等差数列的前n项和第一课时(人教B版必修5)
- 格式:doc
- 大小:135.00 KB
- 文档页数:5
第1课时等差数列的前n项和课后篇巩固探究A组1.设S n是等差数列{a n}的前n项和,已知a2=3,a6=11,则S7等于()A.13B.35C.49D.63解析:S7==49.答案:C2.设S n是等差数列{a n}的前n项和,S5=10,则a3的值为()A. B.1 C.2 D.3解析:∵S5==5a3,∴a3=S5=×10=2.答案:C3.已知数列{a n}的通项公式为a n=2n-37,则S n取最小值时n的值为()A.17B.18C.19D.20解析:由≤n≤.∵n∈N+,∴n=18.∴S18最小,此时n=18.答案:B4.等差数列{a n}的前n项和为S n(n=1,2,3,…),若当首项a1和公差d变化时,a5+a8+a11是一个定值,则下列选项中为定值的是()A.S17B.S18C.S15D.S14解析:由a5+a8+a11=3a8是定值,可知a8是定值,所以S15==15a8是定值.答案:C5.若两个等差数列{a n},{b n}的前n项和分别为A n与B n,且满足(n∈N+),则的值是()A. B. C. D.解析:因为,所以.答案:C6.已知{a n}是等差数列,S n为其前n项和,n∈N+.若a3=16,S20=20,则S10的值为.解析:设等差数列{a n}的首项为a1,公差为d.∵a3=a1+2d=16,S20=20a1+d=20,∴解得d=-2,a1=20,∴S10=10a1+d=200-90=110.答案:1107.在等差数列{a n}中,前n项和为S n,若a9=3a5,则=.解析:S17=17a9,S9=9a5,于是×3=.答案:8.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差等于.解析:设公差为d,则有5d=S偶-S奇=30-15=15,于是d=3.答案:39.若等差数列{a n}的公差d<0,且a2·a4=12,a2+a4=8.(1)求数列{a n}的首项a1和公差d;(2)求数列{a n}的前10项和S10的值.解(1)由题意知(a1+d)(a1+3d)=12,(a1+d)+(a1+3d)=8,且d<0,解得a1=8,d=-2.(2)S10=10×a1+d=-10.10.导学号33194010已知数列{a n}是首项为23,公差为整数的等差数列,且前6项均为正,从第7项开始变为负.求:(1)此等差数列的公差d;(2)设前n项和为S n,求S n的最大值;(3)当S n是正数时,求n的最大值.解(1)∵数列{a n}首项为23,前6项均为正,从第7项开始变为负,∴a6=a1+5d=23+5d>0,a7=a1+6d=23+6d<0,解得-<d<-,又d∈Z,∴d=-4.(2)∵d<0,∴{a n}是递减数列.又a6>0,a7<0,∴当n=6时,S n取得最大值,即S6=6×23+×(-4)=78.(3)S n=23n+×(-4)>0,整理得n(25-2n)>0,∴0<n<,又n∈N+,∴n的最大值为12.B组1.设数列{a n}为等差数列,公差d=-2,S n为其前n项和,若S10=S11,则a1=()A.18B.20C.22D.24解析:因为S11-S10=a11=0,a11=a1+10d=a1+10×(-2)=0,所以a1=20.答案:B2.(2017全国1高考)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.8解析:设首项为a1,公差为d,则a4+a5=a1+3d+a1+4d=24,S6=6a1+d=48,联立可得①×3-②,得(21-15)d=24,即6d=24,所以d=4.答案:C3.等差数列{a n}的前n项和记为S n,若a2+a4+a15的值为一个确定的常数,则下列各数中也是常数的是()A.S7B.S8C.S13D.S15解析:∵a2+a4+a15=3a1+18d=3(a1+6d)=3a7为常数,∴S13==13a7为常数.答案:C4.导学号33194011若等差数列{a n}的通项公式是a n=1-2n,其前n项和为S n,则数列的前11项和为() A.-45 B.-50 C.-55 D.-66解析:∵S n=,∴=-n,∴的前11项和为-(1+2+3+…+11)=-66.故选D.答案:D5.已知等差数列{a n}前9项的和等于前4项的和.若a1=1,a k+a4=0,则k=.解析:设等差数列{a n}的公差为d,则a n=1+(n-1)d,∵S4=S9,∴a5+a6+a7+a8+a9=0.∴a7=0,∴1+6d=0,d=-.又a4=1+3×,a k=1+(k-1)d,由a k+a4=0,得+1+(k-1)d=0,将d=-代入,可得k=10.答案:106.已知数列{a n}为等差数列,其前n项和为S n,且1+<0.若S n存在最大值,则满足S n>0的n的最大值为.解析:因为S n有最大值,所以数列{a n}单调递减,又<-1,所以a10>0,a11<0,且a10+a11<0.所以S19=19×=19a10>0,S20=20×=10(a10+a11)<0,故满足S n>0的n的最大值为19.答案:197.导学号33194012在等差数列{a n}中,a1=-60,a17=-12,求数列{|a n|}的前n项和.解数列{a n}的公差d==3,∴a n=a1+(n-1)d=-60+(n-1)×3=3n-63.由a n<0得3n-63<0,解得n<21.∴数列{a n}的前20项是负数,第20项以后的项都为非负数.设S n,S n'分别表示数列{a n}和{|a n|}的前n项和,当n≤20时,S n'=-S n=-=-n2+n;当n>20时,S n'=-S20+(S n-S20)=S n-2S20=-60n+×3-2×n2-n+1260.∴数列{|a n|}的前n项和S n'=8.导学号33194013设等差数列{a n}的前n项和为S n,且a5+a13=34,S3=9.(1)求数列{a n}的通项公式及前n项和公式;(2)设数列{b n}的通项公式为b n=,问:是否存在正整数t,使得b1,b2,b m(m≥3,m∈N)成等差数列?若存在,求出t和m的值;若不存在,请说明理由.解(1)设等差数列{a n}的公差为d,因为a5+a13=34,S3=9,所以整理得解得所以a n=1+(n-1)×2=2n-1,S n=n×1+×2=n2.(2)由(1)知b n=,所以b1=,b2=,b m=.若b1,b2,b m(m≥3,m∈N)成等差数列,则2b2=b1+b m,所以,即6(1+t)(2m-1+t)=(3+t)(2m-1+t)+(2m-1)(1+t)(3+t),整理得(m-3)t2-(m+1)t=0,因为t是正整数,所以(m-3)t-(m+1)=0,m=3时显然不成立,所以t==1+.又因为m≥3,m∈N,所以m=4或5或7,当m=4时,t=5;当m=5时,t=3;当m=7时,t=2.所以存在正整数t,使得b1,b2,b m(m≥3,m∈N)成等差数列.。
