等腰三角形判定定理
- 格式:pptx
- 大小:159.38 KB
- 文档页数:11
等腰三角形的性质:
1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
3.等腰三角形的两底角的平分线相等,两条腰上的中线相等,两条腰上的高相等。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
8.等腰三角形中腰的平方等于高的平方加底的一半的平方。
9.等腰三角形中腰大于高。
10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)。
等腰三角形的判定:
1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
3.三线合一逆定理:顶角的平分线,底边上的中分线,底边上的高,其中任意两个重合的三角形是等腰三角形。
第04讲等腰三角形的判定定理(2个知识点+12大题型+18道强化训练)知识点01:等腰三角形的判定等腰三角形的判定①有两条边相等的三角形是等腰三角形。
②有两个角相等的三角形是等腰三角形。
(简称“等角对等边”)总结:【即学即练1】已知等腰三角形的一边长为5cm ,另一边长为11cm ,则它的周长为( )A .16cmB .27cmC .21cmD .21cm 或27cm【即学即练2】如图,在ABC D 中,AB AC =,AD BD =,DE AB ^于点E ,若4BC =,BDC D 的周长为10,则AE 的长为( )A .2.5B .3C .3.5D .4知识点02:等边三角形的判定1、判定:①三条边都相等的三角形是做等边三角形②三个角都相等的三角形是等边三角形③有一个角是60°的等腰三角形是等边三角形。
2、等腰三角形和等边三角形的判定【即学即练3】下列四个说法中,正确的有( )①三个角都相等的三角形是等边三角形;②有两个角等于60°的三角形是等边三角形;③有一个角是60°的等腰三角形是等边三角形;④有两个角相等的等腰三角形是等边三角形.A .1个B .2个C .3个D .4个【即学即练4】若一个三角形有两条边相等,且有一内角为60°,那么这个三角形一定为( )A .钝角三角形B .等腰三角形C .直角三角形D .正三角形题型01 格点中画等腰三角形1.如图,在33´的网格中,以AB 为一边,点P 在格点处,使ABP V 为等腰三角形的点P 有( )个A .2个B .5个C.3个D .1个2.在正方形网格中,网格线的交点成为格点,如图,A 、B 分别在格点处,若C 也是图中的格点,且使得ABC V 是以AB 为腰的等腰三角形,则符合条件的点C 有( )A .7个B .6个C .5个D .4个3.如图,在正方形网格中,网格线的交点称为格点.已知A 、B 是网格中的两个格点,如果C 也是网格中的格点,且使ABC V 为等腰三角形,那么符合条件的点C 有 个.4.如图,在4×5的点阵图中,每两个横向和纵向相邻阵点的距离均为1,该点阵图中已有两个阵点分别标为A ,B ,请在此点阵中找一个阵点C ,使得以点A ,B ,C 为顶点的三角形是等腰三角形,则符合条件的点C 有 个.5.如图,在方格纸中,每一个小正方形的边长为1,按要求画一个三角形,使它的顶点都在小方格的顶点上.(1)在图1中画一个以AB 为直角边且面积为3的直角三角形.(2)在图2中画一个以AC 为腰的等腰三角形.题型02 找出图中的等腰三角形1.如图,在ABC V 中,AB AC =,72B Ð=°,CD 平分ACB Ð交AB 于点D ,DE AC ∥交BC 于点E ,则图中共有等腰三角形( )A .3个B .4个C .5个D .6个2.如图,已知线段AB 的端点B 在直线l 上(AB 与l 不垂直)请在直线l 上另找一点C ,使ABC V 是等腰三角形,这样的点能找( )A .2个B .3个C .4个D .5个3.如图,在ABC V 中,已知边AB 的垂直平分线与边BC 的垂直平分线交于点P ,连接PA PB PC 、、,则图中有 个等腰三角形.4.如图,已知ABC V 中,37AB BC ==,,在ABC V 所在平面内一条直线,使其中有一个边长为3的等腰三角形,则这样的直线最多可画 条.5.