曲边梯形的面积
- 格式:pptx
- 大小:598.20 KB
- 文档页数:26
曲边梯形的面积教学设计宁波滨海国际合作学校汪庆东一、教学内容解析本节课是人教A版选修2-2第一章第5节的内容。
该内容不在浙江省高考范围之列,本节课作为一节数学拓展课,主要让学生学会曲边梯形的面积的求法,了解定积分的实际背景,同时让学生了解微积分及割圆术等数学历史,旨在帮助学生了解以曲代直及无限逼近这两种重要的数学思想,进一步拓展学生视野,增强学生学习数学的兴趣。
基于以上分析,教学内容应在类比和转化的方法引领下,引导学生利用分割与无限逼近的思想解决生活当中的曲边梯形的面积的求法。
重点是探究求曲边梯形面积的方法难点是把“以直代曲”的思想方法转化为具体可操作的步骤,理解“无限逼近”的思想方法。
二、教学目标设置1、知识与技能目标:(1)通过问题情景,经历求曲边梯形面积的过程,初步了解、感受定积分概念的实际背景;(2)理解求曲边梯形面积的“四步曲”——分割、近似代替、求和、取极限;(3)了解割圆术、微积分创立的背景,了解相关数学史。
2、过程与方法目标:(1)通过问题的探究体会“以直代曲、无限逼近”的思想;(2)通过类比体会从具体到抽象、从特殊到一般的数学思想方法。
3、情感、态度与价值观目标:(1)在探究中进一步感受极限的思想,体会直与曲虽然是对立矛盾的;(2)通过相关数学史教学,让学生感受数学来源于生活并服务于生活的工具作用。
三、学情分析本节课的教学对象是高一年级学生,且本节课不作为高考考试内容,而高一学生对本节课的认知基础有限,根据分析学生在本节课之前已经具备的认知基础有:1. 学生学习过匀速直线运动的位移公式及其几何意义;2. 高一上学期学习了匀加速直线运动的位移公式,并初步了解其公式推导过程中的分割思想;3. 对割圆术求圆周率的方法有少部分的了解。
四、教学策略分析课堂教学以学生为中心,突出合作学习,探究学习和自主学习。
师生合作探究,通过匀速直线运动位移的几何意义匀加速直线运动的位移公式的推导变速运动位移公式的求解,通过师行合作,共同完成新知学习。
三角函数的定积分计算与曲边梯形面积应用三角函数是数学中的一种重要函数类型,它在物理学、工程学等领域中具有广泛的应用。
本文将介绍三角函数的定积分计算方法,以及如何利用三角函数求解曲边梯形的面积。
一、三角函数的定积分计算定积分是微积分中的一个重要概念,表示曲线下的面积。
对于三角函数来说,我们可以利用其周期性和性质进行定积分的计算。
1. 正弦函数的定积分计算正弦函数的定义域是整个实数集,其周期为2π。
对于正弦函数sin(x),其定积分可以表示为∫sin(x)dx。
利用正弦函数的性质可以得到该定积分的计算方法。
我们知道,正弦函数的一个周期(0到2π)的定积分为0,即∫[0,2π]sin(x)dx = 0。
由于正弦函数是周期性函数,所以在每个周期内的定积分都是相等的。
例如,要计算∫[0, 4π]sin(x)dx,可以将其分解成四个周期内的定积分的和:∫[0, 2π]sin(x)dx + ∫[2π, 4π]sin(x)dx + ∫[4π, 6π]sin(x)dx + ∫[6π,8π]sin(x)dx。
由于每个周期内的定积分都为0,所以该定积分的结果为0。
2. 余弦函数的定积分计算与正弦函数类似,余弦函数也是一个周期性函数,其周期为2π。
对于余弦函数cos(x),其定积分可以表示为∫cos(x)dx。
同样地,余弦函数一个周期(0到2π)内的定积分为0,即∫[0,2π]cos(x)dx = 0。
由于余弦函数也是周期性函数,所以在每个周期内的定积分都是相等的。
例如,要计算∫[0, 6π]cos(x)dx,可以将其分解成三个周期内的定积分的和:∫[0, 2π]cos(x)dx + ∫[2π, 4π]cos(x)dx + ∫[4π, 6π]cos(x)dx。
由于每个周期内的定积分都为0,所以该定积分的结果为0。
二、曲边梯形的面积应用曲边梯形是一个由曲线和直线围成的四边形,其中有一条边为曲线边,其余三条边为直线边。
对于曲边梯形的面积计算,我们可以利用三角函数进行求解。
以抛物线弧段为曲边的曲边梯形面积
摘要:
一、抛物线弧段曲边梯形面积的背景知识
二、计算抛物线弧段曲边梯形面积的方法
1.分解抛物线弧段为无数小线段
2.计算每个小线段的面积
3.求和得到总面积
三、结论与拓展
