等腰三角形的判定
- 格式:ppt
- 大小:805.50 KB
- 文档页数:10
等腰三角形的判定-讲义等腰三角形一、知识梳理定义:有两条边相等的三角形是等腰三角形。
相等的两条边叫做腰,另一条边叫做底。
两腰所夹的角叫做顶角;腰与底边的夹角叫做底角。
1.等腰三角形的性质性质1:等腰三角形的两个底角相等(简称“等边对等角”).性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).2.等腰三角形的性质的作用证明同一个三角形中的两角相等.是证明角相等的一个重要依据.用来证明线段相等,角相等,垂直关系等.3.等腰三角形是轴对称图形4.等腰三角形底边上的高(顶角平分线或底边上的中线)所在直线是它的对称轴,通常情况只有一条对称轴.二、等腰三角形的判定1.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC,∠ACB的角平分线,则图中等腰三角形共有________个2.下列能断定 △ ABC为等腰三角形的是()A.∠A=30°,∠B=60°B.∠A=50°,∠B=80°C.AB=AC=2,BC=4D.AB=3,BC=7,周长为103.在平面直角坐标系中,O是坐标原点,点A(3,2),点P(m,0)(m<6),若△POA是等腰三角形,则m可取的值最多有( )A.2个 B.3个 C.4个 D.5个4.如图,在△ABC中,AB=AC,∠A=120,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为_______5.若△ABC的三边a,b,c满足(a-b)(b-c)(c-a)=0,那么 △ABC的形状是___________6.如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论正确的有_____________①△ BDF和 △ CEF都是等腰三角形;② DE=BD+CE;③△ ADE的周长等于AB与AC的和;④ BF=CF.7.如图,在四边形ABCD中,对角线AC与BD相交于点E,若AC平分∠DAB,且AB=AC,AC=AD,有四个结论:①AC⊥BD;②BC=DC;③△ABC≌△ADC;④△ABD是等边三角形.其中正确的是_____________8.如图,△ABC是等边三角形,延长BC到E,使CE=BC.点D是边AC的中点,连接ED并延长ED交AB于F,求证:(1)EF⊥AB;(2)DE=2DF9.如图,BO,CO分别平分∠ABC,∠ACD,OD//AB,OE//AC,若AC=6,AB=7,BC=8则△DOE的周长是_______10.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于点E,D垂足,连接EC求∠ECD的度数;若CE=5求BC长 .11.已知△ABC是等腰直角三角形,∠ABC=90°,AB=BC,D是AC的中点,F是AD上一点,连接BF,过点C作CE⊥BF于点E.求证:AF=BG.12.已知:如图,A B=AC,点D是的中点,A B平分∠DAE,AE⊥BE(1)求证:A D=AE;(2)若B E//AC,试判断△ABC的形状,并说明理由.13.在平面直角坐标系xOy中,直线y=2x+b与x轴交于点(1,0),与一次函数y=x+3的图象相交于点A.(1)求b的值,并直接在图中画出这两个一次函数的图象(不写画图过程);(2)求点A的坐标;(3)若P是x轴的正半轴上一点,且满足是等腰三角形,直接写出点P的坐标.14.如图,在平面直角坐标系中xoy中,∠AOB=90°,AB=CD=a,OD=OA=b,点B的坐标为(c,0),且|a-13|+(b-12)2=-(c-5)2.(1)求点C的坐标;(2)求证;DC⊥AB(3)在x轴上找一点P,使△PDC是以DC为腰的等腰三角形,请直接写出点P的坐标.三、直角三角形斜边中线定理如果一个三角形是直角三角形,那么这个三角形斜边上的中线等于斜边的一半。
等腰三角形的性质与判定等腰三角形是初中数学中的一个重要概念,它具有一些独特的性质和判定方法。
在本文中,我们将探讨等腰三角形的性质和判定,并通过几个例子加深理解。
首先,我们来了解等腰三角形的定义。
等腰三角形是指具有两条边相等的三角形。
根据这个定义,我们可以得出等腰三角形的第一个性质:等腰三角形的底角(底边对应的角)是相等的。
这是因为等腰三角形的两条边相等,所以它们对应的角也必须相等。
接下来,我们来探讨等腰三角形的第二个性质:等腰三角形的高线(从顶点到底边的垂直线段)是对称轴。
这个性质可以通过几何推理来证明。
假设我们有一个等腰三角形ABC,其中AB = AC。
如果我们从顶点A向底边BC引一条垂直线段AD,我们可以证明BD = CD。
这是因为在等腰三角形中,高线将底边等分,所以BD = CD。
这也意味着高线AD是底边BC的中垂线,而中垂线是对称轴。
除了这些基本性质外,等腰三角形还有一些判定方法。
首先,我们可以通过边长判定法来判断一个三角形是否为等腰三角形。
如果一个三角形的两条边相等,那么它就是等腰三角形。
其次,我们可以通过角度判定法来判断一个三角形是否为等腰三角形。
如果一个三角形的两个角相等,那么它就是等腰三角形。
这两种判定方法可以互相验证,帮助我们确定一个三角形是否为等腰三角形。
让我们通过一个例子来加深对等腰三角形性质和判定的理解。
假设我们有一个三角形DEF,其中DE = DF。
我们可以通过边长判定法得出这个三角形是等腰三角形。
接下来,我们可以通过角度判定法验证这个结论。