等差数列前n项和公式说课稿各位评委,大家好:我说课的课题是高中数学(人教B版)必修5第二章等差数列中“等差数列前n 项和公式”的第一节内容,我将从教材分析、教法、学法分析、教学过程、板书设计和效果分析五个方面来展开本节的说课内容。
一、教材分析1、地位与作用“等差数列前n项和公式”是《数列》一章中重要的基础知识,无论在知识,还是在能力上,都是进一步学习其他数列知识的基础。
知识方面:等差数列前n项和公式有广泛的实际应用,是今后继续学习高等数学的基础,能体现解决数列问题的通性通法,并且在推导等差数列前n项和公式中运用的“例序相加法”是今后数列求和的一种常用的重要方法。
能力方面:可考查学生的运算、推理、及等价转化能力,使学生进一步深入体会学习函数方程、数形结合等重要数学思想方法。
因此等差数列前n项和公式在《数列》一章具有极为重要的地位,也是高考命题的热点。
2、目标分析:根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,我制定如下教学目标:A、知识目标掌握等差数列前n项和公式的推导方法;掌握公式及公式的运用。
B、能力目标(1)通过公式的探索、发现,在知识发生、发展以及形式过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。
(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比导出等差数列的求和公式,培养学生的类比思维能力。
(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析和解决问题的能力。
C、情感目标:(1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。
(2)公式运用的过程中,使学生逐步养成实事求是,扎实严谨的科学态度。
(3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。
3、教学重点和难点结合以上教学目标,我制定了下面的教学重点和难点1、教学重点:等差数列前n项和公式的推导、掌握及灵活运用。
2.3.2 等比数列的前n 项和(一)明目标、知重点 1.掌握等比数列的前n 项和公式及公式证明思路.2.会用等比数列的前n 项和公式解决有关等比数列的一些简单问题.1.等比数列前n 项和公式:(1)公式:S n =⎩⎪⎨⎪⎧a 1(1-q n)1-q =a 1-a n q 1-q (q ≠1)na 1(q =1). (2)注意:应用该公式时,一定不要忽略q =1的情况. 2.等比数列前n 项和公式的变式若{a n }是等比数列,且公比q ≠1,则前n 项和S n =a 11-q (1-q n )=A (q n -1).其中A =a 1q -1.3.错位相减法推导等比数列前n 项和的方法叫错位相减法.一般适用于求一个等差数列与一个等比数列对应项积的前n 项和.国际象棋起源于古代印度.相传国王要奖赏象棋的发明者,问他想要什么.发明者说:“请在象棋的第一个格子里放1颗麦粒,第二个格子放2颗麦粒,第三个格子放4颗麦粒,以此类推,每个格子放的麦粒数都是前一个格子的两倍,直到第64个格子.请给我足够的麦粒以实现上述要求”.国王觉得这个要求不高,就欣然同意了.假定千粒麦子的质量为40 g ,据查目前世界年度小麦产量约6亿 t ,根据以上数据,判断国王是否能实现他的诺言. 探究点一 等比数列前n 项和公式的推导思考1 在情境导学中,如果把各格所放的麦粒数看成是一个数列,那么这个数列是怎样的一个数列?通项公式是什么?答 所得数列为1,2,4,8,…,263.它是首项为1,公比为2的等比数列,通项公式为a n =2n -1. 思考2 在情境导学中,国王能否满足发明者要求的问题,转化为数列的怎样的一个问题? 答 转化为求通项为a n =2n-1的等比数列前64项的和.思考3 类比求等差数列前n 项和的方法,能否用倒序相加法求数列1,2,4,8,…,263的和?为什么?答 不能用倒序相加法,因为对应各项相加后的和不相等.思考4 对于S 64=1+2+4+8+…+262+263,用2乘以等式的两边可得2S 64=2+4+8+…+262+263+264,对这两个式子作怎样的运算能解出S 64?答 比较两式易知,两式相减能消去同类项,解出S 64,即S 64=1-2641-2=264-1≈1.84×1019.思考5 类比思考4中求和的方法,如何求等比数列{a n }的前n 项和S n ? 答 设等比数列{a n }的首项是a 1,公比是q ,前n 项和为S n . S n 写成:S n =a 1+a 1q +a 1q 2+…+a 1q n -1.① 则qS n =a 1q +a 1q 2+…+a 1q n -1+a 1q n .② 由①-②得:(1-q )S n =a 1-a 1q n . 当q ≠1时,S n =a 1(1-q n )1-q.当q =1时,由于a 1=a 2=…=a n ,所以S n =na 1.思考6 下面提供了两种推导等比数列前n 项和公式的方法.请你补充完整. 方法一 由等比数列的定义知: a 2a 1=a 3a 2=a 4a 3=…=a n a n -1=q . 当q ≠1时,由等比性质得: a 2+a 3+a 4+…+a n a 1+a 2+a 3+…+a n -1=q ,即S n -a 1S n -a n=q . 故S n =a 1-a n q 1-q =a 1(1-q n )1-q .当q =1时,易知S n =na 1.方法二 由S n =a 1+a 2+a 3+…+a n 得: S n =a 1+a 1q +a 2q +…+a n -1q =a 1+q ·(a 1+a 2+…+a n -1) =a 1+q ·(S n -a n )从而得(1-q )·S n =a 1-a n q . 