正文:
在数学中,抛物线弧段常常作为曲边梯形的曲边。
那么,如何计算以抛物线弧段为曲边的曲边梯形面积呢?下面,我们将详细介绍计算方法。
首先,我们需要了解一些背景知识。
抛物线是一种二次函数,它的图像是一个向上开口的曲线。
抛物线弧段则是抛物线的一部分,通常用来表示曲边梯形的曲边。
要计算以抛物线弧段为曲边的曲边梯形面积,可以采用以下方法:
1.将抛物线弧段分解为无数小线段。
这样可以近似地表示曲边梯形的面积。
2.计算每个小线段的面积。
每个小线段可以看作是一个小矩形,其面积可以通过计算矩形的长和宽相乘得到。
这里的长是线段在横轴上的投影长度,宽则是线段与横轴的交点到曲边梯形底边的距离。
3.将所有小线段的面积求和,得到曲边梯形的总面积。
求和的过程中,可
以使用积分的方法,将所有小线段的面积累加起来。
通过以上步骤,就可以得到以抛物线弧段为曲边的曲边梯形面积。
需要注意的是,随着小线段数量的增加,计算结果会越来越接近真实的面积。
总之,计算以抛物线弧段为曲边的曲边梯形面积,需要将其分解为无数小线段,计算每个小线段的面积,并求和。
定积分与曲边梯形的面积求平面图形的面积是定积分在几何中的重要应用.把求平面图形的面积问题转化为求定积分问题,充分体现了数形结合的数学思想.当函数f(x)在区间〔a ,b]上恒为正时,定积分⎰badx x f )(的几何意义是以曲线f(x)为曲边的曲边梯形的面积.一般情况下,定积分⎰badx x f )(的几何意义是介于x 轴、函数f(x)的图象以及直线x=a,x=b 之间各部分面积的代数和,在x 轴上方的面积取正号,在x 轴下方的面积取负号.那么在一般情形下,定积分⎰badx x f )(的几何意义是曲线y=f(x),两条直线x =a,x =b 与x 轴所围成的各部分面积的代数和.本文主要探讨定积分与曲边梯形面积的关系.一. 利用定积分的定义求曲边梯形的面积例1.利用定积分的定义求由直线x=1,x=2和y=0及曲线y=x 3围成的图形的面积. 分析:画出草图,形象直观,帮助解题.对定积分定义的理解程度决定了解题的成败. 解:(1)分割把求面积的曲边梯形ABCD 分割成n 个小曲边梯形,用分点把区间[1,2]等分成n个小区间每个小区间的长度为过各分点作x 轴的垂线,把曲线梯形ABCD 分割成n 个小曲边梯形,它们的面积分别记作△S 1 ,△S 2,…,△S n .(2)近似代替取各小区间的左端点ξi ,用以点ξi 的纵坐标(ξi )3为一边,以小区间长△x=n1为其邻边的小矩形面积近似代替第i 个小曲边梯形面积,可以近似地表示为:(3)求和 因为每一个小矩形的面积都可以作为相应的小曲边梯形面积的近似值,所以n 个小矩形面积的和就是曲边梯形ABCD 面积S 的近似值,即(4)求极限当分点数目愈多,即△x 愈小时,和式①的值就愈接近曲边梯形ABCD 的面积S.因此∞→n 即△x →0时,和式①的极限就是所求的曲边梯形ABCD 的面积点评: (1)据定义求定积分的步骤:①分割;②近似代替;③求和;④取极限. (2)独立研究一个这种例题,是学习定积分过程中必需的,重点在于体验其中的数学思想.二、利用微积分基本定理求曲边梯形的面积 1.以x 为积分变量例2.求由抛物线y=x 2-1,直线x=2,y=0所围成的图形的面积. 分析:首先要较准确地画出图形,尤其是公共点. 解:首先画出如图所示的阴影部分就是所求作的图形. 由x 2-1=0,得抛物线与x 轴的交点坐标是(-1,0)和(1,0)所求图形分成两块,分别用定积分表示面积为:因为1)3(,1)3(2323-='--='-x x x x x x ,所以 dx x dx x ⎰⎰---+-112112)1(|1|=dx x dx x ⎰⎰-+--212112)1(|1|=213113|)3(|)3(x x x x -+-- =1-31+1-31+38-2-(31-1)=38, 即所围成的三角形面积为38.点评:在[-1,1]上, 抛物线在x 轴下方,这时有两种办法表示,其面积表示其一是dx x ⎰--112|1|,其二是dx x ⎰---112)]1(0[.2. 以y 为积分变量例3求曲线y=2x 与直线y=x-4围成的图形面积.分析:首先正确画出抛物线和直线的大致图象(关键点要尽可能准确),如果选择积分变量为x ,则要将区域分成两块才行,而如果选择积分变量y,如图,问题便很简单.