如果我们发现角D和角E相等,那么我们可以确定这个三角形是等腰三角形。
通过计算角度,我们可以发现角D和角E的度数相等,所以我们可以得出结论:三角形DEF是等腰三角形。
在实际生活中,等腰三角形的性质和判定方法也有一些应用。
例如,在建筑设计中,等腰三角形的对称性可以用于设计对称美观的建筑物。
在工程测量中,等腰三角形的判定方法可以帮助工程师确定一个三角形的性质,从而更好地进行测量和计算。
等腰三角形的判定判定等腰三角形的基本方法:一是从定义入手,证明两条边相等;二是从角入手,证明一个三角形的两个角相等。
在实际的阶梯中,有些常用的技巧就是构造等腰三角形从而利用等腰三角形的性质为解题服务,常用的构造方法有1、“角平分线+平行线”构造等腰三角形。
2、“角平分线+垂线”构造等腰三角形。
3、用“三角形中角的2倍关系”构造等腰三角形。
例题求解【例题1】如图,在△ABC中,AB=7,AC=11,点M是BC的中点,AD是∠BAC的平分线,MF//AD。
则FC的长为________。
【例题2】如图,已知直角△ABC中,∠A=30°,在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有_____个。
【例题3】如图,△ABC中,AD⊥BC于点D,∠B=2∠C,求证:AB+BD=CD.【例题4】两个全等的含有30°、60°的三角板ADE和三角板ABC,如图所示放置,E,A,C三点在一条直线上,连接BD,取BD的中点M,连接ME,MC.试判断△EMC的形状,并说明理由.【例题5】如图,△ABC中,∠C=90°,∠CAD=30°,AC=BC=AD,求证:CD=BD。
学力训练基础夯实1、如图,∠ABC=50°,AD垂直平分线段BC于点D,∠ABC的角平分线BE交AD 于E,连接EC;则∠AEC等于(2、如图,△ABC中,AB=AC,∠ABC=36°,D,E是BC上的两点,且∠B A D=∠D A E=∠EAC,则图中等腰三角形的个数是()3、如图,△ABC中,AD平分∠BAC,AB+BD=AC,则∠B:∠C的值是_______。
4、已知等腰△ABC中,AB=AC,D是BC边上一点,连接AD,若△ACD和△ABD都是等腰三角形,则∠C的度数是________.5、如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的中垂线,E、N在BC上,则∠EAN=()6、如图所示,在△ABC中,∠B=2∠C,则AC与2AB之间的关系式______。
等腰三角形的性质:
1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
3.等腰三角形的两底角的平分线相等,两条腰上的中线相等,两条腰上的高相等。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
8.等腰三角形中腰的平方等于高的平方加底的一半的平方。
9.等腰三角形中腰大于高。
10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)。
等腰三角形的判定:
1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
3.三线合一逆定理:顶角的平分线,底边上的中分线,底边上的高,其中任意两个重合的三角形是等腰三角形。
等腰三角形的判定至少有两边相等的三角形叫做等腰三角形。
等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。
等腰三角形判定定理是:在一个三角形中,如果两个角相等,那么这两个角所对的边也相等。
判定方法有:等腰三角形的认定等腰三角形的认定方法1、在一个三角形中,如果一个角的平分线与该角对边上的中线重合,那么这个三角形是等腰三角形。
2、在一个三角形中,如果一个角的平分线与该角对边上的高重合,那么这个三角形就是等腰三角形。
3、在一个三角形中,如果一条边上的中线与该边上的高重合,那么这个三角形是等腰三角形。
4、存有两条角平分线或中线、或低成正比的三角形就是等腰三角形。
判定的方式:定义法:在同一三角形中,存有两条边成正比的三角形就是等腰三角形。
判定定理:在同一三角形中,如果两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
除了以上两种基本方法以外,除了如下认定的方式:1、在一个三角形中,如果一个角的平分线与该角对边上的中线重合,那么这个三角形是等腰三角形,且该角为顶角。
2、在一个三角形中,如果一个角的平分线与该角对边上的高重合,那么这个三角形就是等腰三角形,且该角为顶角。
3、在一个三角形中,如果一条边上的中线与该边上的高重合,那么这个三角形是等腰三角形,且该边为底边。
似乎,以上三条定理就是“三线合一”的逆定理。
4、有两条角平分线(或中线,或高)相等的三角形是等腰三角形。
等腰三角形的分类:1、等腰直角三角形:有一个角是直角的等腰三角形,叫做等腰直角三角形。
它是一种特殊的三角形,具有所有等腰三角形的性质,同时又具有所有直角三角形的性质。
2、等边三角形:就是三边都成正比的等腰三角形。
性质:1、等腰三角形的两个底角度数成正比(缩写成“等边对等角”)。
2、等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“等腰三角形三线合一”)。
3、等腰三角形的两底角的平分线成正比(两条腰上的中线成正比,两条腰上的高成正比)。