概率论与数理统计-第1讲
- 格式:pdf
- 大小:480.90 KB
- 文档页数:15
第一章 随机事件和概率 第一节 基本概念1、排列组合初步(1)排列组合公式)!(!n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。
)!(!!n m n m C n m -=从m 个人中挑出n 个人进行组合的可能数。
例1.1:方程xx x C C C 76510711=-的解是 A . 4 B . 3 C . 2 D . 1例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少?(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
(3)乘法原理(两个步骤分别不能完成这件事):m ×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。
例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法?例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少?例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜色,且相邻区域的颜色必须不同,则共有不同的涂法A.120种B.140种 C.160种D.180种(4)一些常见排列①特殊排列②相邻③彼此隔开④顺序一定和不可分辨例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单?①3个舞蹈节目排在一起;②3个舞蹈节目彼此隔开;③3个舞蹈节目先后顺序一定。
例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法?例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法?①重复排列和非重复排列(有序)例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法?②对立事件例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法?例1.11:15人中取5人,有3个不能都取,有多少种取法?例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?③ 顺序问题例1.13:3白球,2黑球,先后取2球,放回,2白的种数?(有序) 例1.14:3白球,2黑球,先后取2球,不放回,2白的种数?(有序) 例1.15:3白球,2黑球,任取2球,2白的种数?(无序)2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
概率论与数理统计复习提纲概率论与数理统计总复习第⼀讲随机事件及其概率⼀随机事件,事件间的关系及运算 1.样本空间和随机事件 2.事件关系,运算和运算律⑴事件的关系和运算⑶运算律:交换律,结合律,分配律;对偶律: B A B A ?=?,B A B A ?=?;⼆概率的定义和性质 1.公理化定义(P7)2.概率的性质(P8.五个) ⑴)(1)(A P A P -=;⑵)()()()(AB P B P A P B A P -+=?;3.古典概型和⼏何概型4.条件概率 )()()|(A P AB P A B P =三常⽤的计算概率的公式1.乘法公式 )()()()()(B A P B P A B P A P AB P ==2.全概率公式和贝叶斯公式(P17-20.) 四事件的独⽴性1.定义:A 和B 相互独⽴ )()(B P A B P =或)()()(B P A P AB P ?=,2.贝努利试验在n 重贝努利试验中,事件=k A {A 恰好发⽣k 次})0(n k ≤≤的概率为:k n nk n k p p C A P --=)1()(第⼆讲随机变量及其概率分布⼀随机变量及其分布函数1.随机变量及其分布函数 )()(x X P x F ≤=)(+∞<<-∞x2.分布函数的性质(P35.四个)⑴0)(lim =-∞→x F x ;1)(lim =+∞→x F x ;(常⽤来确定分布函数中的未知参数)⑵)()()(a F b F b X a P -=≤<(常⽤来求概率) ⼆离散型随机变量及其分布律1.分布律2.常⽤的离散型分布三连续型随机变量 1.密度函数 ?∞-=xdt t f x F )()(2.密度函数的性质(P39.七个) ⑴1)(=?+∞∞-dx x f ;(常⽤来确定密度函数中的参数)⑵?=≤adx x f b X a P )()(;(计算概率的重要公式)⑶对R x ∈?,有0)(==c X P (换⾔之,概率为0的事件不⼀定是不可能事件). 3.常⽤连续型分布重点:正态分布:)0,(21)(22)(>=--σσµσπσµ都是常数,x ex f标准正态分布)1,0(N :2221)(x ex -=π四随机变量函数的分布1.离散情形设X 的分布律为则)(X g Y =的分布律为2.连续情形设X 的密度函数为)(x f X ,若求)(X g Y =的密度函数,先求Y 的分布函数,再通过对其求导,得到Y 的密度函数。