解:由⎩⎨⎧-==,4,22x y x y 解得⎩⎨⎧-==,2,2y x 和⎩⎨⎧==.4,8y x 即A,B 两点的纵坐标分别是-2和4. 因此所求的面积为因为,24)642(232y y y y y -+='-+所以 S=4232422|)642(]2)4[(---+=-+⎰y y y dy y y =18.点评:由本题可看出,如果采用x 作为积分变量,积分的运算量会增加,可见,认真审题,找出最佳的方法是很重要的.三、逆用曲边梯形的面积求定积分 例4.求定积分⎰---12))1(1(dx x x 的值.解析:⎰---12))1(1(dx x x 表示圆(x-1)2+y 2=1(y ≥0)的一部分与直线y=x 所围成的图形(如图所示)的面积,因此⎰---12))1(1(dx x x =2141121412-=⨯⨯-⨯ππ. 点评: 本题如果用定积分的定义或微积分基本定理求解都比较麻烦,由⎰---12))1(1(dx x x 联想到圆(x-1)2+y 2=1(y ≥0)的一部分与直线y=x ,再联想到定积分的几何意义,从而简化了运算.这也是数学结合思想的又一体现。
《曲边梯形的面积》教学案例八中高中数学组兰北平“曲边梯形的面积”是定积分的内容,定积分在高中的教材里曾经几进几出,原因可能是这部分内容实在是太有用同时又存在不小的难度,就像是一种美味好吃却不易吃,会使人觉得弃之可惜。
新课程把其加进来,采用了不同于高等数学的处理方式,即不介绍不定积分,而直接通过一个几何问题和一个物理问题引入定积分的概念。
这充分体现新课程返璞归真,回归本质的理念。
不过这样无论对学生还是教师,都将是一个不小的挑战。
对于本节课的设计,笔者将重心放在如何使新课引入自然以及如何突破难点上。
一、对本节课的认识“曲边梯形的面积”是“定积分的概念”的第一课时。
定积分的思想方法是高等数学里的重要思想方法,是微积分的重要组成部分,在求解不规则图形的面积,变速运动的路程,变力做功等问题方面有着广泛的应用。
而求解曲边梯形面积的过程与思想恰恰是定积分概念的核心内容,所以本节课在定积分的学习中有着至关重要的地位和作用。
本节课内容较为单一,目标也比较明确,就是用“以直代曲,无限逼近”的思想求曲边梯形的面积。
然而,这种思想方法给学生带来的理解上的难度却不小,因为要真正理解这种方法必须对极限的思想要有比较清晰的认识。
不过,新课程似乎为了避免增加学生的负担,而不要求深入介绍极限的概念,其旨在用最易于让学生接受的手段,使学生获得最有价值的数学知识。
这节课亦是如此。
基于以上原因,备课时认为本节课有两大难点:一是如何使学生获得“无限分割,以直代曲”的思路;二是对“极限”“无限逼近”的理解,即理解为什么将近似值取极限正好是面积的精确值。
二、教学设计I、教学目标1.知识与技能:(1)了解定积分的实际背景;(2)会用分割-近似代替-求和-取极限的四步曲求曲边梯形的面积;2.过程与方法:(1)体会以直代曲的数学思想方法;(2)体会无限逼近的数学思想;3.情感、态度与价值观:通过以直代曲求曲边梯形面积的过程感受数学化归思想化难为易,化不可计算为可以计算的妙处;II、重点、难点1.重点:以直代曲的思想方法;求曲边梯形的四步曲;2.难点:以直代曲的思想方法;III、教学教法讲授与启发相结合,采用几何画板制作课件IV、教学过程(一)引入问题引入:这是浙江省地图,怎样求其面积?意图:用网格法求面积时边缘往往是不规则的图形,引出曲边梯形及求曲边梯形的面积问题. (二)新课问题1:我们会求正方形、三角形、平行四边形、梯形等“直边图形”的面积,现实生活中遇到的大量“曲边图形”,如何求“曲边图形”的面积?回答问题1:通过将曲边梯形分割成等宽的多个小曲边梯形,每个小曲边梯形的面积用高为左端点函数值矩形代替,求和,取极限得到面积.2、板书分割-近似代替-求和-取极限四步曲的详细步骤;3、用几何画板表格展示当n逐渐增大时,矩形面积和的值的变化趋势,验证计所得结果,并且发现面积和会从小于的方向逐渐接近1/3,思考为什么,引出下面探究问题. 探究:如果认为y=f(x)在每个小区间上的函数值近似地等于右端点的函数值,是否也能求出S=1/3?