5.2.2等差数列的前n项和
- 格式:ppt
- 大小:1.33 MB
- 文档页数:30
中等职业教育规划教材数学1-3册目录(人民教育出版社)目录第一章集合(第一册)1.1集合及其表示1.1.1集合1.1.2集合的表示方法1.2集合之间的关系1.3集合的基本运算1.3.1交集1.3.2并集1.3.3补集1.4充要条件第二章方程与不等式2.1一元一次方程2.2不等式2.2.1不等式的基本性质2.2.2不等式的解集与区间2.2.3含有绝对值的不等式2.2.4一元二次不等式第三章函数3.1函数的概念3.2函数的表示方法3.3函数的单调性3.4函数的奇偶性3.5二次函数的图像和性质3.6函数的应用第四章指数函数与对数函数4.1实数指数4.2指数函数4.3对数及其运算4.3.1对数4.3.2对数的运算4.4对数函数4.5幂函数4.6指数函数与对数函数的应用第五章数列5.1数列5.2等差数列5.2.1等差数列的概念5.2.2等差数列的前n项和5.3等比数列5.3.1等比数列的概念5.3.2等比数列的前n项和5.4等差数列与等比数列的应用第六章空间几何体6.1认识空间几何体6.1.1认识多面体与旋转体6.1.2棱柱、棱锥6.1.3圆柱、圆锥、球6.2空间几何体的表面积与体积6.2.1空间几何体的表面积6.2.2空间几何体的体积第七章三角函数(第二册)7.1任意角的概念与弧度制7.1.1任意角的概念7.1.2弧度制7.2任意角的三角函数7.2.1任意角的三角函数的定义7.2.2单位圆与正弦、余弦线7.2.3利用计算器求三角函数值7.2.4三角函数值在各象限的符号7.3同角三角函数的基本关系式7.4三角函数的诱导公式7.5正弦、余弦函数的图像和性质7.5.1正弦函数的图像和性质7.5.2余弦函数的图像和性质7.6已知三角函数值求角第八章平面向量8.1向量的概念8.2向量的线性运算8.2.1向量的加法8.2.2向量的减法8.2.3数乘向量8.3平面向量的的直角坐标系8.3.1平面向量的直角坐标及其运算8.3.2平面向量平行的坐标表示8.3.3向量的长度公式和中点公式8.4向量的内积8.4.1向量的内积8.4.2向量内积的直角坐标运算第九章直线与圆的方程9.1直线的方程9.1.1直线的方向向量与点向式方程9.1.2直线的斜率与点斜式方程9.1.3直线的法向量与点法式方程9.1.4直线的一般式方程9.2两条直线的位置关系9.2.1两条直线的平行9.2.2两条直线的交点与垂直9.3点到直线的距离9.4圆的方程9.4.1圆的标准方程9.4.2圆的一般方程第十章立体几何初步10.1平面的基本性质10.2空间两条直线的位置关系10.3直线与平面的位置关系10.4平面与平面的位置的关系第十一章概率与统计初步11.1计数的基本原理11.2概率初步11.2.1随机事件与样本空间11.2.2古典概率11.3随机抽样11.3.1简单随机抽样11.3.2系统抽样11.3.3分层抽样11.4用样本估计总体11.4.1用样本的频率分布估计总体的分布11.4.2用样本的数字特征估计总体的数字特征11.5一元线性回归分析第十二章三角计算及其应用(第三册) 12.1和角公式12.1.1两角和与差的余弦12.1.2两角和与差的正弦12.1.3两角和与差的正切12.2倍角公式12.3正弦函数)sin(?ω+=x A y 的图像和性质 12.4解三角形12.4.1余弦定理12.4.2三角形的面积12.4.3正弦定理12.5三角计算及应用举例第十三章圆锥曲线与方程13.1椭圆13.1.1椭圆的标准方程13.1.2椭圆的几何性质13.2双曲线13.2.1双曲线的标准方程13.2.2双曲线的几何性质13.3抛物线13.3.1抛物线的标准方程13.3.2抛物线的几何性质第十四章坐标变换与参数方程14.1坐标变换14.1.1坐标轴的平移14.1.2利用坐标轴的平移化简二元二次方程14.1.3坐标轴的旋转14.1.4利用坐标轴的旋转化简二元二次方程14.2一般二元二次方程的讨论14.2.1化一般二元二次方程为标准式14.2.2一般二元二次方程的讨论14.3参数方程14.3.1曲线的参数方程14.3.2圆的参数方程14.3