如图,在四边形ABCD 中,AB ∥CD ,∠1=∠2,DB=DC .(1)求证:AB+BE=CD .(2)若AD=BC ,在不添加任何补助线的条件下,直接写出图中所有的等腰三角形.题型03 根据等角对等边证明等腰三角形1.一个三角形两个内角的度数分别如下,这个三角形是等腰三角形的是( )A .40°,70°B .30°,90°C .60°,50°D .40°,20°2.在ABC V 中,36A Ð=°,72B Ð=°,则ABC V 是( )A .钝角三角形B .等腰三角形C .等边三角形D .等腰直角三角形3.在ABC V 中,若50B Ð=°,65C =°∠,则ABC V 等腰三角形.(填“是”或“不是”)4.在ABC V 中,90A Ð=°,当B Ð= 度时,ABC V 是等腰三角形.5.如图,在ABC V 中,60,40,BAC C ABC Ð=°Ð=°Ð的平分线BD 交AC 于点D .判断BCD △是否为等腰三角形?请说明理由.题型04 根据等角对等边证明边相等1.如图,在ABC V 中,6BC =,边AB 的垂直平分线交BC 于M ,点N 在MC 上,连接AM ,AN ,C NAC Ð=Ð,则MAN △的周长为( )A .6B .4C .3D .122.在ABC V 中,AD 平分235BAC B ADB AB CD ÐÐ=Ð==,,,,则AC 的长为( )A .6B .7C .8D .93.如图,在ABC V 中,ABC Ð和ACB Ð的平分线交于点E ,过点E 作MN BC ∥交AB 于M ,交AC 于N ,若8BM CN +=,则线段MN 的长为 .4.如图,在ABC V 中,4AB =,6AC =,ABC Ð和ACB Ð的平分线交于O 点,过点O 作BC 的平行线交AB 于M 点,交AC 于N 点,则AMN V 的周长为 .5.如图,ABC V 中,CA CB =,点D 在BC 的延长线上,连接AD AE ,平分CAD Ð交CD 于点E ,过点E 作EF AB ^,垂足为点F ,与AC 相交于点G ..(1)求证:CG CE =;(2)若30B Ð=°,40CAD Ð=°,求AEF Ð和D Ð的度数;(3)求证:2D AEF Ð=Ð.题型05 根据等角对等边求边长1.如图,在ABC V 中,B C Ð=Ð,4AB =,则AC 的长为( )A .2B .3C .4D .52.如图,在ABC V 中,ABC Ð的平分线交AC 于点D ,6AD =,过点D 作DE BC ∥交AB 于点E ,若AED △的周长为16,则边AB 的长为( )A .10B .8C .6D .163.如图,在ABC V 中,12AB =,9AC =,沿过点A 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为AD ,若12ADE C Ð=Ð,则BD 的长是 .4.如图,在Rt ABC △中,90C Ð=°,10AC =,12BC =,点D 是AC 边的中点,点E 是BC 边上一动点,将CDE V 沿DE 折叠得到C DE ¢V ,连接BC ¢,当BEC ¢△是直角三角形时,BE 的长为 .5.如图,100,40203BAC B D AB Ð=°Ð=°Ð=°=,,,求CD 的长.题型06 直线上与已知两点组成等腰三角形的点1.点A ,B 在直线l 同侧,若点C 是直线l 上的点,且ABC V 是等腰三角形,则这样的点C 最多有( )A .5个B .4个C .3个D .2个2.在平面直角坐标系中,O 为坐标原点,点A 的坐标为(3,4),点P 是坐标轴上的一点,使OAP V 为等腰三角形的点P 的个数有( )A .5个B .6个C .7个D .8个3.如图,点O 在直线l 上,点A 在直线l 外.若直线l 上有一点P 使得APO △为等腰三角形,则满足条件的点P 位置有 个.4.如图,已知Rt ABC △中,90,30Ð=°Ð=°C A .在直线BC 或AC 上取一点P ,使得PAB V 是等腰三角形,则符合条件的P 点有 个.5.如图,在直线EF 上有一点A ,直线外有一点B ,点C 在直线EF 上,ΔABC 是以AB 、AC 为腰的等腰三角形.(1)在图中画出ΔABC(2)已知40BAF Ð=°,求BCAÐ题型07 求与图形中任意两点构成等腰三角形的点1.