第一讲_概率论概述
- 格式:doc
- 大小:377.00 KB
- 文档页数:5
第⼀章概率论的基本概念第⼀章概率论的基本概念⼀、随机事件其运算1.随机试验、样本点和样本空间(1)随机试验随机试验具有如下特点的试验.1、在相同的条件下,试验可以重复进⾏.2、试验的所有可能结果是预先知道的,并且不⽌⼀个.3、每⼀次试验出现那⼀个结果事先不能确定. (2)样本点和样本空间随机试验的每⼀个可能的(不可分解的)结果,称为这个随机试验的⼀个样本点,记为ω.随机试验的所有样本点组成的集合,称为这个随机试验的样本空间,记为.Ω2.随机事件、基本事件、必然事件和不可能事件在随机试验中,可能发⽣也可能不发⽣的事情称为该试验的随机事件,记为A ,B 等.随机试验的随机事件可以表⽰为它的⼀些样本点组成的集合.在⼀次试验中,若试验结果是随机事件A 中的⼀个样本点,则称在⼀次试验中事件A 发⽣.只包含⼀个样本点的事件称为基本事件.在任何⼀次试验中都发⽣的事件,称为必然事件,它就是Ω所表⽰的事件,因⽽⽤Ω表⽰必然事件.在任何⼀次试验中都不发⽣的事件,称为不可能事件,它就是由φ所表⽰的事件,因⽽⽤φ表⽰不可能事件.3.事件之间的关系和运算 (1)包含关系设A ,B 为⼆事件,若A 发⽣必导致B 发⽣,则称事件A 包含于事件B ,或事件B 包含事件A ,记为B A ?.B A ??A ∈?ω必有B ∈ω,见图1—1. (2)相等关系设A ,B 为⼆事件,若B A ?并且A B ?,则称A 与B 相等,记为B A =,见图1—2.(3)事件的并设A ,B 为⼆事件,称事件“A ,B ⾄少⼀个发⽣(A 发⽣或B 发⽣)”为A ,B 的并(或和),记为.B A ∪B A ∪}|{B A ∈∈=ωωω或.见图1—3.(4)事件的交设A ,B 为⼆事件,称事件“A ,B 同时发⽣(A 发⽣且B 发⽣)”为A ,B 的交(或积).记为或B A ∩AB .AB }|{B A ∈∈=ωωω且.见图1—4. (5)事件的差设A ,B 为⼆事件,称事件“A 发⽣且B 不发⽣”为A 减去B 的差,记为B A ?.B A ? }|{B A ?∈=ωωω且.见图1—5.(6)互不相容关系设A ,B 为⼆事件,若A ,B 不能同时发⽣,称A ,B 互不相容或互斥,记为AB φ=. A ,B 互不相容?AB φ=,见图1—6. (7)对⽴事件设A 为⼀事件,称事件“A 不发⽣”为A 的余事件或A 的对⽴事件,记为A .A =A ?Ω,即φ=Ω=+A A A A ,,见图1—7.(8)完备事件组构成完备事件组,若,,,,21n H H H )( 21j i H H H H H j i n ≠=Ω=++++φ,.换句话说,如果有限个或可数个事件两两不相容,并且“所有事件的和”是必然事件,则称它们构成完备事件组. ,,,,21n H H H 4.事件的运算法则对于任意事件,,有C B A ,, ,,,,21n A A A (1) 交换律 A B B A A B B A ∩∩∪∪==,.(2) 结合律 C B A C B A ∪∪∪∪)()(=;C B A C B A ∩∩∩∩)()(=.(3) 分配律;)()()(C A B A C B A ∩∪∩∪∩=)()()(C A B A C B A ∪∩∪∩∪=.() ∪∩∪∪∩∪∪∪∩)()(11n n A A A A A A A =. (4) 对偶律,;B A B A B A B A ∪∩∩∪==∩∩∩∪∪∪n n A A 11=;∪∪∪∩∩∩n n A A 11=.下列关系和运算要熟记:Ω??A φ;;B A B A B A ∪∩??)(或B B A A B A B A ==??∪∩且;A B A ??;φ=B A B A ;φφ=A ∩;A A =∪φ;φ=Ω;Ω=φ;A B B A ;AB A B A B A ?==?∩;)(A B A B A ∪∪=.【例1】写出下列随机试验的样本空间: (1)从袋中任取3个球,记录取球的结果.(2)从袋中不放回地接连取出3个球,记录取球的结果. (3)从袋中有放回地接连取出3个球,记录取球的结果.(4)从袋中不放回地⼀个⼀个地取球,直到取得⽩球为⽌录取球的结果.【例2】今有3个球、4个盒⼦.写出下列随机试验的样本空间:(1)将3个球任意地放⼊4个盒⼦中去、每个盒⼦放⼊的球数不限,记录放球的结果. (2)将3个球放⼊4个盒⼦中去,每个盒⼦⾄多放⼊1个球,记录放球的结果.【例3】写出下列随机试验的样本空间: (1)在上任取⼀点,记录其坐标. )1,0((2)将⼀尺之捶折成三段,记录三段的长度 (3)在上任取三点,记录三点的坐标.)1,0(【例4】写出下列随机试验的样本空间,⽤样本点的集合表⽰所述事件,并讨论它们之间的相互关系.(1)袋中有3个⽩球和2个⿊球,从其中任取2个球,令A 表⽰ “取出的全是⽩球”,B 表⽰“取出的全是⿊球”,表⽰“取出的球颜⾊相同”, (C i A 2,1=i )表⽰“取出的2个球中恰有i 个⽩球”,表⽰“取出的2个球中⾄少有1个⽩球”. D (2)袋中有2个正品和2个次品,从袋中有放回地接连抽取产品3次,每次任取1件,令 ()表⽰“第次取出的是正品”,i A 3,2,1=i i B 表⽰“3次都取得正品”. (3)从l,2,3,4这4个数字中,任取—数,取后放回,然后再任取⼀数.先后取了3次,令A 表⽰“3次取出的数不超过3”,B 表⽰“3次取出的数不超过2”,表⽰“3次取出的数的最⼤者为3”.C (4)将3个球任意地放⼊4个盒⼦中去,令A 表⽰“恰有3个盒⼦中各有1球”,B 表⽰“⾄少有2个球放⼊同1个盒⼦中”.【例5】设为3事件,试⽤表⽰下列事件: C B A ,,C B A ,,(1)⾄少有1个发⽣. C B A ,, (2)都不发⽣.C B A ,,(3)不都发⽣.C B A ,,(4)不多于1个发⽣. C B A ,,【例6】什么样的事件X 满⾜下列等式: (1)B A X A X =)()(∪∪∪. (2).B A X A ∪∪=(3). )()(C B C A X AB ∪∩∪∪=⼆、事件的概率及其性质1.事件概率的定义(1)古典概型满⾜下列条件的随机试验,称为古典概型.10 有限性:样本点的总数是有限的;20等可能性:所有基本事件是等可能的;①概率的定义:设随机试验为古典概型,样本空间为},,{1n ωω =Ω,A 是⼀个事件.},,{1r i i A ωω =,则事件的概率为含样本点的个数含样本点的个数Ω==A n r A P )(.②概率的性质:对于古典概型,事件的概率具有下列性质. 10. 1)(0≤≤A P 20.1)(=ΩP 30有限可加性:若两两互不相容,则n A A A ,,,21 ∑===ni i n i i A P A P 11)()(∪.(2)⼏何概型满⾜下列条件的随机试验,称为⼏何概型.10有限性:样本空间是直线、⼆维或三维空间中度量(长度、⾯积或体积)有限的区间或区域.20均匀性:样本点在样本空间上是均匀分布的(可通俗地称为是等可能的) .①概率的定义:在⼏何概型中,Ω为样本空间,A 是⼀个事件,定义事件A 的概率)()()(Ω=L A L A P .其中,分别是)(A L )(ΩL A ,的度量.Ω②概率的性质:对于⼏何概型,事件的概率具有下列性质. 10. 1)(0≤≤A P 20.1)(=ΩP 30若两两互不相容,则,,,,21n A A A ∑∞=∞==1)()(i i i i A P A P ∪.(3)事件的频率和性质以及概率的统计定义①事件的频率:将试验重复独⽴地进⾏次,若其中事件n A 发⽣了次,则称为A n A n A 在这n 次试验中出现的频数,称⽐值为n n A /A 在这次试验中出现的频率,记为,即.n )(A f n =)(A n f n n A /②频率的性质:事件的频率有如下性质: 101)(0≤≤A f n . 