当q ≠1时,S n =a 1-a n q1-q ;当q =1时,S n =na 1.小结等比数列{a n}的前n 项和S n可以用a 1,q ,a n表示为S n=⎩⎪⎨⎪⎧na 1,q =1a 1-a nq1-q ,q ≠1.例1 “一尺之棰,日取其半,万世不竭”,怎样用学过的知识来说明它? 解 这句话用现代文叙述是“一尺长的木棒,每天取它的一半,永远也取不完”.如果每天取出的木棒的长度排成一个数列,则得到一个首项为a 1=12,公比q =12的等比数列,它的前n 项和为S n =12×[1-(12)n ]1-12=1-(12)n .不论n 取何值,1-S n =(12)n 总大于0,这说明一尺长的木棒,每天取它的一半,永远也取不完.反思与感悟 涉及等比数列前n 项和时,要先判断q =1是否成立,防止因漏掉q =1而出错. 跟踪训练1 若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________. 答案 2 2n +1-2解析 设等比数列的公比为q ,由a 2+a 4=20,a 3+a 5=40.∴20q =40,且a 1q +a 1q 3=20,解之得q =2,且a 1=2. 因此S n =a 1(1-q n )1-q=2n +1-2.例2 等比数列{a n }的公比q =12,a 8=1,求它的前8项和S 8.解 方法一 因为a 8=a 1q 7,所以a 1=a 8q 7=27.因此S 8=a 1(1-q 8)1-q =27[1-(12)8]1-12=28-1=255.方法二 把原数列的第8项当作第一项,第1项当作第8项,即顺序颠倒,也得到一个等比数列{b n },其中b 1=a 8=1,q ′=2,所以前8项和S 8=b 1(1-q ′8)1-q ′=1-281-2=255.反思与感悟 等比数列的前n 项和公式和通项公式中共涉及a 1,a n ,q ,n ,S n 五个基本量,已知其中三个量,可以求出另外的两个量,我们可以简称为“知三求二”. 跟踪训练2 求下列等比数列前8项的和: (1)12,14,18,…; (2)a 1=27,a 9=1243,q <0.解 (1)因为a 1=12,q =12,所以S 8=12[1-(12)8]1-12=255256.(2)由a 1=27,a 9=1243,可得1243=27·q 8.又由q <0,可得q =-13.所以S 8=27[1-(-13)8]1-(-13)=1 64081.探究点二 等比数列前n 项和的实际应用例3 某工厂去年1月份的产值为a 元,月平均增长率为p (p >0),求这个工厂去年全年产值的总和.解 该工厂去年2月份的产值为a (1+p )元,3月,4月……的产值分别为a (1+p )2元,a (1+p )3元,……,去年12个月的产值组成以a 为首项,1+p 为公比的等比数列,因此,该厂去年全年的总产值为S 12=a [1-(1+p )12]1-(1+p )=a [(1+p )12-1]p .答 该工厂去年全年的总产值为a [(1+p )12-1]p元.反思与感悟 解应用题先要认真阅读题目,尤其是一些关键词:“平均每年的销售量比上一年的销售量增加10%”.理解题意后,将文字语言向数字语言转化,建立数学模型,再用数学知识解决问题.跟踪训练3 一个热气球在第一分钟上升了25 m 的高度,在以后的每一分钟里,它上升的高度都是它在前一分钟里上升高度的80%.这个热气球上升的高度能超过125 m 吗? 解 用a n 表示热气球在第n 分钟上升的高度, 由题意,得a n +1=45a n ,因此,数列{a n }是首项a 1=25,公比q =45的等比数列.热气球在前n 分钟内上升的总高度为 S n =a 1+a 2+…+a n=a 1(1-q n)1-q =25×⎣⎡⎦⎤1-⎝⎛⎭⎫45n 1-45=125×⎣⎡⎦⎤1-⎝⎛⎭⎫45n <125. 故这个热气球上升的高度不可能超过125 m. 探究点三 错位相减法求和例4 求和:S n =x +2x 2+3x 3+…+nx n (x ≠0). 解 分x =1和x ≠1两种情况.当x =1时,S n =1+2+3+…+n =n (n +1)2.当x ≠1时,S n =x +2x 2+3x 3+…+nx n , xS n =x 2+2x 3+3x 4+…+(n -1)x n +nx n +1, ∴(1-x )S n =x +x 2+x 3+…+x n -nx n +1 =x (1-x n )1-x -nx n +1.∴S n =x (1-x n )(1-x )2-nx n +11-x.综上可得S n=⎩⎪⎨⎪⎧n (n+1)2 (x =1)x (1-x n)(1-x )2-nxn +11-x (x ≠1且x ≠0).反思与感悟 一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n b n }的前n 项和时,可采用错位相减法.跟踪训练4 求数列1,3a,5a 2,7a 3,…,(2n -1)·a n -1的前n 项和.解 (1)当a =0时,S n =1.(2)当a =1时,数列变为1,3,5,7,…,(2n -1), 则S n =n [1+(2n -1)]2=n 2.(3)当a ≠1且a ≠0时,有S n =1+3a +5a 2+7a 3+…+(2n -1)a n -1① aS n =a +3a 2+5a 3+7a 4+…+(2n -1)a n ② ①-②得S n -aS n =1+2a +2a 2+2a 3+…+2a n -1-(2n -1)a n , (1-a )S n =1-(2n -1)a n +2(a +a 2+a 3+a 4+…+a n -1) =1-(2n -1)a n +2·a (1-a n -1)1-a=1-(2n -1)a n+2(a -a n )1-a,又1-a ≠0,∴S n =1-(2n -1)a n 1-a +2(a -a n )(1-a )2.综上,S n=⎩⎪⎨⎪⎧1 (a =0)n 2(a =1)1-(2n -1)a n1-a +2(a -a n )(1-a )2(a ≠0且a ≠1).1.等比数列1,x ,x 2,x 3,…的前n 项和S n 为( ) A.1-x n 1-xB.1-x n -11-xC.⎩⎪⎨⎪⎧1-x n1-x ,x ≠1n , x =1 D.