已知ABC V 中,AB AC =.108A Ð=°,在平面内找一点P ,使得PAB V ,PAC V ,PBC V 都是等腰三角形,则这样的P 点有( )个A .4B .6C .8D .102.已知:如图ABC V 中,=60B а,80C Ð=°,在直线BA 上找一点D ,使ACD V 或BCD △为等腰三角形,则符合条件的点D 的个数有( )A .7个B .6个C .5个D .4个3.如图,在ABC V 中,25,100B A Ð=°Ð=°,点P 在ABC V 的三边上运动,当PAC V 成为等腰三角形时,其顶角的度数是 .4.如图,60AOB Ð=°,C 是OB 延长线上一点,若18cm OC =,动点P 从点C 出发沿CB 以2cm/s 的速度移动,动点Q 从点O 沿OA 以1cm/s 的速度移动,如果点P 、Q 同时出发,用()t s 表示移动的时间,当t = s时,POQ △是等腰三角形?5.如图,在ABC V 中,AB AC BC ==,ABC V 所在的平面上有一点P (如图中所画的点1P ),使PAB V ,PBC △, PAC V 都是等腰三角形,问:具有这样性质的点P 有几个(包括点1P )?在图中画出来.题型08 作等腰三角形(尺规作图)1.如图,已知直线m n P ,线段AC 分别与直线m ,n 相交于点B 、点C ,以点A 为圆心,AB 的长为半径画弧交直线m 于点B 、点D .若70A Ð=°,则a 的度数为( )A .45°B .50°C .55°D .60°2.如图,已知直线l 及直线l 外一点P ,过点P 作直线l 的平行线,下面四种作法中错误的是( )A .B .C .D .3.如图,在Rt △ABC 中,∠ACB =90°,∠A =50°,以点B 为圆心,BC 长为半径画弧,交AB 于点D ,连接CD ,则∠ACD 的度数是 .4.如图,直线a b ,相交于点O ,150а=,点A 是直线上的一个定点,点B 在直线b 上运动,若以点O ,A ,B 为顶点的三角形是等腰三角形,则OAB Ð的度数是 .5.已知:线段a ,h ,求作等腰ABC V ,使底边BC a =,高AD h =,(要求:用尺规作图,保留作图痕迹,不必写作法和证明).题型09 等腰三角形的性质和判定1.如图,ABC V 中,AB AE =,且AD BC EF ^,垂直平分AC ,交AC 于点F ,交BC 于点E ,若ABC V 周长为166AC =,,则DC 为( )A .5B .8C .9D .102.如图,在ABC V 中,16AB AC ==,点E 是BC 边上任意一点,过点E 分别作AB AC ,的平行线,交AC 于点F ,交AB 于点D ,则四边形ADEF 的周长是( )A .32B .24C .16D .83.如图,在ABC V 中,BD 和CD 分别是ABC Ð和ACB Ð的平分线,EF 过点D ,且EF BC ∥,若,BE CF ==34,则EF 的长为 .4.如图,在Rt ABC △中,90A Ð=°,30C Ð=°,作边BC 的垂直平分线,交AC 于点D ,交BC 于点E .若3AD =,则DE 的长为 .5.如图,在ABC V 中,点E 在AB 上,点D 在BC 上,BD BE =,BAD BCE Ð=Ð,AD 与CE 相交于点F .(1)证明:BA BC =;(2)求证:AFC V 为等腰三角形.题型10 三角形边角的不等关系1.若等腰三角形的一边长等于2,另一边长等于3,则它的周长等于( ).A .7B .8C .9D .7或82.如图,ABC V 中,5,9,10,AB AC BC EF ===垂直平分BC ,点P 为直线EF 上的任一点,则ABP V 周长的最小值是( )A .10B .14C .15D .193.等腰三角形周长为20,一边长为4,则另两边长为 .4.等腰三角形的一边是7,另一边是4,其周长等于 .5.已知a 、b 、c 为ABC V 的三边长,a 、b 满足2(2)|3|0a b -+-=,且c 为方程|6|3x -=的解,求ABC V 的周长并判断ABC V 的形状.题型11 等边三角形的判定1.在下列命题中:①有一个外角是120°的等腰三角形是等边三角形;②有两个外角相等的等腰三角形是等边三角形;③有一边上的高也是这边上的中线的三角形是等边三角形;④三个外角都相等的三角形是等边三角形.