20.1)(=ΩP 30 若两两互不相容,则m A A A ,,,21 ∑===mi i n m i i n A f A f 11)()(∪.2.概率的公理化定义及性质(1)概率的公理化定义设随机试验E 的样本空间为,以ΩE 的所有随机事件组成的集合(即的⼀些⼦集组成的集合)为定义域,定义⼀个函数(Ω)(A P A 为任意随机事件),即任意⼀个随机事件A 与⼀个实数,且满⾜:)(A P 10.0)(≥A P 20.1)(=ΩP 30 可列可加性:若两两互不相容,则,,,,21n A A A ∑∞=∞==11)()(i i i i A P A P ∪.(2)概率的性质 100)(=φP .20 有限可加性:若两两互不相容,则.n A A A ,,,21 ∑===ni in i iA P A P 11)()(可减性:如果B A ?,则)()()(A P B P A B P ?=?,)()(B P A P ≤?.(⽆条件等式)()()(AB P B P A B P ?=?) 40对于任意事件A ,有1)(≤A P . 50⼀般加法公式:==)(1∪n i i A P ∑=ni i A P 1)(∑≤<≤?nj i j i A A P 1)( ++∑≤<<≤nk j i k j i A A A P 1)()()1(211n n A A A P ??+【例7】袋中有3个⽩球及5个⿊球,(1)从袋中任取4个球,求取得2个⽩球及2个⿊球的概率.(2)从袋中不放回地接连取出4个球,求取得2个⽩球及2个⿊球的概率. (3)从袋中有放回地接连取出 4个球,求取得2个⽩球及2个⿊球的概率.【例8】设有个⼈,每个⼈都等可能地被分配到个房间中的任⼀间(),求下列事件的概率:n N N n < 事件:某指定的间房中各有1个⼈. 1A n 事件:恰有间房各有1个⼈. 2A n 韦件:某指定的房间中有个⼈.3A k 事件:当4A N n =时,恰有⼀间房空着.【例9】编号为1,2,3,4,5,6,7,8,9的车⽪随机地发往三个地区,和的各2,3和4节,求发往同⼀地区的车⽪编号相邻的概率. 1E 2E 3E【例10】从0,1,2,…,9这10个数字中任取1个,取后放回,先后取了6个数字,求下列事件的概率:事件:6个数字全不相同. 1A 事件:不含0与9. 2A 事件:0恰好出现2次. 3A 事件:⾄少出现2个0.4A 事件:6个数字中最⼤的是6. 5A 事件:6个数字的总和是20.6A【例11】有5名插班⽣,其中有3名男⽣、2名⼥⽣.现将他们按每班1⼈任意地分配到编号为1—5的5个班中去,求下列事件的概率:事件:3名男⽣被分到班号相连的3个班中.1A 事件:⾄少有2个男⽣被分到的班号或2个⼥⽣被分到的班号相连. 2A【例12】从n 双尺码不同的鞋⼦中任取r 2 (n r ≤2)只,求下列事件的概率:事件:所取1A r 2只鞋⼦中只有2只成双事件:所取2A r 2只鞋⼦中⾄少有2只成双.事件:所取3A r 2只鞍⼦恰成r 双.【例13】在线段AB 上任取⼀点,该点将AB 分成两段,求下列事件的概率:事件:其中⼀段⼤于另⼀段的倍. 1A m 事件:其中每⼀段都⼩于另⼀段的倍.【例14】设只1个泊位的码头有甲、⼄两艘船停靠,2船各⾃可能在1昼夜的任何时刻到达.设两艘船停靠的时间分别为1⼩时和2⼩时,求下列事件的概率:事件:码头空闲超过2⼩时.1A 事件:⼀艘船要停靠必须等待⼀段时间. 2A【例15】在线段上任取3个点,求下列事件的概率: AC 321,,A A A 事件:位于与之间.1B 2A 1A 1A 事件:能构成1个三⾓形. 2B 321,,AA AA AA【例16】若,5.0)(=A P 4.0)(=B P ,3.0)(=?B A P ,求和)(B A P ∪)(B A P ∪.【例17】对于任意两个互不相容的事件A 与B ,以下等式中只有⼀个不正确,它是: (A) ;)()(A P B A P =?(B) )()(A P B A P =?1)(?+B A P ∪; (C) )()()(B P A P B A P ?=?; (D) ; (E) )())()((A P B A B A P =?∩∪)()()(BA P A PB A P ∪?=?.三、条件概率和乘法公式1.条件概率的定义及性质(1)条件概率的定义设为两个事件,,则称B A ,0)(>B P )()()|(B P AB P B A P =为B 发⽣的条件下A 的条件概率.(2)条件概率的性质条件概率满⾜: 10. 0)|(≥B A P 20.1)|(=ΩB P 30可列可加性:若两两互不相容,则,,,,21n A A A ∑∞=∞==11)|()|(i i i i B A P B A P ∪.2.关于条件概率的三个定理(1)乘法公式若,则0)(>A P )()()(A B P A P AB P =.推⼴若,则0)(21>n A A A P )()()()(12112121?=n n n A A A A P A A P A P A A A P .(2)全概率公式设是样本空间的⼀个划分(或称为完备事件组),即两两不交:n B B B ,,,21 Ωn B B B ,,,21 j i B B j i ≠=,φ,且Ω=n B B B ∪∪∪21.则∑==ni i i B P B A P A P 1)()|()(.(3)贝叶斯公式设是样本空间Ω的⼀个划分,若事件n B B B ,,,21 A 满⾜:,则有0)(>A P n i B P BA PB P B A P A B P nj j ji i i ,,2,1,)()|()()|()|(1==∑=.)(i B P (),通常叫先验概率.,(n i ,,2,1 =)|(A B P i n i ,,2,1 =),通常称为后验概率.如果我们把A 当作观察的“结果”,⽽理解为“原因”,则贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断.n B B B ,,,21【例18】在3重努利试验中,设5.0)(=A P ,若已知A ⾄少出现1次,求A ⾄少出现1次的概率.【例19】⼝袋个装有个⽩球、个⿊球,⼀次取出球,发现都是同⼀颜⾊的球,求它们都是⿊球的概率. 12?n n 2n【例20】假设⼀个⼈在⼀年内患感冒的次数X 服从参数为5的泊松分布;正在销售的⼀种药品A 对于75%的⼈可以将患感冒的次数平均降低到3次,⽽对于25%的⼈⽆效.现在有某⼈试⽤此药⼀年,结果在试⽤期患感冒两次,试求此药有效的概率α.【例21】对产品作抽样检验时,每100件为⼀批,逐批进⾏.对每批检验时,从其中任取1件作检查,如果是次品,就认为这批产品不合格;如果是合格品,则再检查下件.检验过的产品不放回.如此连续检查5件.如果检查5件产品都是合格品,则认为这批产品合格⽽被接受.假定⼀批产中有5%是次品,求这批产品被接受的概率.【例22】加⼯零件需要经过两道⼯序,第—道⼯序出现合格品的概率为0.9,出现次品的概今为0.1第⼀道⼯序加⼯出来的合格的,在第⼆道⼯序中出现合格品的概率为0.8,出现次品的概率为0.2;第⼀道⼯序加⼯出来的次品,在第⼆道⼯序出现次品或出现废品的概率都是0.5.分别求经过两道⼯序加⼯出来的零件是合格品、次品、废品的概率.【例23】在某⼯⼚中有甲、⼄、丙3台机器⽣产同样的产品,它们的产量各占25%,35%,40%,并且在各⾃的产品中.废品各占5%,4%,2%,从产品中任取1件,求它是废品的概率.若取出的是废品,分别求它是甲、⼄、丙机器⽣产的概率.【例24】乒乓球盒内有12个球,其中9个是新球.第⼀次⽐赛时任取3个使⽤,⽤后放回.