用现有设备,一侧的大长方形凹槽采用斜导柱外侧抽芯,另一侧的两个小方形凹槽采用斜滑块内侧抽芯来实现,从而达到简化模具结构,减小模具外形的目的。
产品分位置布置如图2所示3.模具结构及工作过程模具工作过程:当模具开启时,在拉钩的作用下,型腔板随动模板一起运动,模具沿Ⅰ-Ⅰ面分型,同时开模力通过斜导柱作用于侧滑块,驱动侧滑块在动模板上的导滑槽内作侧向移动,完成长方凹槽的侧向抽芯动作。
当型腔板运动到型腔板中孔的台肩与拉杆导柱的台肩相碰时,型腔板不动,模具沿Ⅱ-Ⅱ面分型。
当模具开启到终点位置时,在型芯包紧力的作用下,塑件被留在了动模一侧,注射机推动顶出机构运动,顶出板带动斜滑块及顶杆同时向前运动,斜滑块完成两个方凹槽的内侧抽芯,顶杆将塑件顶出。
闭模时,斜导柱带动侧滑块恢复至原位。
至此,一个工作循环结束。
4.模具关键部位的设计4.1浇注系统设计浇注系统的设计,应考虑到进料均衡,为保证各腔的充注压力始终保持一致,流道的布置采用平衡进料的方式,采用点浇口进料,使熔体流动均匀,填充迅速,不仅可以便于成型,提高塑件的成型质量,而且可以有效降低翘曲变形。
注塑机设计中常用的计算规范一、螺杆塑化能力:G = 0.017682D·h3·n·ρSD/4*L理论注射容积:V=π2S式中:D s——螺杆直径(cm)L——螺杆行程(cm)实际注射量:G1=ρV式中:ρ—熔料的密度(g/cm3),计算时选PS料,ρ= 0.92。
V——理论注射容积(cm3)注1:计算公式来源于经验公式。
二、螺杆的强度根据螺杆最常见的破坏,是在加料段螺槽根径处发生断裂,所以螺杆的强度计算就以此处计算其应力。
σr =224τσ+c≤〔σ〕 式中:压缩应力σc =sF P 0= 210⎪⎪⎭⎫ ⎝⎛d D 0p剪应力 τ=stW M 材料许用应力〔σ〕=ny σ式中三、熔胶筒的壁厚:(按厚壁筒计算中的能量理论,校核其强度或计算壁厚)熔胶筒的总应力σr = P 1322-K K ≤ 〔σ〕熔胶筒壁厚 δ= 2b D (P3-〔σ〕〔σ〕- 1 ) 式中部分熔胶筒的K 值四、螺杆驱动功率:采用经验公式计算N s = C·5.2D·n4.1S式中:N s——螺杆驱动功率(kw)C ——与螺杆结构参数及传动方式有关的系数取C=0.00016D s——螺杆直径(cm)n ——螺杆转速(r/min)螺杆所需扭矩与直径及转速之间的关系,可用下式表示:M t = 10α·D mS式中:M t——螺杆扭矩(N·m)——螺杆直径(cm)DSα——比例系数,对于热塑性塑料α=1.2~1.5m ——由树脂性能而定的指数,m=2.7~3螺杆的驱动功率一般需留20~30%的余量,以作备用。
五、传动轴的强度:传动轴最常见的破坏是在承受扭矩的最小截面处发生断裂,所以传动轴的强度计算就以此处进行计算:σr =224τσ+c ≤〔σ〕 式中:压缩应力σc = sF P= 210⎪⎪⎭⎫ ⎝⎛d D 0p剪应力 τ=stW M 材料许用应力〔σ〕=ny σ式中六、轴 承1、基本额定动负荷计算:C =Tn dm h f f f f f ·P < C r (或C a ) 式中C ——基本额定动负荷计算值(N ); P ——当量动负荷,见下式(N ); h f ——寿命系数,按表7-2-4选取; n f ——速度系数,按表7-2-5选取;m f ——力矩负荷系数,力矩负荷较小时1.5,力矩负荷较大时2; d f ——冲击负荷系数,按表7-2-6选取; T f ——温度系数,按表7-2-7选取;C r ——轴承尺寸及性能表中所列径向基本额定动负荷(N ); C a ——轴承尺寸及性能表中所列轴向基本额定动负荷(N )。
塑料注射模具设计目录第1章绪论 (1)1.1模具在加工工业中的地位 (1)1.2塑料模工艺与注塑模具 (1)1.3本课题研究的意义 (3)第2章注塑模的工艺分析 (4)2.1注塑模组成部分 (4)2.2模具的毛坯、制造特点和使用关系 (5)2.3注塑模结构分析 (6)2.4注塑模工作原理及装配图 (7)第3章定模板的制造加工 (9)3.1定模板的加工 (9)3.1.1制定定模板加工步骤 (9)3.1.2 选择加工设备 (12)3.2加工工艺过程 (12)第4章型芯的加工制造 (13)4.1型芯的加工 (13)4.1.1制定动模板加工步骤 (13)4.1.2 加工工艺过程 (16)第5章定模座板、动模座板的加工 (18)5.1定模座板的加工 (18)5.1.1制定定模座板加工步骤 (18)5.1.2 选择加工设备 (20)5.1.3工工艺过程 (20)5.2动模座板的加工 (20)5.2.1制定动模座板加工步骤 (21)5.2.2 选择加工设备 (22)5.2.3工工艺过程 (22)第6章型芯固定板的加工 (23)6.1制定型芯固定板加工步骤 (23)6.1.1分析型芯固定板的结构 (24)6.1.2 确定加工方法 (24)6.1.3 选择加工设备 (24)6.2加工工艺过程 (24)第7 章支承零部件的加工 (26)7.1支承板的加工 (26)7.1.1制定支承板加工步骤 (26)7.1.2 加工工艺过程 (27)7.2垫块的加工 (28)7.2.1制定垫块加工步骤 (28)7.1.2 加工工艺过程 (29)第8章推出机构的制造 (30)8.1推件板的加工步骤 (30)8.1.1制定推件板加工步骤 (30)8.1.2 加工工艺过程 (34)8.2推板的制造 (34)8.2.1制定推板加工步骤 (35)8.2.2 加工工艺过程 (35)8.3推杆固定板的加工 (36)8.3.1制定动模板加工步骤 (36)8.3.2 加工工艺过程 (37)第9章标准件的选用 (38)9.1导柱的选用 (38)9.2浇口套的选用 (39)第10章模具装配、试模与调试 (41)10.1模具装配工艺过程 (41)10.2连接件的调试与修整 (43)10.3注塑模中出现的问题 (44)10.4成型设备的参数 (44)结论 (46)参考文献 (47)致谢 (48)附录 (49)第1章绪论1.1模具在加工工业中的地位模具是工业生产的重要装备,是国民经济的基础设备,是衡量一个国家和地区工业水平的重要标志。
榨汁机上盖塑料模设计摘要:本文通过对榨汁机上盖的结构、生产及材料工艺性分析,论述了材料的选用、生产工艺的制定及设备型号的选择,确定模具结构及相关成型的零件图、装配图的设计及三维造型,以及工厂模具零件的加工工艺。
关键词:ABS塑料、榨汁机上盖、塑料模具设计、模具零件加工工艺、数控编程、模具报价、工厂实用模具术语。
一、塑件工艺性分析(一)塑件原材料分析(二)塑件尺寸精度分析(加塑件图)(三)塑件表面质量分析(四)塑件结构工艺分析三、成型设备选择与模具工艺参数编制(一)(二)(三)一般工厂的塑胶部都拥有从小到大各种型号的注射机。
中等型号的占大部分,小型和大型的只占一小部分。
所以我们不必过多的考虑注射机型号。
具体到这套模具,厂方提供的注射机型号和规格以及各参数如下:最大注射量:95g最大锁模力:120T拉杆内间距:模板大小:400×550最大模具厚度:最小模具厚度:最大开合模行程:120推出形式:顶针顶杆中心距:顶杆直径:推出位置:产品离开后模最大顶出行程:60定位圈直径:喷嘴球面半径:sr20四、拟定模具结构形式(一)确定型腔数量及排列方式型腔的数量是由厂方给定,为“一出二”即一模二腔,他们已考虑了本产品的生产批量(小批量生产)和自己的注射机型号。
因此我们设计的模具为多型腔的模具。
考虑到模具成型零件和抽芯结构以及出模方式的设计,模具的型腔排列方式如下图所示:图 (2)(二)模具结构形式的确定由于塑件外观质量要求高,尺寸精度要求一般,且装配精度要求高,因此我们设计的模具采用多型腔单分型面。
根据本塑件榨汁机上盖的结构,模具将会采用单个分模面,二个行位的结构。
(三)分型面位置的确定如下图所示,采用A-A平直的分型面,前模(即定模)做成平的就行了,胶位全部做在后模(即动模),大简化了前模的加工。
A-A分型面也是整个模具的主分模面。
下图中虚线所示的B -B和C-C分型面是行位(即滑块)的分型面。
这样选择行位分型面,有利于线切割行位以及后模仁和后模镶件这些成型零件。
注射模具设计的习题
10、有一壳形塑件,如图7-37所示,所用模具结构如图7-38所示,选用HDPE 塑料成型,型腔压力取40MPa,模具材料选45钢,其许用应力[σ]=160MPa,其余尺寸见图7-38。
计算定模型腔侧壁厚度S和型芯垫板厚度H。
1
1、定模型腔侧壁厚度的计算:
分析:该零件为矩形零件,凹模置于定模侧,且采用了底部镶拼组合式结构,模板形状为矩形,所以采用组合式凹模的侧壁厚度的计算公式。
刚度计算公式为P156中(6.20)
p⨯H1⨯l4
S= 32⨯E⨯H⨯[δ]
参数取值 p=40MPa;H1=80mm,l=120mm
E=2.06*105Mpa,H=120mm
[δ]=?
