求曲边梯形的面积详解
- 格式:ppt
- 大小:1.80 MB
- 文档页数:26
简述求曲边梯形面积的方法步骤求解曲边梯形面积是数学中的一个基本问题,它涉及到了多种数学知识和技巧。
在这里,我们将为大家详细介绍如何求解曲边梯形面积。
一、什么是曲边梯形?曲边梯形是指四边形中有两条平行线段且相邻两侧的线段长度不等的四边形。
其中,一条平行线段称为上底,另一条平行线段称为下底,相邻两侧的线段分别称为斜边或侧面。
二、求解曲边梯形面积的方法1. 通过公式计算当我们已知曲边梯形的上底长a、下底长b和高h时,可以通过以下公式来计算其面积:S = (a + b) × h ÷ 2其中,S表示曲边梯形的面积。
2. 分割成矩形和三角形当我们无法直接计算出曲边梯形的面积时,可以将其分割成矩形和三角形进行计算。
具体步骤如下:(1)将曲边梯形沿着高分成两个三角形和一个矩形;(2)根据三角形的面积公式计算两个三角形的面积;(3)矩形的面积等于上底和下底之和的一半乘以高;(4)将两个三角形的面积和矩形的面积相加,即可得到曲边梯形的面积。
3. 用相似三角形求解当我们已知曲边梯形上底长a、下底长b、高h和斜边长度l时,可以通过以下步骤来计算其面积:(1)将曲边梯形分割成一个小梯形和一个直角三角形;(2)利用相似三角形的性质,可以得到以下公式:h / l = (h - x) / a = x / b,其中x为小梯形上底长;(3)根据以上公式解出x和h - x的值;(4)根据小梯形和直角三角形的面积公式计算出它们各自的面积;(5)将小梯形和直角三角形的面积相加,即可得到曲边梯形的面积。
4. 利用勾股定理求解当我们已知曲边梯形上底长a、下底长b、高h和斜边长度l时,可以通过以下步骤来计算其面积:(1)将曲边梯形分割成一个小梯形和一个直角三角形;(2)利用勾股定理,可以得到以下公式:h² = x² + l²,其中x为小梯形上底长;(3)根据以上公式解出x的值;(4)根据小梯形和直角三角形的面积公式计算出它们各自的面积;(5)将小梯形和直角三角形的面积相加,即可得到曲边梯形的面积。
曲边梯形的面积
石春蕊
扇形从直观上看类似三角形(一边为曲边),扇形的面积公式,从形式上看类似三
角形的面积公式。
因此,我们可以把扇形看作曲边三角形,把弧长l看作底,半径r看作底边上的高。
同样地,如图1所示,两个同心圆被两条半径截得的两段弧、与两条半径所围成的图形(称为扇环)。
从形式上看类似梯形(上、下底为曲边),不妨把它看作曲边梯形,把,
看作曲边梯形的上下底,两圆半径差R-r看作曲线梯形的高。
那么曲边梯形的面积是否符合梯形的面积公式
图1
设大小两圆的半径分别为R和r,两段弧所对的圆心角为n°,则有
,①
,②
①÷②,得
即
所以
因此,曲边梯形的面积同样适合一般梯形的面积公式,即
其中分别为曲边梯形的上下底,即两个扇形的弧长,h为曲边梯形的高,即两个同心
圆的半径之差
有了这个公式,用它来求解相关的问题是既快又准,请看以下两例。
例1. 如图2所示,,,且,求。
图2
解:由曲边梯形面积公式知
注:若用常规方法解之,可看出上述解法十分快捷。
1.4定积分与微积分基本定理1.4.1 曲边梯形面积与定积分如图,阴影部分是由直线x=1,x =2,y =0和曲线f (x )=x 2所围成的曲边梯形,问题1:曲边梯形与“直边图形”的主要区别是什么?提示:前者有一边是曲线段,而“直边图形”的所有边都是直线段. 问题2:能否用求直边图形面积的方法求曲边梯形的面积? 提示:不能.问题3:当曲边梯形的高很小时,是否可用“直边图形”的面积近似代替曲边梯形的面积?提示:可以.1.曲边梯形曲线与平行于y 轴的直线和x 轴所围成的图形,称为曲边梯形. 2.求曲边梯形面积的方法求由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的曲边梯形如图①的面积的步骤:①分割:把区间[a ,b ]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形(如图②); ②近似代替:对每个小曲边梯形“以直代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值;③求和:把以近似代替得到的每个小曲边梯形面积的近似值求和;④取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个定值,即为曲边梯形的面积.