.3直线的参数方程14.3.4圆锥曲线的参数方程14.4参数方程的应用举例第十五章逻辑代数基础15.1常用逻辑用语15.1.1命题15.1.2量词15.1.3逻辑联结词15.2数制15.2.1十进制与二进制15.2.2十进制与二进制之间的转换15.3逻辑代词15.3.1基本概念与基本逻辑运算15.3.2逻辑代数的运算律和基本定理15.3.3逻辑函数15.3.4逻辑函数的表示方法15.3.5逻辑函数的化简15.3.6逻辑图第十六章算法与程序框图16.1算法的概念16.2程序框图与算法的基本逻辑结构16.2.1程序框图的基本图例16.2.2顺序结构及其框图16.2.3条件分支结构及其框图16.2.4循环结构及其框图16.3条件判断16.4算法案例第十七章数据表格信息处理17.1数组、数据表格的概念17.2数组的代数运算17.3用软件处理数据表格17.4数据表格的图示第十八章编制计划的原理与方法18.1编制计划的有关概念18.2关键路径法18.3统筹图18.3.1网络图18.3.2横道图18.4进度计划的编制18.4.1网络图的时间参数18.4.2时间优化的方法第十九章线性规划初步19.1线性规划问题19.2二元一次不等式表示的区域19.3线性规划问题的图解法19.4线性规划问题的应用举例19.5用Excel解线性规划问题第二十章复数20.1复数的概念20.1.1复数的有关概念20.1.2复数的几何意义20.2复数的运算20.2.1复数的加法和减法20.2.2复数的乘法和除法20.3实系数一元二次方程的解法20.4复数的三角形式20.4.1复数的三角形式20.4.2复数三角形式的乘法与乘方运算20.4.3复数三角形式的除法运算20.4.4复数的开方运算20.5复数的指数形式20.6复数的应用第二十一章概率分布初步21.1排列与组合21.1.1排列与排列数公式21.1.2组合与组合数公式21.2二项式定理21.2.1二项式定理21.2.2二项式系数的性质21.3离散型随机变量及其分布21.3.1离散型随机变量21.3.2二项分布21.4正态分布。
等差数列的前n项和与公差的关系等差数列是一种常见的数列,它的每一项与前一项之差都相等,这个差值被称为公差。
在研究等差数列时,我们经常需要计算前n项的和。
本文将探讨前n项和与公差之间的关系。
假设我们有一个等差数列的首项为a1,公差为d。
我们可以表示等差数列的第n项为an。
等差数列的前n项和公式在等差数列中,每一项与前一项之差都相等,也就是说:an = a1 + (n-1) * d我们可以利用这个公式计算等差数列的任意一项。
而等差数列的前n项和可以表示为:Sn = (n/2) * (a1 + an)这个公式可以帮助我们计算等差数列的前n项和,只需要知道首项和公差即可。
前n项和与公差的关系通过等差数列的前n项和公式,我们可以看到前n项和与公差之间存在一定的关系。
首先,我们可以观察到公差为0时,等差数列的前n项和就是n倍的首项,即 Sn = n * a1。
这是因为此时等差数列中的每一项都相等,所以前n项和就是n倍的首项。
其次,我们可以看到公差为正数时,等差数列的前n项和随着n的增大而增大。
这是因为每一项都比前一项大公差的值,所以随着n的增大,前n项和也会增大。
反之,当公差为负数时,等差数列的前n项和随着n的增大而减小。
这是因为每一项都比前一项小公差的值,所以随着n的增大,前n项和也会减小。
综上所述,前n项和与公差之间存在一定的关系。
对于公差为0的等差数列,前n项和是n倍的首项;对于正数公差的等差数列,前n项和随着n的增大而增大;对于负数公差的等差数列,前n项和随着n的增大而减小。
希望本文对你理解等差数列的前n项和与公差的关系有所帮助。
等差数列的前n项和教案一、教学目标1. 理解等差数列的概念及其性质。
2. 掌握等差数列的前n项和的计算公式。
3. 能够运用等差数列的前n项和公式解决实际问题。
二、教学重点1. 等差数列的概念及其性质。
2. 等差数列的前n项和的计算公式。
三、教学难点1. 等差数列的前n项和的公式的推导过程。
2. 运用等差数列的前n项和公式解决实际问题。
