?
y = f(x) y
A1 Oa
A2 b
用两个矩形的面积 近似代替曲边梯形的面积A, 得 A A1+ A2
如 何 求 曲 边 梯 形 的 x面 积 ?
y = f(x) y
A1
A2
A3
A4
Oa
b
用四个矩形的面积 近似代替曲边梯形的面积A, 得 A A1+ A2+ A3+ A4
如 何 求 曲 边 梯 形 的 x面 积 ?
y yf (x)
b
c
b
f (x)dx f (x)dx
f (x)dx。
a
a
c
Oa
bx
特别地,当 ab 时,有b a
f (x)dx0。
定积分的几何意义:
从几何上看,如果在区间[a,b]上函数连续且恒有(f x) 0;
那么定积分 b (f x)dx表示由直线x=a,x=b,y=0,和曲线y = f(x)所 a
?
—— 以直代曲,无限逼近
典型例题:
例1.求抛物线y=x2、直线x=0、直线 y
x=1和y=0所围成的曲边三角形的面积。
y x2
⑴分割
第i个小区间
把底边[0,1]分成n等份,
[0, 1],[1 , 2],,[i 1, i ],,[n 1,1],
n nn n n n
然后在每个分点作底边的垂
,
xi
上取一点
i i 1,2,
,n
,作和式:Sn n
i 1
f
(i )x
n i 1
ba n
f (i )
如果 x 无限接近于 0(亦即 n )时,上述和式 Sn