[对应学生用书P25]问题1:求曲边梯形的面积与变力所做功的步骤是什么? 提示:分割、近似代替、求和、取极限. 问题2:你能将区间[a ,b ]等分吗? 提示:可以.定积分的概念设函数y =f (x )定义在区间[a ,b ]上,用分点a =x 0<x 1<x 2<…<x n -1<x n =b .把区间[a ,b ]分成n 个小区间,其长度依次为Δx i =x i +1-x i ,i =0,1,2,…,n -1.记λ为这些小区间长度的最大者,当λ趋近于0时,所有的小区间长度都趋近于0,在每个小区间内任取一点ξi ,作和式I n =∑i =0n -1f (ξi )Δx i ,当λ→0时,如果和式的极限存在,我们把和式I n 的极限叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛a bf (x )d x ,即⎠⎛a bf (x )d x =li m λ→0 ∑i =0n -1f (ξi )Δx i .其中f (x )叫做被积函数,a 叫做积分下限,b 叫做积分上限,f (x )d x 叫做被积式,此时称函数f (x )在区间[a ,b ]上可积.1.“分割”的目的在于更精确地实施“以直代曲”.例子中以“矩形”代替“曲边梯形”,随着分割的等分数越多,这种“代替”就越精确.当n 越大时,所有“小矩形的面积和就越逼近曲边梯形的面积”.2.定积分⎠⎛a bf (x )d x 是一个常数,即定积分是一个数值,它仅仅取决于被积函数和积分区间,而与积分变量用什么字母表示无关,如⎠⎛a bx 2d x =⎠⎛a bt 2d t .[对应学生用书P26][例1] 求直线x =0,x =2,y =0与曲线y =x 2+1所围成的曲边梯形的面积[参考公式12+22+…+n 2=16n (n +1)(2n +1)].[思路点拨] 按分割、近似代替、求和、取极限求值四步骤进行. [精解详析] 令f (x )=x 2+1. (1)分割将区间[0,2]n 等分,分点依次为x 0=0,x 1=2n ,x 2=4n ,…,x n -1=2(n -1)n ,x n =2.第i 个区间为⎣⎡⎦⎤2i -2n,2i n (i =1,2,…,n ),每个区间长度为Δx =2i n -2i -2n =2n . (2)近似代替、求和 取ξi =2in(i =1,2,…,n ),S n =∑i =1nf ⎝⎛⎭⎫2i n ·Δx =i =1n ⎣⎡⎦⎤⎝⎛⎭⎫2i n 2+1·2n =8n 3∑i =1n i 2+2. =8n 3(12+22+…+n 2)+2=8n 3·n (n +1)(2n +1)6+2 =43⎝⎛⎭⎫2+3n +1n 2+2. (3)取极限S =li m n →∞S n =li m n →∞⎣⎡⎦⎤43⎝⎛⎭⎫2+3n +1n 2+2=143,即所求曲边梯形的面积为143. [一点通] 求曲边梯形面积的过程:1.下列关于函数f (x )=x 2在区间⎣⎡⎦⎤i -1n ,i n 内各点处的函数值的说法正确的是( )A .f (x )的值变化很小B .f (x )的值变化很大C .f (x )的值不变化D .当n 很大时,f (x )的值变化很小 解析:当n 很大时,区间⎣⎢⎡⎦⎥⎤i -1n ,i n 内的值相差很小,所以函数值相差很小,故选D.2.用以直代曲的思想,求由y =3x ,x =1,y =0围成的图形的面积. 解:(1)分割:把区间[0,1]等分成n 个小区间⎣⎢⎡⎦⎥⎤i -1n ,i n (i =1,2,…,n ).其长度为Δx =1n ,把曲边梯形分成n 个小曲边梯形.(2)近似代替:用小矩形面积ΔS i (i =1,2,…,n )近似代替小曲边梯形面积,ΔS i =⎝ ⎛⎭⎪⎫f i -1n Δx =3·i -1n ·1n=3n 2()i -1,(i =1,2,…,n ). (3)求和:∑i =1nΔS i =3n 2[1+2+…+(n -1)]=32·n -1n. (4)取极限:S =li m n →∞∑i =1nΔS i =li m n →∞32·n -1n =32.[例2] 利用定积分表示由曲线y =x -2,x =y 2围成的平面区域的面积S .[思路点拨] 用定积分表示平面区域的面积,首先要确定已知曲线所围成的区域,由区域的形状选择积分函数,再确定积分上、下限,当公式S =⎠⎛a b|f (x )-g (x )|d x 中的f (x )或g (x )是分段函数时,面积要分块表示.