为什么?2、结合表格数据说明取区间右端点函数值得到的是过剩近似值,是从大于的方向趋近1/3;3、进一步说明取区间中的任何一点来近似也是可以的从而得到求面积的一般表达式01111lim ()lim ()3n n i i x n i i S f x f n ξξ∆→→∞===∆==∑∑为引出定积分的概念做铺垫. 练习:求直线x=0,x=2,y=0与曲线y=x(^2)所围成的曲边梯形的面积.38,21111382212→∞→⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=⋅⎪⎭⎫ ⎝⎛=∑=n n i n S n n n n n i S意图:用一个与例题相仿,只是区间不同的例子进一步体验“分割—求和—近似—取极限”的方法.(三)小结:这节课我们学到了什么?1.求曲边梯形的面积的方法和步骤是:分割、近似代替、求和、取极限2.以直代曲,无限逼近的思想V 、布置作业作业本B 本P51,1、2、3、4、6、7、10三、教学片断实录及反思片断一:新课的引入师(提出问题):这是浙江省地图,怎样求其面积?生:思考片刻,有的一脸茫然,有的在迟疑,个别窃窃私语:“用割补法”.师:“怎么割补?能否说得具体点?”生:不敢说或者不知道,不能给出答案.师:有一种近似求不规则图形面积的方法——“网格法”,接着介绍这种方法的具体做法。
曲边梯形的面积(教案)第一章:引言1.1 课程背景本节课我们将学习一种新的几何形状——曲边梯形,并了解其面积的计算方法。
曲边梯形在现实生活中有着广泛的应用,如建筑设计、土木工程等领域。
通过学习本节课,学生将能够掌握曲边梯形面积的求解方法,提高解决实际问题的能力。
1.2 教学目标1. 理解曲边梯形的定义及其特点;2. 掌握曲边梯形面积的计算方法;3. 能够运用所学知识解决实际问题。
第二章:曲边梯形的定义及特点2.1 曲边梯形的定义曲边梯形是一种四边形,其中两边为直线,两边为曲线。
曲边梯形的特点是两边平行,而两边则不平行。
2.2 曲边梯形的特点1. 两边平行;2. 两边不平行;3. 对角线相交于一点。
第三章:曲边梯形面积的计算方法3.1 分割法将曲边梯形分割成无数个小的曲边三角形,近似认为这些小三角形都是直角三角形。
计算每个小三角形的面积,将所有小三角形的面积相加得到曲边梯形的面积。
3.2 积分法利用积分公式计算曲边梯形的面积。
将曲边梯形的曲线部分看作是积分函数,将曲线与x轴之间的区域作为积分的区间,计算该区间内的积分值,即可得到曲边梯形的面积。
第四章:实例讲解4.1 实例一:直角曲边梯形已知直角曲边梯形的上底为a,下底为b,高为h,求其面积。
解:利用分割法,将直角曲边梯形分割成无数个小的直角三角形。
计算每个小三角形的面积,将所有小三角形的面积相加得到直角曲边梯形的面积。
4.2 实例二:非直角曲边梯形已知非直角曲边梯形的上底为a,下底为b,高为h,求其面积。
解:利用积分法,将非直角曲边梯形的曲线部分看作是积分函数,将曲线与x 轴之间的区域作为积分的区间,计算该区间内的积分值,即可得到非直角曲边梯形的面积。
第五章:课堂练习5.1 练习一已知直角曲边梯形的上底为2cm,下底为6cm,高为5cm,求其面积。
5.2 练习二已知非直角曲边梯形的上底为3cm,下底为9cm,高为8cm,求其面积。
第六章:巩固练习6.1 题目一给出一个曲边梯形,其上底长为5cm,下底长为10cm,高为8cm。
定积分与曲边梯形面积的关系
定积分和曲边梯形面积有着密切的关系。
对于一个连续的函数
$f(x)$,我们可以将其在$x\in[a,b]$的区间上分成许多小的梯形形状,将梯形的面积加起来即可得到曲边梯形的面积,即:
$$S=\sum_{i=1}^{n}(\frac{f(x_{i-1})+f(x_{i})}{2})(x_{i}-
x_{i-1})$$
其中,$n$表示我们分割的梯形数量,$x_{i}$表示分割后的小区
间的右端点,$x_{i-1}$则表示左端点。
$(\frac{f(x_{i-
1})+f(x_{i})}{2})$则表示这个小梯形的高,$(x_{i}-x_{i-1})$表示
它的底边长度。
可以发现,将$n$增加到无限大时,曲边梯形面积就会趋于某个
定值$S$,这个定值就是$f(x)$在区间$[a,b]$上的定积分。
我们可以
用积分符号表示为:
$$S=\int_{a}^{b}f(x)dx$$
因此,我们可以通过定积分来求解曲线的面积问题,从而将几何
问题转化为数学问题,达到简便、准确的目的。