正确的命题有( )A .4个B .3个C .2个D .1个2.在ABC V 中,60A Ð=°,添加下列一个条件后,仍不能判定ABC V 为等边三角形的是( )A .AB AC =B .AD BC ^C .B C Ð=ÐD .A CÐ=Ð3.在ABC V 中,B C Ð=Ð,若添加一个条件使ABC V 是等边三角形,则添加的条件可以是 .(写出一个即可)4.已知a ,b ,c 为ABC V 三边的长,当222222ab a b c bc +=++时,则ABC V 的形状是 .5.如图,在四边形ABCD 中,AD BC ∥,B D Ð=Ð,点E 在BA 的延长线上,连接CE .(1)求证:E ECD Ð=Ð;(2)若60E Ð=°,CE 平分BCD Ð,请判断BCE V 的形状并说明理由.题型12 等边三角形的判定和性质1.如图,30AOB Ð=°,点P 在AOB Ð的内部,点C ,D 分别是点P 关于OA OB 、的对称点,连接CD 交OA OB 、分别于点E ,F ;若PEF !的周长的为9,则线段OP =( )A .8B .9C .10D .112.若一个等腰三角形一腰上的高等于腰的一半,则这个等腰三角形的底角为( )A .75°B .15°C .30°或150°D .15°或75°3.如图,已知30AOB Ð=°,P 是AOB Ð内部的一个定点,且1OP =,点E 、F 分别是OA 、OB 上的动点,则PEF !周长的最小值等于 .4.如图,等边ABC V 的边长为4cm ,点Q 是AC 的中点,若动点P 以2cm /秒的速度从点A 出发沿A B A ®®方向运动设运动时间为t 秒,连接PQ ,当APQ △是等腰三角形时,则t 的值为 秒.5.如图,D 是等边ABC V 外的一点,3BC =,DB DC =,120BDC Ð=°,点E 、F 分别在AB 和AC 上.(1)求证:AD 是BC 的垂直平分线(2)若ED 平分BEF Ð,①证明:FD 平分EFC Ð;②求AEF △的周长.1.如图,ABC V 中,AB AE =,且AD BC ^,EF 垂直平分AC ,交AC 于点F ,交BC 于点E ,若ABC V 周长为16,6AC =,则DC 为( )A .5B .8C .9D .102.如图,在ABC V 中,AB AC =,45BAC Ð=°,AD BC ^于点D ,BE AC ^于点E ,交AD 于点F ,若10AF =,则BD 的长为( )A .4B .5C .8D .103.如图,在ABC V 中,AB AC =,120A Ð=°,6cm BC =,AB 的垂直平分线交BC 于点M ,交AB 于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长为( )A .4cmB .3cmC .2cmD .1cm4.如图,D 为ABC V 内一点,CD 平分ACB Ð,BD CD ^,A ABD Ð=Ð,若5AC =,3BC =,则BD 的长为( )A .1B .1.5C .2D .2.55.如图,在AOB V 和COD △中,OA OB =,OC OD =,OA OC <,36AOB COD Ð=Ð=°.连接AC BD 、交于点M ,连接OM .下列结论:①BOM COM Ð=Ð;②AC BD =;③OM 平分AMD ∠;④144AOD Ð=°,⑤MOC MOD V V ≌其中正确的结论个数有( )个.A .5B .4C .3D .26.如图,在四边形OAPB 中,120AOB Ð=°,OP 平分AOB Ð,且2OP =,若点M 、N 分别在直线OA OB 、上,且PMN V 为等边三角形,则满足上述条件的PMN V 有( )A .1个B .2个C .3个D .3个以上7.如图,ABC V 中,BO 、CO 分别平分ABC Ð和ACB Ð,过点O 平行于BC 的直线分别交AB 、AC 于点D 、E ,已知9cm AB =,8cm AC =,ADE V 的周长为 .8.如图,60AOB Ð=°,C 是BO 延长线上一点,12cm OC =,动点M 从点C 出发沿射线CB 以2cm /s 的速度移动,动点N 从点O 出发沿射线OA 以1cm /s 的速度移动,如果点M 、N 同时出发,设运动的时间为s t ,那么当t = s 时,MON △是等腰三角形.9.