第⼆次⽐赛时再任取3个球,求此3个球全是新球的概率.若第⼆次取出的3个球全是新球,求第⼀次取出使⽤的3个球也是新球的概率.【例25】袋中装有5个⽩球和2个⿊球,从中任取5个放⼊⼀个空袋中.再从这个袋的5个球做任取3个球放⼊另⼀个空袋个.最后从第三个袋中任取1球,求从第三个袋中取出⽩球的概率.若从第三个袋取出的是⽩球,分别求从第⼀个袋中取出放⼊第⼆个袋的5个球全是⽩球的概率、从第⼆个袋中取出放⼊第三个袋的3个球全是⽩球的概率.四、事件的独⽴性1.⼆事件的独⽴性定义设为⼆事件,若B A ,)()()(B P A P AB P =,则称相互独⽴. B A , 性质若,则相互独⽴的充要条件是)0(>A P B A ,)()|(B P A B P =.定理若相互独⽴,则B A ,A 与B ,A 与B ,A 与B 均独⽴. 2.三个或三个以上事件的独⽴性(1)三个事件相互独⽴设为三个事件,若满⾜: C B A ,,)()()(B P A P AB P =; )()()(C P A P AC P =;)()()(C P B P BC P =;)()()()(C P B P A P ABC P =,则称相互独⽴,简称独⽴.C B A ,,C B A ,,若只满⾜上⾯的前三个式⼦,称两两独⽴.两两独⽴,未必相互独⽴. C B A ,,C B A ,,(2)个事件相互独⽴如果n 个事件满⾜:n n A A A ,,,21 )()()(j i j i A P A P A A P =, n j i ≤<≤1,共个等式; 2nC )()()()(k j i k j i A P A P A P A A A P =, n k j i ≤<<≤1 共个等式; 3nC … … … … … … … … … … … … … … … … … …)()()()(2121n n A P A P A P A A A P = 共个等式 nn C 这等式成⽴,则称相互独⽴,简称独⽴.1232??=+++n C C C n nn n n n A A A ,,,21 n A A A ,,,21 若相互独⽴,是中的个事件,则相互独⽴.n A A A ,,,21 k i i i A A A ,,,21 n A A A ,,,21 k k i i i A A A ,,,21若相互独⽴,将任意n A A A ,,,21 m )1(n m ≤≤个事件换成它的对⽴事件后,所得个事件仍独⽴.n 若相互独⽴,则.n A A A ,,,21 ∏==??=ni in i iA P A P 11))(1(1)(∪3.独⽴试验序列概型贝努利试验对⼀个试验E ,如果只考虑两个结果A 和A ,且,p A P =)(q p A P =?=1)(,则称E 为贝努利试验.n 重贝努利试验将贝努利试验E 重复独⽴地做次,称为n 重贝努利试验.n ⼆项概率公式在n 重贝努利试验中,若⽤表⽰在n 次试验中k n A ,A 出现次,则k kn k k n k n q p C A P ?=)(,,,n k ,,1,0 =p q ?=1.【例26】设有两门⾼射炮,每—门击中飞机的概率都是0.6,求同时射击⼀发炮弹能击中飞机的概率.若欲以99%的概率击中飞机,求⾄少需要多少门⾼射炮同时射击.【例27】今有甲、⼄两名射⼿轮流对同⼀⽬标进⾏射击,甲命中的概率为,⼄命中的概率为,甲先射,谁先命中谁得胜,分别求甲、⼄获胜的概率. 1p 2p【例28】甲、⼄⼆⼈进⾏下棋⽐赛,假设每局甲胜的概率为α,⼄胜的概率为β,且1=+βα,在每局⽐赛中谁获胜谁得1分.如果谁的积分多于对⽅2分,谁就获得全场的胜利,分别求甲、⼄⼆⼈获得全场胜利的概率.【例29】检查产品质量时,从其中连续抽查若⼲件,如果废品不超过2件,则认为这批产品合格⽽被接收.现有⼀⼤批产品,其废品率为0.1. (1)若连续抽查10件.求这批产品被接收的概率.(2)为使这批产品被接收的概率不超过0.9.应⾄少抽查多少件产品.【例30】保险公司为某年龄段的⼈设计⼀项⼈寿保险,投保⼈在1⽉1⽇向保险公司交纳保险费10元,1年内若投保⼈死亡,家属可向保险公司领取5000元,已知在1年内该年龄段的⼈的死亡率为0.0005,(1)若有10000⼈投保,⽔保险公司获利不少于50000元的概率. (2)若有7000⼈投保,求保险公司亏损的概率.。
第一章概率论的基本概论确定现象:在一定条件下必然发生的现象,如向上抛一石子必然下落,等随机现象:称某一现象是“随机的”,如果该现象(事件或实验)的结果是不能确切地预测的。
由此产生的概念有:随机现象,随机事件,随机实验。
例:有一位科学家,他通晓现有的所有学科,如果对一项实验(比如:掷硬币),该万能科学家也无法确切地预测该实验的结果(是正面朝上还是反面朝上),这一实验就是随机实验,其结果是“随机的”----为一随机事件。
例:明天下午三点钟”深圳市区下雨”这一现象是随机的,其结果为随机事件。
随机现象的结果(随机事件)的随机度如何解释或如何量化呢?这就要引入”概率”的概念。
概率的描述性定义:对于一随机事件A,用一个数P(A)来表示该事件发生的可能性大小,这个数P(A)就称为随机事件A发生的概率。
§1.1 随机实验以上实验的共同特点是:1.实验可以在相同的条件下重复进行;2.实验的全部可能结果不止一个,并且在实验之前能明确知道所有的可能结果;3.每次实验必发生全部可能结果中的一个且仅发生一个,但某一次实验究竟发生哪一个可能结果在实验之前不能预言。
我们把对随机现象进行一次观察和实验统称为随机实验,它一定满足以上三个条件。
我们把满足上述三个条件的实验叫随机实验,简称实验,记E。
§1.2样本空间与随机事件(一) 样本空间与基本事件E的一个可能结果称为E的一个基本事件,记为ω,e等。
E的基本事件全体构成的集,称为E的样本空间,记为S或Ω, 即:S={ω|ω为E的基本事件},Ω={e}.注意:ω的完备性,互斥性特点。
例:§1.1中实验E 1--- E 7 E 1:S 1={H,T}E 2:S 2={ HHH,HHT,HTH,THH,HTT,THT,TTH,TTT }E 3:S 3={0,1,2,3} E 4:S 4={1,2,3,4,5,6} E 5: S 5={0,1,2,3,…} E 6:S 5={t0≥t }E 7:S 7={()y x ,10T y x T ≤≤≤}(二) 随机事件我们把实验 E 的全部可能结果中某一确定的部分称为随机事件。
概率论简介一、概率论的定义和基本概念1.1 定义概率论是数学的一个分支,研究的是随机现象的规律性和计算方法。
它基于一组基本的公理,通过概率的定义和推理来描述和解决随机现象。
1.2 随机试验和样本空间概率论研究的基本对象是随机试验和样本空间。
随机试验是指在相同的条件下可以重复进行的实验,其结果不确定,但有一定的规则和概率规律。
样本空间是随机试验所有可能结果组成的集合。
1.3 事件和事件的概率事件是样本空间的子集,表示某些结果的集合。
事件的概率是指该事件发生的可能性大小,用一个实数来表示。
二、概率的计算方法2.1 古典概型古典概型是指具有相同概率的基本事件组成的随机现象。
对于古典概型,可以通过计算基本事件的数量来计算事件的概率。
2.2 几何概型几何概型是指基于几何空间的随机现象。
例如,从一个矩形中随机抽取点,点落在矩形的某一区域内的概率等。
2.3 统计概型统计概型是指基于统计规律的随机现象。
对于统计概型,可以通过观察已经发生的试验结果,来估计事件的概率。
2.4 条件概率和乘法定理条件概率是指在已知一些相关信息的条件下,某个事件发生的概率。
乘法定理是用来计算多个事件同时发生的概率的方法。
三、概率分布和随机变量3.1 概率分布函数概率分布函数描述了随机变量所有可能取值发生的概率。
常见的概率分布函数有离散型分布和连续型分布。