第二章随机变量及其概率分布在随机试验中,人们除对某些特定事件发生的概率感兴趣外,往往还关心某个与随机试验的结果相联系的变量. 由于这一变量的取值依赖于随机试验结果,因而被称为随机变量. 与普通的变量不同,对于随机变量,人们无法事先预知其确切取值,但可以研究其取值的统计规律性. 本章将介绍两类随机变量及描述随机变量统计规律性的分布.第一节一维随机变量及其分布函数内容分布图示★随机变量概念的引入★随机变量的定义★例1★例2★例3★引入随机变量的意义★课堂练习★习题2-1内容要点:一、随机变量概念的引入为全面研究随机试验的结果, 揭示随机现象的统计规律性, 需将随机试验的结果数量化,即把随机试验的结果与实数对应起来.1. 在有些随机试验中, 试验的结果本身就由数量来表示.2. 在另一些随机试验中, 试验结果看起来与数量无关,但可以指定一个数量来表示之.二、随机变量的定义定义设随机试验的样本空间为S, 称定义在样本空间S上的实值单值函数)XX(e 为随机变量.随机变量与高等数学中函数的比较:(1) 它们都是实值函数,但前者在试验前只知道它可能取值的范围,而不能预先肯定它将取哪个值;(2) 因试验结果的出现具有一定的概率,故前者取每个值和每个确定范围内的值也有一定的概率.三、引入随机变量的意义随机变量的引入,使得随机试验中的各种事件可通过随机变量的关系式表达出来.由此可见,随机事件这个概念实际上是包容在随机变量这个更广的概念内.也可以说,随机事件是从静态的观点来研究随机现象,而随机变量则以动态的观点来研究之.其关系类似高等数学中常量与变量的关系.随机变量概念的产生是概率论发展史上的重大事件. 引入随机变量后,对随机现象统计规律的研究,就由对事件及事件概率的研究转化为随机变量及其取值规律的研究,使人们可利用数学分析的方法对随机试验的结果进行广泛而深入的研究.随机变量因其取值方式不同, 通常分为离散型和非离散型两类. 而非非离散型随机变量中最重要的是连续型随机变量. 今后,我们主要讨论离散型随机变量和连续型随机变量.例题选讲:例1 (讲义例1) 在抛掷一枚硬币进行打赌时, 若规定出现正面时抛掷者赢1元钱, 出现反面时输1元钱, 则其样本空间为=S {正面, 反面},记赢钱数为随机变量X , 则X 作为样本空间S 的实值函数定义为⎩⎨⎧=-==.,1,,1)(反面正面ϖϖϖX 例2 (讲义例2) 在将一枚硬币抛掷三次, 观察正面H 、反面T 出现情况的试验中, 其样本空间};,,,,,,,{TTT TTH THT HTT THH HTH HHT HHH S =记每次试验出现正面H 的总次数为随机变量X , 则X 作为样本空间S 上的函数定义为1112223X TTTTTH THT HTT THH HTH HHT HHH ϖ易见, 使X 取值为})2({2=X 的样本点构成的子集为},,,{THH HTH HHT A = 故 ,8/3)(}2{===A P X P 类似地,有.8/4},,,{}1{==≤TTT TTH THT HTT P X P例3 (讲义例3) 在测试灯泡寿命的试验中, 每一个灯泡的实际使用寿命可能是),0[+∞中任何一个实数, 若用X 表示灯泡的寿命(小时),则X 是定义在样本空间}0|{≥=t t S 上的函数,即t t X X ==)(,是随机变量.课堂练习1. 一报童卖报, 每份0.15元,其成本为0.10元. 报馆每天给报童1000份报, 并规定他不得把卖不出的报纸退回. 设X 为报童每天卖出的报纸份数, 试将报童赔钱这一事件用随机变量的表达式表示.四. 随机变量的分布函数定义 设X 是一个随机变量, 称)()()(+∞<<-∞≤=x x X P x F 为X 的分布函数.有时记作)(~x F X 或)(x F X .分布函数的性质1. 单调非减. 若21x x <, 则)()(21x F x F ≤;2. ;1)(lim )(,0)(lim )(==+∞==-∞+∞→-∞→x F F x F F x x3. 右连续性. 即).()(lim 00x F x F x x =+→例4 判别下列函数是否为某随机变量的分布函数?⎪⎩⎪⎨⎧≥<≤+<=⎪⎩⎪⎨⎧≥<≤<=⎪⎩⎪⎨⎧≥<≤--<=.2/1,1,2/10,2/1,0,0)()3(;,1,0,sin ,0,0)()2(;0,1,02,2/1,2,0)()1(x x x x x F x x x x x F x x x x F ππ解 (1)由题设, )(x F 在),(+∞-∞上单调不减, 右连续, 并有,0)(lim )(==-∞-∞→x F F x ,1)(lim )(==+∞+∞→x F F x所以)(x F 是某一随机变量X 的分布函数.