其中:许用变形量[δ]的确定,满足以下三个原则
型腔不发生溢料
HDPE的许用变形量为0.025~0.04mm,HDPE的粘度相对较高,取为0.03mm
保证塑件精度
塑件的外轮廓尺寸中长度尺寸为120mm,没有标公差等级,按MT7取公差,即
δ=∆i/[5(1+∆i)]=2.4/[5(1+2.4)],所以保证塑件精度的许用变形量为0.14mm
保证塑件顺利脱模
[δ]≤2⨯2%+4%
2=0.06mm
所以许用变形量[δ]=0.03mm
6.20)可得到
S=40⨯80⨯1204
32⨯2.06⨯105⨯120⨯0.03=30.35mm
4 由刚度计算公式(
强度计算公式:(公式6.22)
S=p⨯H1⨯l2
2⨯H⨯[σ]
参数取值[σ]=160MPa,p=40MPa;H1=80mm,l=120mm
=40⨯80⨯1202
S2⨯120⨯160=34.64mm
但考虑应力中第二项的影响,S稍放大,取为40mm
比较强度和刚度计算的结果,将定模型腔的侧壁厚度暂取为40mm
因此凹模周界尺寸为:B0=65+2*40=145mm L=120+2*40=200mm 查看中小型标准模架,将本模具与模架模型对比: 6
初选B0*L=160*200的模架
● 本模具中定模板厚度为120mm,该系列模架中定模板最大厚度为80mm,不能满足要求;
● 模具中垫块厚度C必须满足以下关系式:C≥(80-2)+推板厚度+推出固定板厚度+该系列模架中垫块厚(5~10)mm,
度为80mm,不能满足要求;
● 导柱会削弱模具的强度;
所以考虑选用周界尺寸更大的标准模架,选用B0*L=200*250mm的模架
(该模架满足模具总体放大需求,满足推板尺寸要求,但定模板和垫板的厚度仍需单独定制。
)
各部分的尺寸如下图所标:
✧定模座板(零件1):250*250*25
✧定模板(零件3、4): 200*250*120
✧动模板(零件7): 200*250*40
(动模板厚度由型芯直径(116*61)和型芯高度(78
一般厚度为0.2~2反之,取上限,在此取为40)
动模支撑板(零件7):200*250*32
校核动模支撑板的厚度h=32是否满足强度和刚度要求?刚度计算公式:
h
参数取值:p=40MPa;b=65mm; L(B2)=118mm;E=2.06*105Mpa,B(B0)=200mm 许用变形量[δ]的确定,参考教材P158 [δ]=0.05mm 13
刚度计算可得:
h==mm
强度计算:
各参数取值为:p=40MPa;b=65mm; L=118mm;
B=200mm;[σ]=160MPa
h==mm
所以动模支撑板的厚度32mm不满足其强度和刚度要求,两种解决方案:
一、加厚动模支撑板;二、减小双支脚间距
在此采用一,将动模支撑板厚度增加到40mm
✧动模模脚(零件9)尺寸如右图所示
⏹推板:250*148*20
⏹推出固定板(零件8):148*250*16
⏹动模模脚(垫块与动模座板合二为一)到动模支
撑板的距离) = 推板厚度+推出固定板厚度+塑
件推出高度(塑件包覆在型芯上的高度)+5~10 (mm)本示例中取为120mm ⏹模脚总高为125mm,内侧(动模模脚靠推板侧)底部厚度为5mm,外侧(动模模脚靠压板固定侧)底部厚度为25mm(与定模座板1的厚度保持一致)
模具总高=25+120+40+40+125
=350mm
由上述模具结构可以推出:
推杆长度=120-20+40+40+78=258mm。