3.2 离散型分布离散型分布是指随机变量只能取有限或可列个数值的概率分布。
常见的离散型分布有伯努利分布、二项分布和泊松分布等。
3.3 连续型分布连续型分布是指随机变量可能取任意实数值的概率分布。
常见的连续型分布有均匀分布、正态分布和指数分布等。
3.4 随机变量的性质随机变量有一些特征值,如期望、方差和标准差等,可以用来描述随机变量的平均性质和离散程度。
四、概率论的应用4.1 统计推断概率论在统计学中有很重要的应用。
通过样本数据,利用概率论的知识进行统计推断,可以估计总体参数,并进行假设检验。
第一章 概率论基础知识概率论是随机过程的基础,在传统的概率论中,限于各种原因,往往借助于直观理解来说明一些基本概念,这对于简单随机现象似乎无懈可击,但对于一些复杂随机现象就难以令人信服了.随着随机数学理论的不断完善,随机过程越来越成为现代概率论的一个重要分支和发展方向. 为了更好地学习随机过程,我们必须对基础概率论的理论有一个比较深入和全面的了解.本章就是在此基础上系统介绍概率论基础知识,包括概率空间、随机变量及其分布、数学期望的若干性质、特征函数和母函数、随机变量列的收敛性及其相互关系、条件数学期望等.1.1 概率空间概率论是研究随机现象统计规律的一门数学分科,由于随机现象的普遍性,使得概率论具有极其广泛的应用.随机试验是概率论的基本概念之一,随机试验所有可能结果组成的集合称为这个试验的样本空间,记为Ω.Ω中的元素ω称为样本点,Ω中的子集A 称为随机事件,样本空间Ω也称为必然事件,空集Φ称为不可能事件.定义 1.1 设Ω是一个集合,F 是Ω的某些子集组成的集合簇(collection )(或称集类),如果 (1)Ω∈F ;(2)若A ∈F ,则\A A =Ω∈F ;(取余集封闭) (3)若n A ∈F ,1,2,n = ,则1n n A ∞=∈ F ;(可列并封闭)则称F 为σ-代数(sigma algebra -)(B orel 域或事件域(field of events )),(,ΩF )称为可测空间(m easurable space ).由定义可以得到 (4)Φ∈F ;(5)若,A B ∈F ,则\A B ∈F ;(取差集封闭)(6)n A ∈F ,1,2,n = ,则1ni i A = ,1ni i A = ,1i i A ∞= ∈F (有限交,有限并,可列交封闭)定义1.2 设(,ΩF )为可测空间,()P ⋅是定义在F 上的实值函数,如果 (1)任意A ∈F ,0()1P A ≤≤;(非负性) (2)()1P Ω=;(正规性)(3)对两两互不相容事件12,,A A (当i j ≠时,i j A A =Φ ),有11()i ii i P A P A ∞∞==⎛⎫=⎪⎝⎭∑ (可列可加性). 则称P 是(,Ω F)上的概率(p r o b a b i l i ),(,ΩF ,P )称为概率空间(probability space ),()P A 为事件A 的概率. 由定义知(4),A B ∈F ,A B ⊂,则(\)()()P B A P B P A =- (可减性)一事件列{,1}n A n ≥称为单调增列,若1,1n n A A n +⊂≥;称为单调减列,若1,n n A A +⊃1n ≥. 显然,如果{,1}n A n ≥为单调增列,则1lim n in i A A∞→∞==;如果{,1}n A n ≥为单调减列,则1lim n in i A A∞→∞==.(5)(概率的连续性)若{,1}n A n ≥是递增或递减的事件列,则lim ()(lim )n n n n P A P A →∞→∞=定义1.3 设(,ΩF ,P )为概率空间,B ∈F ,且()0P B >,如果对任意A ∈F ,记()(|)()P AB P A B P B =则称(|)P A B 为事件B 发生条件下事件A 发生的条件概率(conditional probability ). 由条件概率的定义可得到: (1)乘法公式 设,A B ∈F ,则()()(|)P AB P B P A B =一般地,若i A ∈F ,1,2,,i n = ,且121()0n P A A A -> ,则121121312121()()(|)(|)(|)n n n P A A A P A P A A P A A A P A A A A --=(2) 全概率公式 设(,ΩF ,P )是概率空间,A ∈F ,i B ∈F ,1,2,,i n =()i j B B i j =Φ≠,且1,()0,ni i i B P B ==Ω> ,则1()()(|)niii P A P B P A B ==∑(3) (Bayes 公式)设(,ΩF ,P )是概率空间,A ∈F ,i B ∈F ,1,2,,i n =()i j B B i j =Φ≠,且1,()0,()0ni i i B P B P A ==Ω>> ,则1()(|)(|)()(|)i i i niii P B P A B P B A P B P A B ==∑一般地,若12,,,n A A A ∈ F ,有11()()nni ii i P A P A ===∏ , 则称F 为独立事件簇.1.2 随机变量及其分布随机变量是概率论的主要研究对象之一,随机变量的统计规律用分布函数来描述. 定义 1.4 设(,ΩF ,P )为概率空间,()X X ω=是定义在Ω上的实值函数,如果对于任意实数x ,有()1(,]Xx --∞={}:()X x ωω≤∈F ,则称()X ω为F上的随机变量(random variable ),简记为..r v X .随机变量实质上是(,ΩF )到(,R B ()R )上的可测映射(函数),记1(){()|X XB B σ-=∈B ()R }⊂F ,称()X σ为随机变量X 所生成的σ域.称{}()1()():()((,])(,]F x P X x P X xP X x P Xx ωω-=≤=≤=∈-∞=-∞为随机变量X 的分布函数(distribution function )(简记.d f ).由定义,分布函数有如下性质:(1)()F x 为不降函数:即当12x x <时,有12()()F x F x ≤; (2)()lim ()0,x F F x →-∞-∞==()lim ()1x F F x →+∞+∞==;(3)()F x 是右连续的,即()()F x F x ο+=可以证明,定义在R 上的实值函数()F x ,若满足上述三个性质,必能作为某个概率空间(,ΩF ,P )上某个随机变量的分布函数.推广到多维情形,类似可得到定义 1.5 设(,ΩF ,P )为概率空间,()12()(),(),,()n X X X X X ωωωω== 是定义在Ω上的n 维空间n R 中取值的向量实值函数.对于任意12(,,,)n n x x x x R =∈ ,有{}1122:(),(),,()n n X x X x X x ωωωω≤≤⋅⋅⋅≤∈F ,则称()X X ω=为n 维随机变量,称12()(,,,)n F x F x x x P =⋅⋅⋅={}1122:(),(),,()n n X x X x X x ωωωω≤≤⋅⋅⋅≤为()12()(),(),,()n X X X X X ωωωω==⋅⋅⋅的联合分布函数.随机变量有两种类型:离散型随机变量和连续型随机变量,离散型随机变量的概率分布用概率分布列来描述:(),1,2,k k p P X x k === ,其分布函数为()k k x xF x p ≤=∑;连续型随机变量的概率分布用概率密度函数()f x 来描述,其分布函数为()()x F x f t dt -∞=⎰.