四、教学方法1. 采用问题驱动法,引导学生主动探究等差数列的前n项和的计算方法。
2. 通过实例分析,让学生掌握等差数列的前n项和的应用。
3. 利用数形结合法,帮助学生直观地理解等差数列的前n项和的性质。
五、教学内容1. 等差数列的概念及其性质。
2. 等差数列的前n项和的计算公式。
3. 等差数列的前n项和的性质。
4. 运用等差数列的前n项和公式解决实际问题。
第一章:等差数列的概念及其性质1.1 等差数列的定义1.2 等差数列的性质1.3 等差数列的通项公式第二章:等差数列的前n项和的计算公式2.1 等差数列前n项和的定义2.2 等差数列前n项和的计算公式2.3 等差数列前n项和的性质第三章:等差数列的前n项和的性质3.1 等差数列前n项和的单调性3.2 等差数列前n项和的奇偶性3.3 等差数列前n项和的最值问题第四章:运用等差数列的前n项和公式解决实际问题4.1 等差数列前n项和在实际问题中的应用4.2 等差数列前n项和的优化问题4.3 等差数列前n项和与数学竞赛第五章:等差数列的前n项和公式的推导过程5.1 等差数列前n项和公式的推导方法5.2 等差数列前n项和公式的证明5.3 等差数列前n项和公式的拓展与应用六、等差数列的前n项和的图形直观6.1 等差数列前n项和的图形表示6.2 等差数列前n项和的图形性质6.3 等差数列前n项和的图形应用7.1 等差数列前n项和的数值方法7.2 等差数列前n项和的数值例子7.3 等差数列前n项和的数值分析八、等差数列的前n项和的实际应用8.1 等差数列前n项和在经济学中的应用8.2 等差数列前n项在工程学中的应用8.3 等差数列前n项在和生物学中的应用九、等差数列的前n项和的问题拓展9.1 等差数列前n项和的相关问题拓展9.2 等差数列前n项和的问题研究进展9.3 等差数列前n项和的问题解决策略十、等差数列的前n项和的教学设计10.1 等差数列前n项和的教学目标设计10.2 等差数列前n项和的教学方法设计10.3 等差数列前n项和的教学评价设计重点和难点解析一、等差数列的概念及其性质补充和说明:等差数列是一种常见的数列,其特点是相邻两项的差值是常数。
5.2.2等差数列的前n项和公式教学目标:1. 理解等差数列前n项和公式的推导过程;掌握并能熟练运用等差数列前n项和公式;了解倒序相加法的原理;2. 通过公式的推导过程,体验从特殊到一般的研究方法,渗透函数思想与方程(组)思想,培养学生观察、归纳、反思的能力;通过小组讨论学习,培养学生合作交流、独立思考等良好的个性品质.教学重点与难点:重点:探索并掌握等差数列前n项和公式,学会用公式解决一些实际问题;难点:等差数列前n项和公式推导思路的获得.教学过程:一、创设情景,唤起学生学习的兴趣老师打算换辆车,把我的电动小毛驴淘汰了,也换个有蓬的四轮小汽车。
大概要6.5万元。
我打算开始存钱了。
第1天存1元,第2天存2元。
第3天存3元。
第4天存4元。
以此类退。
半年(182天)后能存多少钱?按这么个存法,什么时间能存够买小汽车的钱呢?[知识链接] 卡尔·弗里德里希·高斯,德国数学家、物理学家和天文学家,大地测量学家。
近代数学奠基者之一,在历史上影响之大,可以和阿基米德、牛顿、欧拉并列,有“数学王子”之称。
200多年前,高斯的算术教师提出了下面的问题:1+2+3+…+100=?当其他同学忙于从1开始逐个相加时,年仅10岁的高斯却用下面的方法迅速算出了正确答案:(1+100)+(2+99)+……+(50+51)=101×50=5050.二、由易到难,在自主探究与合作中学习问题1图案中,第1层到第11层该题组织学生分组讨论,在合作中学习,并把小组发现的方法一一呈现.分析:学生可能出现以下求法方法1:原式=(1+2+3+……+10)+11方法2:原式=0+1+2+……+10+11方法3:原式=(1+2+…+5+7…+11)+6以上方法实际上是用了“化归思想”,将奇数个项问题转化为偶数个项求解,教师应进行充分肯定与表扬.[设计意图]这是求奇数个项和的问题,若简单地摹仿高斯算法,将出现不能全部配对的问题,借此渗透化归思想.问题2求图案中从第1层到第n层(1<n <100,n∈N*)共有多少颗宝石?