(2)因)(x F 在),2/(ππ上单调下降, 所以)(x F 不可能是分布函数. (3)因为)(x F 在),(+∞-∞上单调不减, 右连续, 且有 ,0)(lim )(==-∞-∞→x F F x ,1)(lim )(==+∞+∞→x F F x所以)(x F 是某一随机变量X 的分布函数.离散型随机变量的分布函数例5(讲义例2)设随机变量X 的分布律为 ,2/16/13/121i p X求)(x F .解 }{)(x X P x F ≤=当0<x 时,,}{∅=≤x X 故0)(=x F 当10<≤x 时,31}0{}{)(===≤=X P x X P x F 当21<≤x 时, 216131}1{}0{)(=+==+==X P X P x F 当2≥x 时,1}2{}1{}0{)(==+=+==X P X P X P x F 故 ,2,121,2/110,3/10,0)(⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=x x x x x F )(x F 的图形是阶梯状的图形, 在2,1,0=x 处有跳跃, 其跃度分别等于},0{=X P },1{=X P }.2{=X P例6 X 具有离散均匀分布, 即,,,2,1,/1)(n i n x X P i ===求X 的分布函数.解将X 所取的n 个值按从小到大的顺序排列为)()2()1(n x x x ≤≤≤则)1(x x <时,,0}{)(=≤=x X P x F )2()1(x x x <≤时,,/1}{)(n x X P x F =≤= )3()2(x x x <≤时,,/2}{)(n x X P x F =≤=……)1()(+<≤k k x x x 时,,/}{)(n k x X P x F =≤=)(n x x ≥时,1}{)(=≤=x X P x F故 )(x F ⎪⎪⎩⎪⎪⎨⎧<=≥<),,max(,1),,2,1(),,min(,/),,min(,0111n j n n x x x x k n j x x x x n k x x x 当个不大于中恰好有且当当例7(讲义例3)设随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=.3,1,32,19/15,21,19/9,1,0)(x x x x x F求X 的概率分布.解 由于)(x F 是一个阶梯型函数, 故知X 是一个离散型随机变量, )(x F 的跳跃点分别为1, 2, 3, 对应的跳跃高度分别为 9/19, 6/19, 4/19, 如图.故X 的概率分布为 .19/419/619/9321i p X课堂练习设随机变量X 的概率分布为4/12/14/1321i p X -,求X 的的分布函数,并求{},2/1≤X P {},2/52/3≤<X P {}.32≤≤X P。
第一讲概率的定义及性质Ⅰ授课题目§1.0 概率论研究的对象§1.1 随机试验§1.2 样本空间、随机事件§1.3 频率与概率,概率的性质Ⅱ教学目的与要求1、理解随机试验、随机事件、必然事件、不可能事件等概念2、理解样本空间、样本点的概念,会用集合表示样本空间和事件3、掌握事件的基本关系与运算4、掌握概率的性质Ⅲ教学重点与难点重点:事件的基本关系与运算,概率的性质难点:用集合表示样本空间和事件Ⅳ讲授内容:§1.0 概率论研究的对象一两类现象---确定现象与不确定现象先从实例来看自然界和社会上存在着两类不同的现象.例1水在一个大气压力下,加热到100℃就沸腾.例2向上抛掷一个五分硬币,往下掉.例3太阳从东方升起.例4一个大气压力下,20℃的水结冰.例1,例2,例3是必然发生的,而例4是必然不发生的.个确切结果)称之为确定性现象或必然现象.微积分,线性代数等就研究必然现象的数学工具.与此同时,在自然界和人类社会中,人们还发现具有不同性质的另一类现象先看下面实例.例5用大炮轰击某一目标,可能击中,也可能击不中.例6在相同的条件下,抛一枚质地均匀的硬币,其结果可能是正面(我们常把有币值的一面称作正面)朝上,也可能是反面朝上.例7次品率为50%的产品,任取一个可能是正品,也可能是次品.例8次品率为1%的产品,任取一个可能是正品,也可能是正品.例5~例8这类现象归纳起来可以看作在相同条件下一系列的试验或观察,而每次试验或观察的可能结果不止一个,在每次试验或观察之前无法预知确切结果,即呈现出不确定性(即这些现象的结果事先不能完全确定),这一类型现象我们称之为不确定性现象或偶然现象,也称之为随机现象.二统计规律性、概率论研究的对象对于不确定性现象,人们经过长时期的观察或实践的结果表明,这些现象并非是杂乱无章的,而是有规律可寻的.例如,大量重复抛一枚硬币,得正面朝上的次数与正面朝下的次数大致都是抛掷总次数的一半.在大量地重复试验或观察中所呈现出的固有规律性,就是我们以后所说的统计规律性.而概率论正是研究这种随机(偶然)现象,寻找他们的内在的统计规律性的一门数学学科.概率论是数理统计的基础,由于随机现象的普遍性,使得概率与数理统计具有及其广泛的应用.另一方面,广泛的应用也促进概率论有了极大的发展.§1.1 随机试验对随机现象进行的试验或观察称为随机试验,简称试验,它具有下列特性(征):(1)试验可以在相同条件下重复进行;(2)试验的所有可能结果是明确可知的,并且不止一个;(3)每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前不能肯定这次试验会出现哪一个结果.随机实验记为E.例1E1:投掷一枚硬币,观察正反面朝上的情况.它有两种可能的结果就是“正面朝上”或“反面朝上”,投掷之前不能预言哪一个结果出现,且这个试验可以在相同的条件下重复进行,所以E1是一个随机试验。