已知,在ABC V 中,AB AC =,BD AC ^于点D ,AE BC ^于点E ,若50BAC Ð=°,则DCO Ð= °.10.如图,在ABC V 中,AB AC =,AD 是ABC V 的中线,点E 在AC 上,且AE AD =,连接DE ,若20CDE Ð=°,则B Ð的度数为 °.11.定义:如果一个三角形能被过顶点的一条线段分割成两个等腰三角形,则称这个三角形为特异三角形,如图,ABC V 中,36,A B Ð=°Ð为钝角,则使得ABC V 是特异三角形所有可能的B Ð的度数为 .12.已知在ABC V 中,40A Ð=°,D 为边AC 上一点,ABD △和BCD △都是等腰三角形,则C Ð的度数可能是 .13.如图,在ABC V 中,AB AC D =,是BC 边上一点,以AD 为边在AD 右侧作ADE V ,使AE AD =,连接108CE BAC DAE Ð=Ð=°,(1)求证:BAD CAE V V ≌;(2)若DE DC =,求CDE Ð的度数.14.如图,点D 、E 在ABC V 的边BC 上,AD AE =,BD CE =.(1)求证:AB AC =.(2)若108,2180BAC DAE BAC Ð=°Ð+Ð=°,直接写出图中除ABC V 与ADE V 外所有等腰三角形.15.如图,在等边ABC V 中,点D 在边BC 上,过点D 作DE AB ∥交AC 于点E ,过点E 作EF DE ^,交BC 的延长线于点F .(1)求F Ð的度数;(2)求证:DC CF =.16.如图,已知ABC V 中,D 为BC 上一点,AB AD =,E 为ABC V 外部一点,满足AC AE =,连结DE ,与AC 交于点O ,且CAE BAD Ð=Ð.(1)求证:ABC ADE △≌△;(2)若25BAD Ð=°,求EDC Ð的度数.17.如图,已知在ABC V 中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点,点P 在线段BC 上以3厘米/秒如果点P 在线段BC 上以3厘米每秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.(1)若点Q 的运动速度与点p 的运动速度相等,经一秒后,三角形BPD 与三角形CQP 是否全等,请说明理由;(2)若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度是多少时,能够使三角形BPD 与三角形CQP 全等?18.(1)【问题提出】如图1,在Rt ABC △和Rt CDE △,已知90ACE B D Ð=Ð=Ð=°,AC CE =,B 、C 、D 三点在一条直线上,5AB =, 6.5DE =,则BD 的长度为______.(2)【问题提出】如图2,在Rt ABC △中,90ABC Ð=°,4BC =,过点C 作CD AC ^,且CD AC =,求BCD △的面积.(3)【问题解决】某市打造国家级宜居城市,优化美化人居生态环境.如图3所示,在河流BD 的周边规划一个四边形ABCD 巨无霸森林公园,按设计要求,在四边形ABCD 中,45ABC CAB ADC Ð=Ð=Ð=°,AC BC =,ACD V 面积为212km ,且CD 的长为6km ,则河流另一边森林公园BCD △的面积为______2km .。
教学内容(一)知识梳理知识点1:等腰三角形的性质定理1:等腰三角形的两个底角相等(简称“等边对等角”)证明:取BC的中点D,连接AD在△ABD和△ACD中∴△ABD≌△ACD(SSS)∴∠B=∠C(全等三角形对应角相等)知识点2:等腰三角形性质定理2:等腰三角形的顶角平分线,底边上的中线,底边上的高,互相重合(简称“三线合一”)∵AB=AC ∵AB=AC ∵AB=AC∠1=∠2 AD⊥BC BD=DC∴AD⊥BC,BD=DC ∴∠1=∠2 ∴∠1=∠2,BD=DC AD⊥BC知识3:等腰三角形的判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简写为“等角对等边”)证明:过A作AD⊥BC于D,则∠ADB=∠ADC=90°。