分析:学生通过讨论后,会发现n为奇数时不能配对,可能会分n为奇数、偶数的情况分别求解,教师如何引导学生避免讨论成为该环节的关键.[设计意图]从求确定的前n个正整数之和到求一般项数的前n 个正整数之和,让学生领会从特殊到一般的研究方法,旨在让学生对“首尾配对求和”这一算法的改进.启发:(多媒体演示)如图,在三角形图案右侧倒放一个全等的三角形与原图补成平行四边形.[设计意图]借助几何图形的直观性,能启迪思路,唤醒学生记忆深处的东西,并为倒序相加法的出现提供了一个直接的模型.通过以上启发学生再自主探究,相信容易得出解法:∵1 + 2 + 3 +…(n-1) + nn +(n-1)+ (n-2)+… + 2 + 1__________________________________________________________________________________________(n+1) + (n+1) + (n+1) +… +(n+1) + (n+1)∴1+2+3+…+n=n(n+1)2问题3在公差为d的等差数列{a n}中,定义前n项和Sn=a1+a2+…+a n,如何求Sn?由前面的大量铺垫,学生应容易得出如下过程:∵S n=a1 + a2+a3+…+a nS n=a n + a n-1+a n-2+…+ a1∴1112()()()n n n n n S a a a a a a =++++⋅⋅⋅++ 个1()2n n n a a S +∴=(公式1) 组织学生讨论:在公式1中若将a n =a 1+(n -1)d 代入又可得出哪个表达式? 即:1(1)2n n n S na d -=+(公式2) 三、例题解析,促进学生对公式的应用对于以上两个公式,初学的学生在解决一些问题时,往往不知道该如何选取.教师应通过适当的例子引导学生对这两个公式进行分析,根据公式各自的特点,帮助学生恰当地选择合适的公式.例1:已知等差数列{a n }中,a 1=-12,a 30=18,求S 18. [解题过程]分析:首项为-12,末项为18,项数为30,利用公式1. 解:由已知条件得902)1812(3030=+-⨯=S[PS] 学生可以从首项、末项、项数出发,选用公式1;也可以从首项、公差、项数出发,选用公式2,通过两种方法的比较,引导学生在解题时注意选择适当的公式,以便于计算.例2:在小于100的正整数的集合中,有多少个数是3的倍数,求它们的和。
高中数学等差数列前n项和公式高中数学学习中,等差数列是一个非常重要的概念,它在数学中有着广泛的应用。
等差数列是指一个数列中每一项与它的前一项之差都相等,这个相等的差值被称为公差。
等差数列的前n项和公式是一个非常重要的公式,它可以帮助我们快速计算等差数列的前n项和。
等差数列前n项和公式如下:Sn = n(a1 + an)/2其中,Sn表示等差数列的前n项和,a1是等差数列的首项,an是等差数列的第n项。
这个公式的推导比较简单,我们可以通过数学归纳法来证明它的正确性。
首先,当n=1时,等差数列的前1项和就是a1,这个结论显然成立。
接着,我们假设当n=k时,等差数列的前k项和公式成立,即Sk = k(a1 + ak)/2那么当n=k+1时,等差数列的前k+1项和为S(k+1) = S k + a(k+1)根据归纳假设,我们可以将Sk带入上面的公式中,得到S(k+1) = k(a1 + ak)/2 + a(k+1)将上面的式子进行化简,可以得到S(k+1) = (k+1)(a1 + ak+1)/2这个式子就是等差数列前k+1项和的公式。
根据归纳法的原理,我们可以证明这个公式对于任意的n都成立。
这个公式在实际应用中非常有用。
例如,当我们需要计算一个等差数列的前100项和时,可以直接使用这个公式,将a1和an代入公式中,即可得到结果。
这个方法比逐项相加更加快速和方便。
此外,这个公式还可以用于解决一些数学问题,例如等差数列的最大值、最小值等等。
等差数列前n项和公式是一个非常重要的公式,它可以帮助我们计算等差数列的前n项和,并解决一些数学问题。
希望大家在学习数学的过程中能够熟练掌握这个公式,发挥它的作用。