⎩⎪⎨⎪⎧1-x n -11-x ,x ≠1n , x =1答案 C解析 当x =1时,S n =n ;当x ≠1时,S n =1-x n 1-x.2.设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4a 2等于( )A .2B .4 C.152 D.172答案 C解析 方法一 由等比数列的定义, S 4=a 1+a 2+a 3+a 4=a 2q +a 2+a 2q +a 2q 2,得S 4a 2=1q +1+q +q 2=152. 方法二 S 4=a 1(1-q 4)1-q,a 2=a 1q ,∴S 4a 2=1-q 4(1-q )q =152. 3.等比数列{a n }的各项都是正数,若a 1=81,a 5=16,则它的前5项的和是( ) A .179 B .211 C .243 D .275 答案 B解析 ∵q 4=a 5a 1=1681=(23)4,∴q =23,∴S 5=a 1-a 5q 1-q =81-16×231-23=211.4.某厂去年产值为a ,计划在5年内每年比上一年产值增长10%,从今年起5年内,该厂的总产值为________. 答案 11a (1.15-1)解析 注意去年产值为a ,今年起5年内各年的产值分别为1.1a,1.12a,1.13a,1.14a,1.15a .∴1.1a +1.12a +1.13a +1.14a +1.15a =11a (1.15-1).1.在等比数列的通项公式和前n 项和公式中,共涉及五个量:a 1,a n ,n ,q ,S n ,其中首项a 1和公比q 为基本量,且“知三求二”.2.前n 项和公式的应用中,注意前n 项和公式要分类讨论,即q ≠1和q =1时是不同的公式形式,不可忽略q =1的情况.3.一般地,如果数列{a n }是等差数列,{b n }是等比数列且公比为q ,求数列{a n ·b n }的前n 项和时,可采用错位相减的方法求和.一、基础过关1.设数列{(-1)n }的前n 项和为S n ,则S n 等于( ) A.n [(-1)n -1]2B.(-1)n +1+12C.(-1)n +12D.(-1)n -12答案 D解析 S n =(-1)[1-(-1)n ]1-(-1)=(-1)n -12.2.在各项都为正数的等比数列{a n }中,首项a 1=3,前3项和为21,则a 3+a 4+a 5等于( ) A .33 B .72 C .84 D .189 答案 C解析 由S 3=a 1(1+q +q 2)=21且a 1=3, 得q 2+q -6=0.∵q >0,∴q =2.∴a 3+a 4+a 5=q 2(a 1+a 2+a 3)=22·S 3=84.3.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2等于( )A .11B .5C .-8D .-11 答案 D解析 由8a 2+a 5=0得8a 1q +a 1q 4=0,∴q =-2,则S 5S 2=a 1(1+25)a 1(1-22)=-11.4.等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1等于( ) A.13 B .-13 C.19 D .-19 答案 C解析 设等比数列{a n }的公比为q ,由S 3=a 2+10a 1得a 1+a 2+a 3=a 2+10a 1,即a 3=9a 1,q 2=9,又a 5=a 1q 4=9,所以a 1=19.5.设等比数列{a n }的前n 项和为S n ,若a 1=1,S 6=4S 3,则a 4=________. 答案 3解析 S 6=4S 3⇒a 1(1-q 6)1-q =4·a 1(1-q 3)1-q⇒q 3=3(q 3=1舍去). ∴a 4=a 1·q 3=1×3=3.6.如果数列{a n }满足a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…,是首项为1,公比为2的等比数列,那么a n =________. 答案 2n -1解析 a n -a n -1=a 1q n -1=2n -1,即⎩⎪⎨⎪⎧a 2-a 1=2,a 3-a 2=22,…a n-a n -1=2n -1.相加得a n -a 1=2+22+…+2n -1=2n -2, 故a n =a 1+2n -2=2n -1.7.设等比数列{a n }的前n 项和为S n ,若S 3+S 6=2S 9,求数列的公比q . 解 当q =1时,S n =na 1,∴S 3+S 6=3a 1+6a 1=9a 1=S 9≠2S 9; 当q ≠1时,a 1(1-q 3)1-q +a 1(1-q 6)1-q =2×a 1(1-q 9)1-q ,得2-q 3-q 6=2-2q 9,∴2q 9-q 6-q 3=0,解得q 3=-12或q 3=1(舍去),∴q =-342.二、能力提升8.一弹性球从100米高处自由落下,每次着地后又跳回到原来高度的一半再落下,则第10次着地时所经过的路程和是(结果保留到个位)( ) A .300米 B .299米 C .199米 D .166米 答案 A解析 小球10次着地共经过的路程为100+100+50+…+100×⎝⎛⎭⎫128=2993964≈300(米). 9.已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于 ( )A .-6(1-3-10)B.19(1-3-10) C .3(1-3-10) D .3(1+3-10)答案 C解析 先根据等比数列的定义判断数列{a n }是等比数列,得到首项与公比,再代入等比数列前n 项和公式计算.由3a n +1+a n =0,得a n +1a n =-13,故数列{a n }是公比q =-13的等比数列.又a 2=-43,可得a 1=4.所以S 10=4⎣⎡⎦⎤1-(-13)101-⎝⎛⎭⎫-13=3(1-3-10).10.等比数列{a n }的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则{a n }的公比为________. 答案 13解析 由已知4S 2=S 1+3S 3, 即4(a 1+a 2)=a 1+3(a 1+a 2+a 3). ∴a 2=3a 3,∴{a n }的公比q =a 3a 2=13.11.