概率论与随机过程----第一讲
- 格式:ppt
- 大小:414.50 KB
- 文档页数:18
概率论与随机过程概率论与随机过程是一门研究随机现象的数学学科,它在统计学、物理学、经济学、工程学等领域中具有广泛的应用。
本文将通过介绍概率论与随机过程的基本概念、性质与应用,带领读者深入了解这一学科的重要性和内容。
第一部分:概率论1. 概率论的起源与发展概率论起源于古代赌博中的各种游戏,随着数学的发展逐渐形成独立的学科。
17世纪布莱兹·帕斯卡和皮埃尔·德·费马的通信奠定了概率论的基础,18世纪朱利叶斯·雷蒙·拉普拉斯进一步发展了概率论的理论。
2. 概率论的基本概念事件、样本空间、样本点、概率、事件的运算等是概率论的基本概念。
概率的性质包括非负性、规范性、可加性和完备性。
3. 随机变量与概率分布随机变量是描述随机试验结果的数值特征,概率分布是随机变量各个取值的概率规律。
常见的离散概率分布包括伯努利分布、二项分布和泊松分布,连续概率分布包括均匀分布、正态分布和指数分布等。
4. 大数定律与中心极限定理大数定律指出,随着试验次数的增加,样本均值趋近于总体均值;中心极限定理则是指在一定条件下,独立同分布的随机变量之和的极限分布接近于正态分布。
第二部分:随机过程1. 随机过程的定义与分类随机过程是指随时间变化的一族随机变量的集合,根据时间的离散性和状态的离散性可分为离散时间马尔可夫链、连续时间马尔可夫链和连续时间马尔可夫过程。
2. 马尔可夫性质马尔可夫性质是指随机过程的未来状态只与当前状态有关,与过去状态无关。
马尔可夫过程具有无后效性和马尔可夫性。
3. 随机过程的稳定性与平稳性随机过程的稳定性包括短期稳定性和长期稳定性,平稳性指随机过程的概率分布在任意时刻保持不变。
第三部分:概率论与随机过程的应用1. 统计学中的应用概率论与随机过程是统计学的重要基础,用于建立随机模型、估计参数、检验假设等,广泛应用于调查统计、贝叶斯统计、回归分析等领域。
2. 物理学中的应用量子力学中的波函数和量子力学算符可以用概率论的语言进行描述,随机过程常用于描述粒子的运动、衰变过程等。
概率论与随机过程(工程硕士生60学时)教材及主要参考书:1.《随机过程》刘次华著,华中理工大学出版社出版。
2.《概率论与数理统计》浙江大学编,高等教育出版社出版。
3.《概率论与数理统计》同济大学编,高等教育出版社出版。
第一章 概率论第一节 预备知识一、排列与组合问题(一) 排列问题的提法:从n 个不同元素n a a a ...,21中任取r 个)(n r ≤,按先后顺序把它们排列,共有多少种不同的排列?分析:第一个位置有n 种取法,第二个位置有1-n 种取法,…第r 个位置有1+-r n 种取法,则共有:rn A r n n r n n n =-=+--)!(!)1()1((二) 组合问题的提法:从n 个不同元素n a a a ...,21中任取r 个(n r ≤),不按先后顺序得到一种组合,共有多少中不同的组合?分析:由于不按先后顺序,因此r r a a a a 121- 与121a a a a r r -是同一组合,因此一种组合对应!r 种排列,共有:!)1()1(r r n n n +-- =)!(!!r n r n -=rn C 二、集合论(不妨假设所有集合全为Ω的子集)(一)A B ⊂,A 是B 的子集,即集合A 的元素全部属于集合B 。
例:{}全体实数=R {}全体自然数=N 则:R N ⊂(二)B A =B A ⊂⇔且A B ⊂分析:定义蕴涵了证明两个集合相等的方法。
(三)B A C =或B A C +=,即集合C 包含集合A 和集合B 的全部元素,但不包含其它元素。
例:{}全体有理数=A {}全体无理数=B 则:{}R B A C ==+=全体实数 1.运算规律(1)交换律 A B B A =(2)结合律 )()(C B A C B A =特别地:若B A ⊂,则:B B A =A A =Φ Ω=Ω A A A A =2.推广情形集合的并运算可以推广到有限个、可数多个甚至到不可数情形,为了阐述清楚,下面补充可数集合的定义。