类似地可定义n 维随机变量12(,,,)n X X X X = 的联合分布列和联合分布函数如下: 对于离散型随机变量12(,,,)n X X X X = ,联合分布列为()121122,,,n x x x n n p P X x X x X x ====其中,i i i x I I ∈为离散集,1,2,,i = n ,X 的联合分布函数为: 1,12,,121,2,,(,,,)(,,,)n i i nn x x n x y i n F y y y p y y y R ≤==⋅⋅⋅∈∑对于连续型随机变量12(,,,)n X X X X = ,如果存在n R 上的非负函数12(,,,)n f x x x ,对于任意12(,,,)nn y y y R ∈ ,有12(,,,)n X X X X = 的联合分布函数12121212(,,,)...(,,,)n y y y n n n F y y y f x x x dx dx dx -∞-∞-∞⋅⋅⋅=⋅⋅⋅⋅⋅⋅⎰⎰⎰12(,,,)n f x x x 为X 的联合密度函数.1.3 数学期望及其性质设()X X =⋅是定义在概率空间(,ΩF ,P )上的.r v ,如果||X dP Ω<∞⎰,就称.r v .X的数学期望(expectation )或均值存在(或称.r v .X 是可积的),记为E X ,有下列定义:EX XdP Ω=⎰利用积分变换,也可写成()EX xdF x +∞-∞=⎰.设()g x 是1R 上的B orel 可测函数,如果.r v .()g X 的数学期望存在,即|()|E g X <∞,由积分变换可知()()()()Eg X g X dP g x dF x +∞Ω-∞==⎰⎰设k 是正整数,若.r v .k X 的数学期望存在,就称它的k 阶原点矩(k th -moment aboutthe origin ),记为k α,即()kkk EXx dF x α+∞-∞==⎰设k 是正整数,若.r v .||k X 的数学期望存在,就称它的k 阶绝对原点矩(k th - absolute m o m e n tabout the origin ),记为k β,即 ||||()kkk E X x dF x β+∞-∞==⎰类似地,X 的k 阶中心矩(k th - central moment )k μ和k 阶绝对中心矩(k th -absolutely central moment )k υ分别定义为1()()()kkk E X EX x dF x μα+∞-∞=-=-⎰1||||()kkk E X EX x dF x να+∞-∞=-=-⎰我们称二阶中心矩为方差(variance ),记为V a r X 或D X ,显然有22221VarX μναα===-关于数学期望,容易验证下列的性质:(1)若.r v .X ,Y 的期望E X 和E Y 存在,则对任意实数,αβ,()E X Y αβ+也存在,且()E X Y EX EY αβαβ+=+(2)设A ∈F ,用A I 表示集A 的示性函数,若E X 存在,则()A E XI 也存在,且()A AE XI XdP =⎰(3)若{}k A 是Ω的一个划分,即()i j A A i j =Φ≠ ,且i iA Ω= ,则iA i EX XdP XdP Ω==∑⎰⎰关于矩的存在性,有如下的必要条件和充分条件定理1.1 设对.r v X 存在0p >,使||pE X <∞,则有lim (||)0px x P X x →∞≥=定理1.2 设对.r v X 0(.)a s ≥,它的.d f 为()F x ,那么E X <∞的充要条件是(1())F x dx ∞-<∞⎰此时EX =(1())F x dx ∞-⎰推论1.1 ||E X <∞的充要条件是0()F x dx -∞⎰与0(1())F x dx +∞-⎰均有限,这时有EX =(1())F x dx ∞-⎰()F x dx -∞-⎰推论 1.2 对于0,||pp E X <<∞<∞的充要条件是11(||)p n P X n ∞=≥<∞∑,也等价于11(||)p n nP X n ∞-=≥<∞∑1.4 特征函数和母函数特征函数是研究随机变量分布又一个很重要的工具,用特征函数求分布律比直接求分布律容易得多,而且特征函数有良好的分析性质.定义 1.6 设X 是n 维随机变量(随机向量),分布函数为()F x ,称()F x 的Fourier Stieltjes -变换()()(),itXitxg t E ee dF x t ∞-∞==-∞<<∞⎰为X 的特征函数(characteristic function ).简记.c f从本质上看,特征函数是实变量t 的复值函数,随机变量的特征函数一定是存在的. 当X 是离散型随机变量,分布列(),1,2,k k p P X x k === ,则1()kitx k k g t ep ∞==∑当X 是连续型随机变量,概率密度函数为()f x ,则()(),itxg t ef x dx t ∞-∞=-∞<<∞⎰从定义,我们能够看出特征函数有如下性质: (1)(0)1;g =(2)(有界性)|()|1;g t ≤ (3)(共轭对称性)()();g t g t -=(4)(非负定性)对于任意正整数n 及任意实数12,,,n t t t 和复数12,,,n z z z ,有,1()0nk l k l k l g t t z z =-≥∑(5)(连续性)()g t 为n R 上一致连续函数;(6)有限多个独立随机变量和的特征函数等于各自特征函数的乘积,即随机变量12,,,n X X X 相互独立,12n X X X X =+++ 的特征函数为:12()()()()n g t g t g t g t =其中()i g t 为随机变量i X 的特征函数;(7)(特征函数与矩的关系)若随机变量X 的n 阶矩n EX 存在,则X 的特征函数()g t 可微分n 次,且当k n ≤时,有()(0)k k k g i EX =;(8)随机变量的分布函数由其特征函数唯一确定.定理1.3 (B ocher 定理) n R 上函数()g t 是某个随机变量特征函数当且仅当()g t 连续非负定且(0)1g =.定理1.4 (逆转公式) 设()F x 是随机变量X 的分布函数,相应的特征函数为()g t 若12,x x 为()F x 的连续点,则12211()()lim()2itx itx TT Tee F x F x g t dt itπ--→∞---=-⎰很显然,具有相同特征函数的两个分布函数是恒等的.由此还可推出一个事实:一个随机变量是对称的,当且仅当它的特征函数是实的. 事实上,由X 的对称性知X 和X -有相同的分布函数,根据定义()()()itX itXg t E e E eg t g t -===-=,也就是说()g t 是实的;反之,从()()()itX itXg t Ee g t g t Ee -===-=知X 和X -有相同的特征函数,因此,它们的分布函数相等,这说明X 是对称的.例1.1 设X 服从(,)B n p ,求X 的特征函数()g t 及2,,EX EX D X解 X 的分布列为{},1,0,1,2,,k k n kn P X k C p q q p k n -===-=()()()n nitxk k n kk it k n kit nnnk k g t eC p qCpe qpe q --=====+∑∑因此 0(0)()|itt d E X ig ipe qnp dt='=-=-+=22222202()(0)()()|it t d EXi g i pe q npq n p dt=''=-=-+=+故 22()D X EX EX npq =-= 例1.2 设~(0,1)X N ,求X 的特征函数()g t解 22()itx xg t edx ∞--∞=由于2222||||itx xxixe xe--=221||xx edx ∞--∞<∞⎰,可对上式两边求导,得2222()()itx xitx xg t ixedx e de∞∞---∞-∞'==-⎰2222()x x itx itx edx tg t ∞∞---∞-∞=--=-于是得到微分方程 ()()g t t g t '+=. 