求和:1×21+2×22+3×23+…+n ·2n . 解 设S n =1×21+2×22+3×23+…+n ·2n则2S n =1×22+2×23+…+(n -1)×2n +n ·2n +1∴-S n =21+22+23+…+2n -n ·2n +1=2(1-2n )1-2-n ·2n +1=2n +1-2-n ·2n +1 =(1-n )·2n +1-2∴S n =(n -1)·2n +1+2.12.为保护我国的稀土资源,国家限定某矿区的出口总量不能超过80吨,该矿区计划从2013年开始出口,当年出口a 吨,以后每年出口量均比上一年减少10%.(1)以2013年为第一年,设第n 年出口量为a n 吨,试求a n 的表达式;(2)因稀土资源不能再生,国家计划10年后终止该矿区的出口,问2013年最多出口多少吨?(保留一位小数)参考数据:0.910≈0.35.解 (1)由题意知每年的出口量构成等比数列,且首项a 1=a ,公比q =1-10%=0.9,∴a n =a ·0.9n -1 (n ≥1).(2)10年的出口总量S 10=a (1-0.910)1-0.9=10a (1-0.910). ∵S 10≤80,∴10a (1-0.910)≤80,即a ≤81-0.910, ∴a ≤12.3.故2013年最多出口12.3吨.三、探究与拓展13.已知等差数列{a n }满足a 2=0,a 6+a 8=-10.(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和. 解 (1)设等差数列{a n }的公差为d ,由已知条件可得⎩⎪⎨⎪⎧ a 1+d =0,2a 1+12d =-10,解得⎩⎪⎨⎪⎧a 1=1,d =-1. 故数列{a n }的通项公式为a n =2-n .(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和为S n , 即S n =a 1+a 22+…+a n 2n -1,① S n 2=a 12+a 24+…+a n 2n .② 所以,当n >1时,①-②得S n 2=a 1+a 2-a 12+…+a n -a n -12n -1-a n 2n =1-(12+14+…+12n -1)-2-n 2n =1-(1-12n -1)-2-n 2n =n 2n . 所以S n =n 2n -1.当n =1时也成立. 综上,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和S n =n 2n -1.。
学习目标 1.理解等差数列的定义.2.会推导等差数列的通项公式,能运用等差数列的通项公式解决一些简单的问题.3.掌握等差中项的概念.知识点一 等差数列的概念一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示,可正可负可为零. 知识点二 等差中项的概念如果三个数x ,A ,y 组成等差数列,那么A 叫做x 与y 的等差中项,且A =x +y2.思考 下列所给的两个数之间,插入一个什么数后三个数就会成为一个等差数列: (1)2,4;(2)-1,5;(3)0,0;(4)a ,b . 答案 插入的数分别为(1)3,(2)2,(3)0,(4)a +b2.知识点三 等差数列的通项公式若一个等差数列{a n },首项是a 1,公差为d ,则a n =a 1+(n -1)d .此公式可用叠加法证明.1.数列4,4,4,……是等差数列.( √ ) 2.数列3,2,1是等差数列.( √ )3.数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,n +1,n ≥2,则{a n }是等差数列.( × )4.等差数列{a n }中,a 1,n ,d ,a n 任给三个,可求其余.( √ )题型一 等差数列的概念例1 判断下列数列是不是等差数列? (1)9,7,5,3,…,-2n +11,…; (2)-1,11,23,35,…,12n -13,…; (3)1,2,1,2,…; (4)1,2,4,6,8,10,…; (5)a ,a ,a ,a ,a ,….解 由等差数列的定义得(1)(2)(5)为等差数列,(3)(4)不是等差数列.反思感悟 判断一个数列是不是等差数列,就是判断从第二项起该数列的每一项减去它的前一项的差是否为同一个常数,但当数列项数较多或是无穷数列时,逐一验证显然不行,这时可以验证a n +1-a n (n ≥1,n ∈N +)是不是一个与n 无关的常数. 跟踪训练1 数列{a n }的通项公式a n =2n +5(n ∈N +),则此数列( ) A .是公差为2的等差数列 B .是公差为5的等差数列 C .是首项为5的等差数列 D .是公差为n 的等差数列 答案 A解析 ∵a n +1-a n =2(n +1)+5-(2n +5)=2, ∴{a n }是公差为2的等差数列. 题型二 等差中项例2 在-1与7之间顺次插入三个数a ,b ,c ,使这五个数成等差数列,求此数列. 解 ∵-1,a ,b ,c ,7成等差数列, ∴b 是-1与7的等差中项, ∴b =-1+72=3.又a 是-1与3的等差中项,∴a =-1+32=1.又c 是3与7的等差中项,∴c =3+72=5.∴该数列为-1,1,3,5,7.反思感悟 在等差数列{a n }中,由定义有a n +1-a n =a n -a n -1(n ≥2,n ∈N +),即a n =a n +1+a n -12,从而由等差中项的定义知,等差数列从第2项起的每一项都是它前一项与后一项的等差中项. 跟踪训练2 若m 和2n 的等差中项为4,2m 和n 的等差中项为5,求m 和n 的等差中项. 解 由m 和2n 的等差中项为4,得m +2n =8. 又由2m 和n 的等差中项为5,得2m +n =10. 两式相加,得3m +3n =18,即m +n =6. 所以m 和n 的等差中项为m +n2=3.题型三 等差数列通项公式的求法及应用 例3 在等差数列{a n }中,(1)若a 5=15,a 17=39,试判断91是否为此数列中的项. (2)若a 2=11,a 8=5,求a 10.解 (1)因为⎩⎪⎨⎪⎧a 1+4d =15.a 1+16d =39,解得⎩⎪⎨⎪⎧a 1=7,d =2,所以a n =7+2(n -1)=2n +5. 令2n +5=91,得n =43.因为43为正整数,所以91是此数列中的项.