第一章随机事件及概率1.1随机事件1.1.1随机试验一、人在实际生活中会遇到两类现象:1.确定性现象:在一定条件下实现与之其结果。
2.随机现象(偶然现象):在一定条件下事先无法预知其结果的现象。
二、随机试验满足条件:1.实验可以在相同条件写可以重复进行;(可重复性)2.事先的所有可能结果是事先明确可知的;(可观察性)3.每次实验之前不能确定哪一个结果一定会出现。
(不确定性)1.1.2样本空间1.样本点:每次随机试验E 的每一个可能的结果,称为随机试验的一个样本点,用w 表示。
2.样本空间:随机试验E 的所有样本点组成的集合成为试验E 的样本空间。
1.1.3随机事件1.随机事件:一随机事件中可能发生也可能不发生的事件称为试验的随机事件。
2.基本事件:试验的每一可能的结果称为基本事件。
一个样本点w 组成的单点集{w}就是随机试验的基本事件。
3.必然事件:每次实验中必然发生的事件称为必然事件。
用Ω表示。
样本空间是必然事件。
4.不可能事件:每次试验中不可能发生的事件称为不可能事件,用空集符号表示。
1.1.4事件之间的关系和运算1.事件的包含及相等“如果事件A 发生必然导致事件B 发生”,则称事件B 包含事件A ,也称事件A 是B 的子事件,记作A B B A ⊃⊂或。
2.事件的和(并⋃)“事件A 与B 中至少有一个事件发生”,这样的事件称为事件A 与B 的和事件,记作B A 。
3.事件的积(交⋂)“事件A 与B 同时发生”,这样的事件称作事件A 与B 的积(或交)事件,记作AB B A 或 。
4.事件的差“事件A 发生而事件B 不发生”,这样的事件称为事件A 与B 的差事件,记作A-B 。
5.事件互不相容(互斥事件)“事件A 与事件B 不能同时发生”,也就是说,AB 是一个不可能事件,即=AB 空集,即此时称事件A 与事件B 是互不相容的(或互斥的)6.对立事件“若A 是一个事件,令A A -Ω=,称A 是A 的对立事件,或称为事件A 的逆事件”事件A 与事件A 满足关系:=A A 空集,Ω=A A 对立事件一定是互斥事件;互斥事件不一定是对立事件。
第1讲样本空间随机事件
样本空间随机事件
自然界与社会生活中的两类现象
确定性现象
随机现象
2
3
例如:在一个标准大气压下,水加热到100℃一定会沸腾.
确定性现象:
在一定条件下必然发生的现象.
4
例如掷骰子可能出现“1点”,也可能是其他情况;
检验产品可能是合格品,也可能是不合格品.
随机现象:
在一定条件下具有多种可能结果,且
试验时无法预知出现哪个结果的现象.
5
例:
向上抛出的物体会落下(
)
打靶,击中靶心(
)买了彩票会中奖(
)
确定不确定不确定
对随机现象的观察、记录、实验统称为
随机试验.它具有以下特性:•可以在相同条件下重复进行;•事先知道所有可能出现的结果;•
进行试验前并不知道哪个试验结果会发生.
6
7
例:
抛一枚硬币,观察试验结果; 对某路公交车某停靠站登记下车人数;
对听课人数进行一次登记.
(一)样本空间
定义:随机试验的所有可能结果构成的集合称为样本空间,记为S={e},
S中的元素e称为样本点.
8
9
例1:
一枚硬币抛一次;
记录一城市一日中发生交通事故次数;∙∙{0,1,2,...};
S ={,};
S =正面反面
10记录一批产品的寿命x;
记录某地一昼夜最高温度x,最低温度y ∙∙{(,):}.
S x y a y x b =≤≤≤{:0};
S x x =≥
(二) 随机事件
样本空间S的子集A称为随机事件A,简称事件A.当且仅当A中的某个样本点发生称事件A发生.
事件A的表示可用集合,也可用语言来表示.
11
12
例2:观察某公交站的候车人数,样本空间S=?事件A表示“至少有5人候车”,A=?
事件B表示“候车人数不多于2人”,B=?{0,1,2,...};S ={5,6,7,...};A ={0,1,2}.
B =
•如果把S看作事件,则每次试验S总是发生,所以S称为必然事件.
•如果事件只含有一个样本点,称其为基本事件.
•如果事件是空集,里面不包含任何样本点,记为Φ,则每次试验Φ都不发生, 称Φ为不可能事件.
13
接例2:观察某公交站的候车人数,
样本空间S={0,1,2,…}.
事件C表示“恰好有3人侯车”,
C={3}是基本事件;
事件D表示“候车人数既少于3个又多于3”,
D=Φ,是不可能事件.
14
事件之间有哪些关系与运算呢?
下一讲告诉你。
15。