[精解详析] 曲线所围成的平面区域如图所示, S =A1+A 2,其中,A 1由y =x ,y =-x ,x =1围成, A 2由y =x ,y =x -2,x =1和x =4围成. ∴A 1=⎠⎛01[x -(-x )]d x =⎠⎛012x d x .A 2=⎠⎛14[x -(x -2)]d x .∴S =⎠⎛012 x d x +⎠⎛14(x -x +2)d x .(1)定积分的几何意义:当函数f (x )在区间[a ,b ]上恒为正时,定积分⎠⎛a bf (x )d x 的几何意义是以曲线f (x )为曲边的曲边梯形的面积.一般情况下,如图,定积分⎠⎛a b f (x )d x 的几何意义是介于x 轴、函数f (x )的图像以及直线x =a 、x =b 之间各部分面积的代数和,在x 轴上方的面积取正号,在x 轴下方的面积取负号.(2)利用定积分表示曲线围成的面积时,关键是弄清定积分的几何意义,特别注意符号问题.定积分的值可正可负可为零,而面积是正值.3.利用定积分表示下图中阴影部分的面积,答案:(1)⎠⎛121⎠⎛2121xd x (2)⎠⎛-11(-x 2+1)d x 4.利用定积分表示由抛物线y 2=8x (y >0)与直线x +y -6=0及y =0所围成图形的面积.解:由题意,作图形,并解方程组⎩⎪⎨⎪⎧y 2=8x (y >0),x +y -6=0,得x =2,y =4.所以y 2=8x 与直线x +y -6=0的交点为(2,4). 所以所求面积为S =⎠⎛028x d x +⎠⎛26(6-x )d x .[例3] (12分)说明下列定积分的几何意义,并根据其几何意义求出定积分.(1)⎠⎛023d x ; (2)⎠⎛232x d x ;(3)⎠⎛-a a a 2-x 2d x .[精解详析] (1)⎠⎛023d x 表示的是图(1)中阴影部分所示长方形的面积,由于这个长方形的面积是6,所以⎠⎛023d x =6.(4分)(2)⎠⎛232x d x 表示的是图(2)中阴影所示的梯形面积,其面积为5. ∴⎠⎛232x d x =5.(8分)(3)⎠⎛-a aa 2-x 2d x 表示的是图(3)中阴影部分的面积,该图形是一个以原点为圆心,半径为a 的上半圆的面积,其面积为π2a 2.∴⎠⎛-a aa 2-x 2d x =π2a 2.(12分)[一点通] 利用定积分的几何意义求定积分⎠⎛a bf (x )d x ,关键是确定由曲线y =f (x )和直线x =a ,x =b 及x 轴所围成的图形的形状,若图形是三角形、梯形、矩形、圆(或一部分),则可用相应面积公式计算.5.不用计算,根据图形,用不等号连接下列各式.(1)⎠⎛01x d x ________⎠⎛01x 2d x ;(2)⎠⎛01x d x ________⎠⎛12x d x ;(3)⎠⎛024-x 2d x ________⎠⎛022d x .答案:(1)> (2)< (3)<6.利用定积分的几何意义,说明下列等式. (1)⎠⎛012x d x =1;(2)⎠⎛-111-x 2d x =π2.解:(1)如图1,⎠⎛012x d x 表示由曲线y =2x ,直线x =0,x =1,y =0所围成的图形(直角三角形)的面积,而S △=12×2×1=1,故⎠⎛012x d x =1.(2)如图2,⎠⎛-111-x 2d x 表示圆x 2+y 2=1在x 轴上方部分的面积.由S 半圆=π2,得⎠⎛-111-x 2d x =π2.几类曲边梯形的面积与定积分的关系1.在计算由曲线y =-x 2以及直线x =-1,x =1,y =0所围成的图形面积时,若将区间[-1,1]n 等分,则每个小区间的长度为( )A.1n B.2n C.2n -1D.2n +1解析:每个小区间长度为:1-(-1)n =2n .答案:B2.求由抛物线y =2x 2与直线x =0,x =t (t >0),y =0所围成的曲边梯形的面积时,将区间[0,t ]等分成n 个小区间,则第i -1个区间为( )A.⎣⎡⎦⎤i -1n ,i nB.⎣⎡⎦⎤i n ,i +1n C.⎣⎡⎦⎤t (i -1)n ,ti nD.⎣⎡⎦⎤t (i -2)n ,t (i -1)n 解析:每个小区间长度为t n ,故第i -1个区间的左端点为:0+(i -2)×t n =t (i -2)n ,右端点为t (i -2)n +t n =t (i -1)n.答案:D3.