(2)设{a n }的公差为d ,则⎩⎪⎨⎪⎧a 1+d =11,a 1+7d =5,解得⎩⎪⎨⎪⎧a 1=12,d =-1.∴a n =12+(n -1)×(-1)=13-n , 所以a 10=13-10=3.反思感悟 根据已知量和未知量之间的关系,列出方程求解的思想方法,称为方程思想.等差数列{a n }中的每一项均可用a 1和d 表示,这里的a 1和d 就像构成物质的基本粒子,我们可以称为基本量.跟踪训练3 (1)求等差数列8,5,2,…的第20项;(2)判断-401是不是等差数列-5,-9,-13,…的项,如果是,是第几项? 解 (1)由a 1=8,a 2=5,得d =a 2-a 1=5-8=-3, 由n =20,得a 20=8+(20-1)×(-3)=-49.(2)由a 1=-5,d =-9-(-5)=-4,得这个数列的通项公式为a n =-5+(n -1)×(-4)=-4n -1.由题意,令-401=-4n -1,得n =100, 即-401是这个数列的第100项.等差数列的判定与证明典例1 已知数列{a n }满足a n +1=3a n +3n,且a 1=1. (1)证明:数列⎩⎨⎧⎭⎬⎫a n 3n 是等差数列;(2)求数列{a n }的通项公式.(1)证明 由a n +1=3a n +3n,两边同时除以3n +1,得a n +13n +1=a n 3n +13,即a n +13n +1-a n 3n =13. 由等差数列的定义知,数列⎩⎨⎧⎭⎬⎫a n 3n 是以a 13=13为首项,13为公差的等差数列.(2)解 由(1)知a n 3n =13+(n -1)×13=n3,故a n =n ·3n -1,n ∈N +.典例2 已知数列{a n }:a 1=a 2=1,a n =a n -1+2(n ≥3). (1)判断数列{a n }是否为等差数列?说明理由; (2)求{a n }的通项公式.解 (1)当n ≥3时,a n =a n -1+2,即a n -a n -1=2, 而a 2-a 1=0不满足a n -a n -1=2(n ≥3), ∴{a n }不是等差数列.(2)当n ≥2时,a n 是等差数列,公差为2. 当n ≥2时,a n =1+2(n -2)=2n -3, 又a 1=1不适合上式,∴{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2.[素养评析] (1)证明一个数列是等差数列的基本方法:定义法,即证明a n -a n -1=d (n ≥2,d 为常数)或a n +1-a n =d (d 为常数),若证明一个数列不是等差数列,则只需举出反例即可.(2)证明一个数列是等差数列,主要的推理形式为演绎推理,通过学习,使学生形成重论据、有条理、合乎逻辑的思维品质,培养学生的数学核心素养.1.下列数列不是等差数列的是( ) A .1,1,1,1,1 B .4,7,10,13,16 C.13,23,1,43,53 D .-3,-2,-1,1,2答案 D2.已知等差数列{a n }的通项公式a n =3-2n (n ∈N +),则它的公差d 为( ) A .2B .3C .-2D .-3 答案 C解析 由等差数列的定义,得d =a 2-a 1=-1-1=-2.3.已知在△ABC 中,三个内角A ,B ,C 成等差数列,则角B 等于( ) A .30°B.60°C.90°D.120° 答案 B解析 因为A ,B ,C 成等差数列,所以B 是A ,C 的等差中项,则有A +C =2B , 又因为A +B +C =180°, 所以3B =180°,从而B =60°.4.若数列{a n }满足3a n +1=3a n +1,则数列{a n }是( ) A .公差为1的等差数列 B .公差为13的等差数列C .公差为-13的等差数列D .不是等差数列 答案 B解析 由3a n +1=3a n +1,得3a n +1-3a n =1,即a n +1-a n =13.所以数列{a n }是公差为13的等差数列.5.已知等差数列1,-1,-3,-5,…,-89,则它的项数是( ) A .92B .47C .46D .45 答案 C解析 d =-1-1=-2,设-89为第n 项,则-89=a 1+(n -1)d =1+(n -1)·(-2),∴n =46.1.判断一个数列是否为等差数列的常用方法 (1)a n +1-a n =d (d 为常数,n ∈N +)⇔{a n }是等差数列; (2)2a n +1=a n +a n +2(n ∈N +)⇔{a n }是等差数列;(3)a n =kn +b (k ,b 为常数,n ∈N +)⇔{a n }是等差数列. 但若要说明一个数列不是等差数列,则只需举出一个反例即可.2.由等差数列的通项公式a n =a 1+(n -1)d 可以看出,只要知道首项a 1和公差d ,就可以求出通项公式,反过来,在a 1,d ,n ,a n 四个量中,只要知道其中任意三个量,就可以求出另一个量.一、选择题1.设数列{a n }(n ∈N +)是公差为d 的等差数列,若a 2=4,a 4=6,则d 等于( ) A .4B .3C .2D .1 答案 D解析 ∵a 4-a 2=2d =6-4=2.∴d =1.2.已知等差数列-5,-2,1,…,则该数列的第20项为( ) A .52B .62C .-62D .-52 答案 A解析 公差d =-2-(-5)=3,a 20=a 1+(20-1)d =-5+19×3=52. 3.在数列{a n }中,a 1=2,2a n +1-2a n =1,则a 101的值为( ) A .52B .51C .50D .49 答案 A解析 因为2a n +1-2a n =1,a 1=2,所以数列{a n }是首项a 1=2,公差d =12的等差数列,所以a 101=a 1+100d =2+100×12=52.4.若5,x ,y ,z ,21成等差数列,则x +y +z 的值为( ) A .26B .29C .39D .52 答案 C解析 ∵5,x ,y ,z ,21成等差数列,∴y 既是5和21的等差中项也是x 和z 的等差中项. ∴5+21=2y ,∴y =13,x +z =2y =26, ∴x +y +z =39.5.已知在等差数列{a n }中,a 3+a 8=22,a 6=7,则a 5等于( ) A .15B .22C .7D .29 答案 A解析 设{a n }的首项为a 1,公差为d , 根据题意得⎩⎪⎨⎪⎧a 3+a 8=a 1+2d +a 1+7d =22,a 6=a 1+5d =7,解得a 1=47,d =-8.