这是变量可分离型方程,有()()dg t tdt g t =-两边积分得 2l n ()2g t tc=-+,得方程的通解为 22()tcg t e -+=.由于(0)1g =,因此,0c =.于是X 的特征函数为22()tg t e -=例1.3 设,X Y 相互独立,~(,),~(,)X B n p Y m p ,证明:~(,)X Y n m p ++ 证明 ,X Y 的特征函数分别为()(),()(),1itnitmX Y g t q pe g t q pe q p =+=+=-X Y +的特征函数为()()()(),1it n mX Y X Y g t g t g t q pe q p ++==+=-即X Y +的特征函数是服从参数为,n m p +二项分布的特征函数,由唯一性定理~(,)X Y n m p ++附表一给出了常用分布的均值、方差和特征函数.在研究只取非负整数值的随机变量时,以母函数代替特征函数比较方便.定义1.7 设随机变量X 的分布列为(),0,1,2,k p P X k k === 其中01k k p ∞==∑,称()()kk k k P s E s p s ∞===∑为X 的母函数(或称概率生成函数)(p r o b a b i l i t y generating function ).母函数具有下列性质:(1)非负整数值随机变量的分布列由其母函数唯一确定; (2)(1)1P =,()P s 在||1s ≤绝对且一致收敛;(3)若随机变量X 的l 阶矩存在,则可以用母函数在1s =的导数值来表示,特别地, 有2(1),(1)(1)EX P EXP P ''''==+;(4)独立随机变量之和的母函数等于母函数的积.证明 (1)01(),0,1,2,nkkkk k k k k k n P s p s p s p s n ∞∞===+==+=∑∑∑两边对s 求n 阶导数,得到()1()!(1)(1)n k nn k k n Ps n p k k k n p s∞-=+=+--+∑令0s =,则()(0)!n n p n p =,因此()(0),0,1,!n n pp n n ==(3)由0()kk k P s p s ∞==∑,得到11()k kk P s kps∞-='=∑,令1s ↑,得到1(1)kk EX kpP ∞='==∑,类似可得到 2(1)(1)E X PP '''=+ 例1.4 从装有号码为1,2,3,4,5,6的小球的袋中,有放回地抽取5个球,求所得号码总和为15的概率.解 令i X 为第i 次取得的小球的号码,且i X 相互独立,125X X X X =+++ 为所取的球的号码的总和.i X 的母函数为261()()6i P s s s s =+++X 的母函数为 5265655551()()(1)(1)66s P s s s s s s -=+++=--所求概率为()P s 展开式的15s 的系数,因此,5651{15}6P X ==1.5 随机变量列的收敛性定义 1.8设{},;1n X X n ≥概率空间(,ΩF ,P )上随机变量,如果存在集A ∈F ,()0P A =,当cA ω∈时,有lim ()()n n X X ωω→∞=,则称n X 几乎处处收敛(convergencealm ost everywhere )到X ,简称n X ..a s 收敛到X ,记为n X X → ..a s下面我们给出..a s 收敛的一个判别准则.定理1.5 n X X → ..a s 的充分必要条件是任一ε>0,有lim (||)0m n m n P X X ε∞→∞=⎧⎫-≥=⎨⎬⎩⎭下面给出定理1.3的一个应用.例1.5 设{}n X 是..r v 列,且11()()2n n n P X n P X n +===-=,1111122n n n P X P X n n ⎧⎫⎧⎫⎛⎫===-=-⎨⎬⎨⎬ ⎪⎩⎭⎩⎭⎝⎭对于给定的ε>0,考虑1n ε>,有 1(||)0,2m mm nm n P X n ε∞∞==⎧⎫≥≤→→∞⎨⎬⎩⎭∑,因此 0n X →,..a s定义1.9 设{},;1n X X n ≥概率空间(,ΩF ,P )上随机变量,如果对任一0ε>,{}lim ||0n n P X X ε→∞-≥=则称n X 依概率收敛(convergence in probability )到X ,简记Pn X X −−→. 由定义,n X 依概率收敛到X ,那么极限随机变量X ..a s 是唯一的.定义 1.10 设{},;1n X X n ≥概率空间(,ΩF ,P )上随机变量,若||rn E X (0r >)存在,且lim ||0rn n E X X →∞-=,则称 n X r 阶平均收敛(convergence in mean oforder r )到X ,特别地,当2r =时,称为均方收敛.定义1.11 设{},;1n X X n ≥概率空间(,ΩF ,P )上随机变量,其分布函数序列()n F x 满足lim ()()n n F x F x →∞=在每个()F x 连续点处成立,则称n X 依分布收敛(convergence indistribution )到X .简记dn X X −−→.这里()F x 为X 的分布函数.下面我们不加证明地给出几种收敛之间的关系.a sPn n X X X X −−→⇒−−→dn X X ⇒−−→⇓..k a s n X X −−→且11(||)2kn kk P X X ∞=-≥<∞∑⇑,r rn n X X X X '−−→⇒−−→ 0r r '<< 1.6 条件数学期望设,X Y 是离散型随机变量,对一切使{}0P Y y =>的y ,定义给定Y y =时,X 的条件概率为 {,}{|}{}P X x Y y P X x Y y P Y y ======;给定Y y =时,X 的条件分布函数为(|){|}F x y P X x Y y =≤=; 给定Y y =时,X 的条件期望为(|)(|){|}xE X Y y xdF x y xP Xx Y y =====∑⎰设,X Y 是连续型随机变量,其联合密度函数为(,)f x y ,对一切使()0Y f y ≥,给定Y y =时,X 的条件密度函数为(,)(|)()Y f x y f x y f y =;给定Y y =时,X 的条件分布函数(|){|}F x y P X x Y y =≤==(|)xf x y dx ⎰; 给定Y y =时,X 的条件期望定义为 (|)(|)(|)E X Y y x d F x y x f x y d x===⎰⎰由定义可以看出,条件概率具有无条件概率的所有性质.(|)E X Y y =是y 的函数,y 是Y 的一个可能值,若在Y 已知的条件下,全面考察X 的均值,需要用Y 替代y ,(|)E X Y y =是Y 的函数,显然,它也是随机变量,称为X 在Y 条件下的条件期望(conditional expectation ).