定积分的概念之
定积分的性质
一、定积分问题举例
1.曲边梯形的面积
•曲边梯形 设函数yf(x)在区间[a, b]上非负、连续. 由直线xa、xb、
y0及曲线yf (x)所围成的图形称为曲边梯形, 其中曲线弧称 为曲边.
•观察与思考 在曲边梯形内摆满小的矩形, 当小矩形的宽度减少时,
小矩形面积之和与曲边梯形面积之间的误差将如何变化?
e 1
n n
1
1e n
n
1
n(1e n )
利用几何意义求定积分
例例22 用定积分的几何意义求01(1 x)dx .
解 函数 y1x在区间[0, 1]上的定积分是以y1x为曲边, 以区间[0, 1]为底的曲边梯形的面积.
因为以y1x为曲边, 以区间[0, 1]为底的曲边梯形是一个 直角三角形, 其底边长及高均为1, 所以
b
a
f
(x)dx
abg(x)dx
(a<b).
•推论2
|
b
a
f
(x)dx|
ab|
f
(x)|
dx
(a<b).
这是因为|f(x)|f(x)|f(x)|, 所以
ab|
f
(x)|dx
b
a
f
(x)dx
ab|
f
(x) | dx
,
即
|
b
a
f
(x)dx|
ab|
f
(x)|
dx
.
•性质5 如果在区间[a, b]上 f (x)0, 则
f(x) ———被积函数, i1
f(x)dx ——被积表达式,
x ————积分变量,
a ————积分下限,