所以a 5=47+(5-1)×(-8)=15.6.等差数列20,17,14,11,…中第一个负数项是( ) A .第7项 B .第8项 C .第9项 D .第10项答案 B解析 ∵a 1=20,d =-3,∴a n =20+(n -1)×(-3)=23-3n , ∴a 7=2>0,a 8=-1<0.故数列中第一个负数项是第8项.7.一个等差数列的前4项是a ,x ,b ,2x ,则a b等于( ) A.14B.12C.13D.23 答案 C解析 ∵b 是x,2x 的等差中项,∴b =x +2x 2=3x2,又∵x 是a ,b 的等差中项,∴2x =a +b ,∴a =x 2,∴a b =13.8.在数列{a n }中,a 2=2,a 6=0,且数列⎩⎨⎧⎭⎬⎫1a n +1是等差数列,则a 4等于( ) A.12B.13C.14D.16 答案 A 解析 由题意可得2a 4+1=1a 2+1+1a 6+1,解得a 4=12,故选A. 二、填空题9.若一个等差数列的前三项为a,2a -1,3-a ,则这个数列的通项公式为__________________. 答案 a n =n4+1,n ∈N +解析 ∵a +(3-a )=2(2a -1),∴a =54.∴这个等差数列的前三项依次为54,32,74,∴d =14,a n =54+(n -1)×14=n4+1,n ∈N +.10.现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升. 答案6766解析 设此等差数列为{a n },公差为d ,则⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,∴⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4,解得⎩⎪⎨⎪⎧a 1=1322,d =766,∴a 5=a 1+4d =1322+4×766=6766.11.首项为-24的等差数列,从第10项起开始为正数,则公差d 的取值范围是________.答案 ⎝ ⎛⎦⎥⎤83,3解析 设a n =-24+(n -1)d ,则⎩⎪⎨⎪⎧a 9=-24+8d ≤0,a 10=-24+9d >0,解得83<d ≤3.三、解答题12.已知{a n }为等差数列,且a 3=-6,a 6=0,求{a n }的通项公式. 解 设数列{a n }的公差为d ,由已知得⎩⎪⎨⎪⎧a 1+2d =-6,a 1+5d =0,解得⎩⎪⎨⎪⎧a 1=-10,d =2,所以数列{a n }的通项公式为a n =a 1+(n -1)d =-10+(n -1)×2=2n -12. 13.已知数列{a n }满足a n +1=6a n -4a n +2,且a 1=3(n ∈N +). (1)证明:数列⎩⎨⎧⎭⎬⎫1a n -2是等差数列; (2)求数列{a n }的通项公式. (1)证明 由1a n +1-2=16a n -4a n +2-2=a n +26a n -4-2a n +2=a n +24a n -8=a n -2+44a n -2=1a n -2+14, 得1a n +1-2-1a n -2=14,n ∈N +,故数列⎩⎨⎧⎭⎬⎫1a n -2是等差数列. (2)解 由(1)知1a n -2=1a 1-2+(n -1)×14=n +34, 所以a n =2n +10n +3,n ∈N +.14.已知数列{a n }中,a 1=1,a n -1-a n =a n a n -1(n ≥2,n ∈N +),则a 10=________. 答案110解析 易知a n ≠0,∵数列{a n }满足a n -1-a n =a n a n -1(n ≥2,n ∈N +),∴1a n -1a n -1=1(n ≥2,n ∈N +),故数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,且公差为1,首项为1,∴1a 10=1+9=10,∴a 10=110.15.已知数列{a n }满足:a 1=10,a 2=5,a n -a n +2=2(n ∈N +),求数列{a n }的通项公式. 解 由a n -a n +2=2知,{a n }的奇数项,偶数项 分别构成公差为-2的等差数列.当n =2k -1时,2k =n +1,a 2k -1=a 1+(k -1)·(-2)=12-2k , ∴a n =12-(n +1)=11-n (n 为奇数).当n =2k 时,a 2k =a 2+(k -1)·(-2)=5-2k +2=7-2k . ∴a n =7-n (n 为偶数).∴a n =⎩⎪⎨⎪⎧7-n ,n 为偶数,11-n ,n 为奇数.。
2.2.2 等差数列的前n 项和第一课时 优化训练
1.等差数列{a n }中,S 6=0,S 12=144,则数列{a n }的公差d 等于( ) A .1 B .2 C .3
D .4
解析:选D.利用等差数列求和公式S n =na 1+
n n -12
d .
2.已知{a n }是等差数列,其前10项和S 10=70,a 10=10,则其公差d 等于( ) A .-23
B .-13
C.13
D.23
解析:选D.∵S 10=10a 10+10×9
2×(-d ),a 10=10,
∴10×10+
10×92×(-d )=70,解得d =2
3
. 3.在小于100的自然数中,所有被7除余2的数之和为( ) A .765 B .665 C .763 D .663
答案:B
4.已知{a n }是等差数列,a 4+a 6=6,其前5项和S 5=10,则其公差d =________. 解析:设首项为a 1,公差为d , 由题意得⎩⎪⎨⎪⎧
2a 1
+8d =65a 1+5×4
2d =10, 解得d =1
2.
答案:1
2
5.等差数列{a n }的前n 项和记为S n ,已知a 10=30,a 20=50. (1)求通项a n ; (2)令S n =242,求n .
解:(1)由a n =a 1+(n -1)d ,a 10=30,a 20=50, 得方程组⎩
⎪⎨
⎪⎧
a 1+9d =30,a 1+19d =50,解得⎩
⎪⎨
⎪⎧
a 1=12,d =2.
所以a n =2n +10.