条件期望在概率论、数理统计和随机过程中是一个十分重要的概念,下面我们列举以下性质:设,,X Y Z 为随机变量,()g x 在R 上连续,且,,,[()]EX EY EZ E g Y Z ⋅都存在. (1) 当X 和Y 相互独立时,(|)E X Y EX =; (2) [(|)]EX E E X Y =;(3) [()|]()(|)E g Y X Y g Y E X Y ⋅=; (4) (|)E c Y c =,c 为常数;(5) (线性可加性)[()|](|)(|)E aX bY Z aE X Z bE Y Z +=+ (,a b 为常数); (6) 若0,X ≥则(|)0,..E X Y a s ≥ 下面只对(2)和(3)证明:证明 (2)离散型情况.设(,)X Y 的联合分布列为{,},,1,2,i j ij P X x Y y p i j ====则 [(|)](|){}jj j y E E X Y E XY y P Y y ===∑{|}{}ji i i j j y x x P X x Y y P Y y ⎡⎤====⎢⎥⎣⎦∑∑ {,}{}ji ii i j i y x x x P X x Y y P Xx EX ⎡⎤======⎢⎥⎣⎦∑∑∑由此可见,E X 是给定j Y y =时X 条件期望的一个加权平均值,每一项(|)j E X Y y =所加的权数是作为条件事件的概率,称(|){}jj j y EX E XY y P Y y ===∑为全期望公式.连续型情形:设(,)X Y 的联合密度函数为(,)f x y ,则[](|)(|)()(|)()Y Y E E X Y E X Y y f y dy xf x y dx f y dy ∞∞∞-∞-∞-∞⎡⎤===⎢⎥⎣⎦⎰⎰⎰(,)(,)x f x y d x d yx f x y dy d x∞∞∞∞-∞-∞-∞-∞⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰()X xf x dx EX ∞-∞==⎰(|)()Y EX E X Y y f y dy ∞-∞==⎰也称为全期望公式.全期望公式表明:条件期望的期望是无条件期望. (3)只需证明对任意使[]()|E g Y X Y y ⋅=存在的y 都有[]()|()(|)E g y X Y y g y E X Y y ⋅===因为[|](|)E X Y y xdF x y ∞-∞==⎰,因此,当y 固定时,[]()|()(|)()(|)E g y X Y y g y xdF x y g y xdF x y ∞∞-∞-∞⋅===⎰⎰()[|]g y E X Y y ==例1.6 设在某一天走进商店的人数是期望为1000的随机变量,又设这些顾客在该商店所花钱数都为期望为100元的相互独立的随机变量,并设一个顾客花钱数和进入该商店的总人数独立,问在给定的一天内,顾客们在该商店所花钱数的期望是多少?解 设N 表示这天进入该商店的总人数,i X 表示第i 个顾客所花的钱数,则N 个顾客所花的总数为1Ni i X =∑.由于 11|N N i i i i E X E E X N ==⎡⎤⎡⎤⎛⎫=⎢⎥ ⎪⎢⎥⎣⎦⎝⎭⎣⎦∑∑而 1111||N n n i i i i i i E X N n E X N n E X nEX ===⎡⎤⎡⎤⎡⎤=====⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦∑∑∑因此 11|,N i i E X N N E X =⎡⎤=⎢⎥⎣⎦∑[]111N i i E X E N E X E N E X =⎡⎤=⋅=⎢⎥⎣⎦∑由题设 11000,100EN EX == 于是11000100100000Ni i X ==⨯=∑即该天顾客花费在该商店的钱数的期望为100000元.。
01律概率论(原创版)目录1.概率论的概述2.概率论的基本概念3.概率论的实际应用正文一、概率论的概述概率论,作为一门研究随机现象的理论学科,旨在揭示各种随机事件发生概率的规律。
在现实生活中,我们常常会遇到诸如抛硬币、掷骰子、天气预报等随机现象,概率论正是通过对这些现象的研究,为我们提供了一种科学、合理的分析方法。
二、概率论的基本概念1.随机事件:在一定条件下可能发生的事件称为随机事件,例如抛硬币正面朝上、掷骰子得到 6 点等。
2.样本空间:所有可能结果的集合称为样本空间,例如抛硬币的样本空间为{正面,反面},掷骰子的样本空间为{1,2,3,4,5,6}。
3.概率:某个随机事件发生的可能性称为该事件的概率。
概率的取值范围在 0 和 1 之间,当概率为 0 时,表示事件不可能发生;当概率为1 时,表示事件一定会发生。
4.条件概率:指在某些特定条件下,某个事件发生的概率。
例如,从一副扑克牌中抽出一张牌,第一张抽到黑桃,第二张抽到红心的概率为:第一张是黑桃的概率(13/52)乘以第二张是红心的概率(13/51)。
5.独立事件:两个事件互不影响,且其中一个事件的发生不影响另一个事件发生的概率,称为独立事件。
例如,抛一枚硬币正面朝上和抛另一枚硬币正面朝上是两个独立事件。
三、概率论的实际应用概率论在现实生活中有着广泛的应用,如金融、保险、医学、通信等领域。
以下是一些概率论应用的例子:1.风险管理:在投资领域,概率论可以帮助投资者分析投资项目的风险,从而做出更明智的投资决策。
2.保险业:概率论在保险产品的设计、定价以及理赔评估等方面发挥着重要作用。
3.医学领域:概率论在疾病诊断、疗效评估以及新药研发等方面具有重要意义。
4.通信技术:在通信领域,概率论可以用于信道编码、信道解码以及信号处理等方面。
第一讲 概率论概述1. 概率空间定义 (概率空间)称一个三元组(,,)P ΩF 是概率空间,其中,Ω是样本空间,F 是Ω上的一个σ代数,而P 是ℑ上的一个概率测度。
关于σ代数定义 (代数和σ代数)集合Ω的一个子集类ℑ被称为代数,如果满足条件,(1) ℑ∈φΩ,;(2) ℑ∈21B B ,ℑ∈-21B B ,ℑ∈∀i B ,2,1=i 。
如果一个代数对可列并运算封闭,则称其为σ代数。
为什么要引入σ代数?以掷骰子为例:{1,2,3,4,5,6}Ω=,所有子集构成一个σ代数。
但是,如感兴趣的问题是出现的点数是偶数还是奇数,那么考虑的事件集只有两个:{1,3,5},{2,4,6}A B ==,包含它们的最小σ代数为{,,,}A B ΩΦℑ=。
因此,只要限制在ℑ上研究问题。
关于概率测度定义 (σ代数上的概率测度)一个概率测度是满足如下条件的映射]]1,0[:→ℑP :(1) 可列可加性:∑∞=∞==11)()(n nn n A P A P ,n m A A An m n≠=ℑ∈∀,,φ ;(2) 规一性:1)(=ΩP 。
概率测度一般化的意义:涵盖了可能出现的各种问题。
以抛硬币为例:{0,1}S =,那么直观上的概率1({0})({1})2P P ==只是可能出现的情况中的一个:硬币是均匀的。
硬币不均匀,则完全可能有其它选择。
例 古典概率模型。
关于可列可加性 可列的含义。
可列可加不能用于任意个集合的并:例如[0,1]Ω=,均匀投点,取每一点的概率为0,但其总和仍为1。
概率函数的一些性质概率函数P 显然可视为可测空间上的一个测度,所以测度的许多性质也可用于概率。
序列极限意义下的连续性:可列可加性蕴涵了概率函数的连续性。
定理 若}1,{≥n A n 是单调增加序列(或减小序列),则 )lim ()(lim n n n n A P A P ∞→∞→=。
关于集合序列极限的定义 单调上升序列的极限:1lim n n n n A A ∞→∞==;单调下降序列的极限:1lim n n n n A A ∞→∞==。
一般集合序列的极限:上极限1lim n k n n k nA A ∞∞→∞===;下极限1lim n k n k nn A A ∞∞==→∞=。
概率解释:事件n n k n n n A A ∞=∞=∞→= 1lim 概率意义:表示事件序列}{n A 中,有无限多个发生。