当n 很大时,函数f (x )=x 2在区间⎣⎡⎦⎤i -1n ,i n 上的值可以用下列哪个值近似代替( )A .f ⎝⎛⎭⎫1nB .f ⎝⎛⎭⎫2nC .f ⎝⎛⎭⎫i nD .f (0)解析:当n 很大时,f (x )=x 2在区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上的值可用该区间上任何一点的函数值近似代替,显然可以用左端点或右端点的函数值近似代替.答案:C4.如图,阴影部分的面积为( )[对应课时跟踪训练(十)]A.⎠⎛a bf (x )d x B.⎠⎛a bg (x )d x C.⎠⎛a b [f (x )-g (x )]d xD.⎠⎛a b[g (x )-f (x )]d x解析:由题图易知,当x ∈[a ,b ]时,f (x )>g (x ), ∴阴影部分的面积为⎠⎛a b[f (x )-g (x )]d x . 答案:C5.把y =sin x ,x =0,x =π2,y =0所围成图形的面积写成定积分的形式是________.解析:∵当0<x <π2时,sin x >0,∴y =sin x ,x =0,x =π2,y =0所围成图形的面积写成定积分的形式为⎠⎛02πsin x d x .答案:⎠⎛2πsin x d x .6.用定积分表示下列阴影部分的面积(不要求计算):(1)S 1=________(如图1); (2)S 2=________(如图2); (3)S 3=________(如图3).答案:(1)⎠⎛3π0⎠⎛ππ3sin x d x (2)⎠⎛-42x 22d x (3)⎠⎛49x 12d x 7.利用定积分表示曲线y =x 2与x +y =2所围成图形的面积.解:由⎩⎪⎨⎪⎧y =x 2,x +y =2得交点的横坐标为x =1及x =-2,如图,∴S =⎠⎛-21[(2-x )-x 2]d x =⎠⎛-21(2-x -x 2)d x .8.用定积分的几何意义求⎠⎛-114-x 2d x .解:由y =4-x 2可化为x 2+y 2=4(y ≥0),其图像如图.⎠⎛-114-x 2d x 等于圆心角为60°的弓形CD 的面积与矩形ABCD 的面积之和.S 弓形=12×π3×22-12×2×2sin π3=2π3- 3.S 矩形=AB ·BC =2 3.∴⎠⎛-114-x 2d x =23+2π3-3=2π3+ 3.。
(理)1.5定积分的概念1.5.1曲边梯形的面积1.5.2汽车行驶的路程【素养目标】1.理解连续函数的概念,了解定积分的实际背景及“以直代曲”“以不变代变”的思想方法,达成逻辑推理的核心素养。
2.会用分割、近似代替、求和、取极限的方法求曲边梯形的面积和汽车行驶的路程,培养学生的数学运算的核心素养。
【课前·预习案】[问题导学]知识点1.曲边梯形的面积观察图①和图②,其中阴影部分的面积可用梯形的面积公式来求,而图③中阴影部分有一边是曲线段.【思考1】如何求图③中阴影部分的面积呢?【提示】若把区间[a,b]分成许多小区间,进而把阴影部分拆分为一些小曲边梯形,近似地求出这些小曲边梯形的面积,分割的曲边梯形数目越多,所求得的面积越精确.〖梳理〗1、连续函数如果函数y=f(x)在某个区间I上的图象是一条连续不断的曲线,那么就把它称为区间I上的连续函数.2、曲边梯形的面积1.曲边梯形:由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的图形称为曲边梯形(如图①).2.求曲边梯形面积的方法与步骤:(1)分割:把区间[a,b]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形 (如图②);(2)近似代替:对每个小曲边梯形“以直代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值 (如图②);(3)求和:把以近似代替得到的每个小曲边梯形面积的近似值求和;(4)取极限:当小曲边梯形的个数趋向无穷时,所有小曲边梯形的面积之和趋向一个定值,即为曲边梯形的面积.知识点2.求变速直线运动的路程如果物体做变速直线运动,速度函数为v=v(t),那么它在时间t所在的区间[a,b]内的路程(或位移)也可以运用(1)分割;(2)近似代替;(3)求和;(4)取极限的方法求得.[达标自评]1.判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”:(1)在“近似代替”中,函数f(x)在区间[x i,x i +1]上的近似值只能是左端点的函数值f(x i)。