(2)由S n =na 1+n n -12
·d ,S n =242得方程
12n +
n n -12
×2=242, 解得n =11或n =-22(舍去), 即n =11.
1.设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 6=11,则S 7等于( ) A .13 B .35 C .49
D .63
解析:选C.由a 6-a 2=4d =11-3=8,得d =2. 又a 2=3,∴a 1=1, ∴S 7=7×1+
7×6
2
×2=49. 2.若等差数列{a n }的前5项和S 5=25,且a 2=3,则a 7等于( ) A .12 B .13 C .14
D .15
解析:选B.根据等差数列的前5项和S 5=25和a 2=3,可求出a 3=5,进而求出公差d ,所以可得a 7的值.
3.(2011年杭州质检)在等差数列{a n }中,a 1+a 2+…+a 50=200,a 51+a 52+…+a 100=2700,则a 1为( )
A .-20
B .-20.5
C .-21.5
D .-22.5
解析:选B.由(a 51+a 52+…+a 100)-(a 1+a 2+…+a 50)=2700-200=2500 d ,得d =1. 又200=a 1+a 2+…+a 50=50a 1+50×49
21,
得a 1=-20.5.
4.等差数列{a n }中,若a 2+a 6+a 16为一个确定的常数,则下列各式中,也为确定的常数的是( )
A .S 13
B .S 15
C .S 17
D .S 19
解析:选B.∵a 2+a 6+a 16=3a 1+21d =3·a 8, ∴a 8为常数,∴S 15=
15a 1+a 152
15a 8为常数.
5.某中学的“希望工程”募捐小组暑假期间走上街头进行了一次募捐活动,共获得捐
款1200元,他们第1天只得到10元,之后采取了积极措施,从第2天起,每一天获得的捐款都比前一天多10元,这次募捐活动一共进行的天数为( )
A .14
B .15
C .16
D .17
解析:选B.由题意得,每天的捐款构成了以10为首项,以10为公差的等差数列.设一共进行了n 天,则
1200=10n +
n n -12
×10,解得n =15或n =-16(舍).
6.一个有限项的等差数列,它的前5项的和为34,最后5项的和为146,所有项的和为234,则它的第七项等于( )
A .22
B .21
C .19
D .18
解析:选D.设数列为{a n },项数为n ,则
a 1+a 2+a 3+a 4+a 5=34,a n +a n -1+a n -2+a n -3+a n -4=146. ∴5(a 1+a n )=180,∴a 1+a n =36. 又S n =234=
n a 1+a n 2=n ×36
2
,∴n =13, ∴a 1+a 13=36, 又a 1+a 13=2a 7, ∴a 7=18.
7.已知数列的通项a n =-5n +2,则其前n 项和S n =________.
解析:因为a 1=-5×1+2=-3,a n -a n -1=-5n +2-[-5(n -1)+2]=-5,所以{a n }是首项为-3,公差为-5的等差数列,所以S n =-5n 2-n
2
.
答案:-5n 2-n
2
8.在等差数列{a n }中,a 3+a 7-a 10=8,a 11-a 4=4,设S n =a 1+a 2+…+a n ,则S 13=________.
解析:由题知⎩
⎪⎨⎪⎧
a 7-7d =8
7d =4,
∴a 7=12, ∴S 13=13a 7=156. 答案:156
9.(2010年高考辽宁卷)设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=24,则a 9=________.
解析:设首项为a 1,公差为d ,
由题意得⎩⎪⎨⎪⎧ a 1+d =12a 1+5d =8,解得⎩⎪⎨⎪⎧
a 1=-1
d =2
,
∴a 9=-1+(9-1)×2=15. 答案:15
10.在等差数列{a n }中,公差为-2,且a 1+a 4+a 7+…+a 97=50,求a 3+a 6+a 9+…+a 99的值.
解:a 3+a 6+a 9+…+a 99
=(a 1+2d )+(a 4+2d )+…+(a 97+2d ) =(a 1+a 4+…+a 97)+2d ×33 =50+66×(-2) =-82.
11.某市提出实施“校校通”工程的总目标:从2010年起用10年时间在全市中小学建成不同标准的校园网.据预测,2010年该市用于“校校通”工程的经费为500万元,为了保证工程的顺利实施,计划每年投入的资金比上一年增加50万元,那么从2010年起的10年内,该市在“校校通”工程中总投入是多少?
解:设从2010年起各年投入的资金(单位:万元)为a n , 则数列{a n }是首项为a 1=500,公差d =50的等差数列. 依题意,到2019年(n =10),投入的总金额为: S 10=10×500+
1010-12
×50=7250(万元).
即从2010~2019年,该市在“校校通”工程中总投入是7250万元. 12.已知数列{a n }中,a 1=1,a n +1=5a
n 5+a n (n ∈N +).
(1)求a 2,a 3;
(2)求证:数列{1
a n
}成等差数列,并求数列{a n }的通项公式;
(3)设T n 是{a n }的前n 项和,T 2n >T n +a 对任意的n ∈N +恒成立,求a 的取值范围. 解:(1)a 2=5a 15+a 1=55+1=5
6,
a 3=5a 25+a 2=5×
5
65+
56
=57
.
(2)证明:a n +1=5a
n 5+a n
⇒a n a n +1+5a n +1=5a n ,
由a 1=1≠0,得a n ≠0,得1+5a n =5a n +1⇒1a n +1-1a n =1
5
∴数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,1a n =1+(n -1)·15=n +4
5
,
∴a n =
5
n +4
. (3)令f (n )=T 2n -T n =5n +5+5n +6+…+52n +3+52n +4,则f (n +1)-f (n )=52n +5+
5
2n +6-5
n +5
=9n +25×5
2n +52n +6n +5>0,
故f (n )是关于n 的增函数.
∵f (1)=T 2-T 1=a 2=5
6是f (n )的最小值,
∴a <f (1)=5
6
对任意的n ∈N +恒成立.。