思考题 事件n nk n n n A A ∞=∞=∞→= 1lim 的概率意义是什么?(某个n 后,所有的事件发生)。
定理(Borel-Cantelli 引理) 若∞<∑∞=1)(n nA P ,那么0)(1=∞=∞=nnk n A P 。
证 1()lim ()lim ()0n n k n n n k nk nk nP A P A P A ∞∞∞∞→∞→∞=====≤=∑。
(直观解释)定理 若∞=∑∞=1)(n nA P ,且}{nA 相互独立,那么1)(1=∞=∞=knk n A P 。
证 )(lim )(1k nk n k nk n A P A P ∞=∞→∞=∞== ∏∞=∞→∞=∞→-=-=nk C kn Cknk n AP A P )(lim1)](1[lim ,但∏∏∞=∞=-=nk k nk C kA P AP )](1[)(∏∞=-=nk A P k e)](1log[0)(=∑≤∞=-nk k A P e,即得结论。
2. 一维随机变量定义(随机变量X )称可测函数1:R X →Ω是概率空间上的(值域空间当然也可以更一般),随机变量。
关于直线上的可测集通常直线上的可测集就用Borel 集,记为B 。
例(随机变量):掷骰子时,{1,2,3,4,5,6}Ω=,(2)0,(21)1X k X k =-=,1,2,3k =。
随机变量诱导的σ域由X 可导出Ω上的一个σ代数:1{()|}X X B B -=∈F B 。
对于该随机变量,只要考虑该σ代数中的所有事件。
上述例子中{,,{1,3,5},{2,4,6}}X ΩΦ=F 。
思考题 集族1{:()}X X ω-=F B 是一个σ域。
定义(分布函数)对随机变量X ,称事件{(,]}X x ∈-∞的概率1(){(,]}F x P X x -=-∞为该随机变量的分布函数。
分布函数的意义:Borel 集B 由集类1{(,]|}x x R -∞∈通过集合的可列运算生成。
因此确定X 对应的事件的概率可由分布函数()F x 确定。
例 掷骰子例中,0,01(),0121,1x F x x x <⎧⎪⎪=≤<⎨⎪≥⎪⎩。
分布函数满足的性质(1) 单调增加(非严格);(2)]1,0[)(∈x F ,1)(=∞F ;(3)右连续。
关于单调函数的可微性单调函数至多有可列个跳跃点。
如果是连续的,则一定是几乎处处可微的。
分布函数诱导的测度通过扩张((,])()X P x F x -∞=,可定义1(,)R B 上的一个测度X P ,使1(,,)X R P B 为概率空间。
如果记该测度为dF ,那么()()X AP A dF x =⎰。
所以关于随机变量X 的概率问题,可以看作概率空间1(,,)X R P B 上的概率问题。
随机变量按()F x 的特征来分类(1) 离散型:()F x 是分段常值函数; (2) 连续型:()F x 是分段连续函数; (3) 其它。
连续型随机变量的密度函数:)()(x F x f '=,相应()()xF x f u du -∞=⎰。
由密度函数定义测度:()()X AP A f x dx =⎰,一般记()XdP f x dx=,称()f x 为测度X P 的Radon-Nycodim 导数。
随机变量X 的数字特征 期望1()()()R EX X dP xdF x Ωωω==⎰⎰; 方差2)(EX X E DX -=; 各阶矩1()kkR EX x dF x =⎰。
随机变量的函数给定可测函数11:h R R →,则()Y h X =定义了一个随机变量,其分布函数11(0,]()((,])((0,])()Y X h y F y P Y y P X h y dF x --=∈-∞=∈=⎰。
分布与变换函数 特征函数:1()()itXitx R t Eee dF x φ==⎰;注:分布函数和特征函数是一一对应的。
矩母函数:1()()sXsx R s Eee dF x ψ==⎰(离散随机变量时,即为z-变换函数)。
对非负随机变量X ,一般用分布的Laplace 变换函数:0()()sx F s e dF x ∞-=⎰。
事件概率与数学期望()A A χω⇔,因此()A A AP A dP dP E Ωχχ===⎰⎰。
3. 二维随机变量,条件数学期望二维随机变量:1:),(R Y X →⨯ΩΩ;相应事件:(,){:(),()}{(,)}X A Y B X A Y B X Y D A B ωωω∈∈=∈∈=∈=⨯; 事件的概率:})(,)(:{),(B Y A X P B Y A X P ∈∈=∈∈ωωω。
联合分布函数:]),(],,((),(y Y x X P y x F -∞∈-∞∈=连续型二维随机变量存在密度函数),(),(2y x F y x y x f ∂∂∂=,或(,)(,)yx F x y f u v dudv -∞-∞=⎰⎰。
密度函数计算事件{(,)}X Y D A B ∈=⨯的概率:⎰⎰=∈Ddxdy y x f D Y X P ),(})),({(。
数学期望:⎰⎰=dxdy y x f y x g Y X g E ),(),()),((协方差函数:cov(,)()()X Y E X EX Y EY =-- 数学期望,方差性质:bEY aEX bY aX E +=+)(,DX a aX D 2)(=,),(2)(Y X Cov DY DX Y X D ++=+等等。
随机变量的独立性问题关于X 的事件{:()}X A ωω∈与关于Y 的事件{:()}Y B ωω∈之间有无关联? 相应的基本公式 事件的独立定义(条件概率) 已知事件下的条件概率:)()()|(B P AB P B A P =。
(1) 乘法公式:)()|()(B P B A P AB P =; (2) 全概率公式:∑∞=∞===11)()|()(n nnn n A P A A P A A P ,其中Ω=∞=nn A1,φ=n m A A 。
定义(事件的独立))()()(B P A P AB P =。
随机变量的独立两个随机变量所涉及的事件独立:(,)()()P X A Y B P X A P Y B ∈∈=∈∈,则称它们独立。
等价于A B A B E E E χχχχ=。
对连续型二维随机变量,等价于(,)()()X Y f x y f x f y =。
事件的独立性可视为随机变量独立性的特殊情况:,A B A B χχ⇔⇔,则,A B 独立等价与,A B χχ的独立性。
条件数学期望对连续型的二维随机变量来讨论条件分布和条件数学期望的定义。
条件概率密度:)(),()|(|y f y x f y x f Y Y X =;条件分布:⎰∞-==≤=xYX Y X du y u fy Y x X P y x F ),()|()|(||条件数学期望:⎰∞==0|),()|(dx y x xfy Y X E YX 。
X 关于Y 的条件数学期望对ωΩ∈,若()Y y ω=,则定义随机变量()(|)()(|())(|)Z E X Y E X Y E X Y y ωωω====,记为(|)E X Y ,称为X 关于Y 的条件数学期望。
条件数学期望)|(Y X E 的一个性质(全概率公式的推广)11[(|)](|)()(,)YR R E E X Y E X Y y fy dy xf x y dxdy EX ∞-∞====⎰⎰⎰注 对一般的二维随机变量也可以定义条件数学期望。
4.随机变量序列定理(大数定理)独立同分布的随机变量序列1{}n n X ≥,若1X 的均值和方差存在,且有限,那么,11P nX X EX n++−−→。
定理(中心极限定理)(大数定理)独立同分布的随机变量序列1{}n n X ≥,若1X 的均值和方差存在,且有限,则lim )()n P x x Φ→∞≤=。