在△ABD和△ACD中∴△ABD≌△ACD (AAS)∴AB=AC【典型例题分析】例1. 如图,已知P、Q是△ABC边BC上两点,且BP=PQ=AP=AQ=QC,求∠BAC的度数。
解:∵AP=PQ=AQ(已知)∴△APQ是等边三角形(等边三角形的定义)∴∠APQ=∠AQP=∠PAQ=60°(等边三角形的性质)∵AP=BP(已知)∴∠PBA=∠PAB(等边对等角)又∠APQ=∠PAB+∠PBA=60°∴∠PBA=∠PAB=30°同理∠QAC=30°∴∠BAC=∠PAB+∠PAQ+∠QAC=30°+60°+30°=120°例2. 已知:如图,在△ABC中,∠B=∠C,D、E、F分别为AB,BC,AC上的点,且BD=CE,∠DEF=∠B。
求证:△DEF是等腰三角形。
证明:∵∠B+∠BDE+∠BED=180°(三角形内角和定理)∠BED+∠DEF+∠FEC=180°(平角性质)∠B=∠DEF(已知)∴∠BDE=∠FEC(等角的补角相等)在△BED和△CFE中,∠BDE=∠FEC中(已证),BD=CE (已知),∠B=∠C (已知)∴△BED≌△CFE (ASA),∴DE=EF (全等三角形对应边相等)∴△DEF是等腰三角形(等腰三角形定义)例3. 已知:如图,AC和BD相交于点O,AB∥CD,OA=OB,求证:OC=OD证明:∵AB∥CD (已知)∴∠A=∠C,∠B=∠D (两直线平行,内错角相等)∵OA=OB (已知)∴∠A=∠B (等边对等角)∴∠C=∠D (等量代换)∴OC=OD (等角对等边)例4. 如图,在四边形ABDC中,AB=2AC,∠1=∠2,DA=DB,试判断DC与AC的位置关系,并证明你的结论。
等腰三角形的性质与判定【知识梳理】1.等腰三角形的概念:有 相等的三角形,叫做等腰三角形, 叫做腰,另一条边叫做 .两腰所夹的角叫做 ,底边与腰所夹的角叫做 .2.等腰三角形性质定理:(1)等腰三角形的两个 相等,也能够说成 .. (3)等腰三角形是 图形.3.等腰三角形的判定:(1)有 相等的三角形是等腰三角形. (2)假如一个三角形有两个角相等,那么这两个角 也相等.简写成 .【例题讲解】例1等腰三角形ABC 中,AB =AC ,一腰上的中线BD •将这个等腰三角形周长分成15和6两局部,求这个三角形的腰长及底边长.例2如图,在△ABC 中,AB =AC ,∠ABD =∠ACD .求证:△DBC 是等腰三角形.例3 如图,AB =AE ,BC =ED , ∠B =∠E .求证:∠C =∠D .例4如图,AB =AC ,BD ⊥AC 于D . 求证:∠BAC =2∠DBC .例5 相关等腰三角形的基本图形.(1)如图3,若OD 平分∠AOB ,DE ∥OB交OA 于E .求证:EO =ED .提问:这个结论的逆命题是否准确?(2)如图 3,若 OD 平分∠AOB , EO =ED ,求证: DE ∥OB . (3)如图 3,若 DE ∥OB 交OA 于E , EO =ED ,求证: OD 平分∠AOB .总结:图3是相关等腰三角形的一个很常用的基本图形.以上三个小题说明:在图3中,“角平分线.平行线.等腰三角形”这三者中,若有两条成立,则第三条必成立.熟悉这个结论,对解决包含该图形的较复杂的题目是很有协助的.相关的题组练习.(1)如图4,AD ∥BC , BD 平分∠ABC .求证: AB =AD .(2)已知:如图5(a ),AB =AC ,BD 平分∠ABC ,CD 平分∠ACB .问:①图中有几个等腰三角形?②如图5(b ),若过D 作EF ∥BC 交AB 于E ,交AC 于F ,图中又增加了几个等腰三角形? (3)如图5(c ),若将第(2)题中的△ABC 改为不等边三角形,其它条件不变,情况会如何?还可证出哪些线段的和差关系?(4)对第(3)题中“两内角平分线”可作怎样的推广?相对应的线段和差关系如何?推广①当过△ABC 的一个内角和一个外角平分线的交点作这两角的公共边的平行线时,如图5(d ).推广②当过△ABC 的两个外角平分线上一点作这两个角的公共边的平行线时,如图5(e ).(5)如图6,若BD ,CD 分别平分∠ABC 和∠ACB ,过D 作DE ∥AB 交BC 于E ,作DF ∥AC 交BC 于F .求证:BC 的长等于△DEF 的周长.【课后巩固】1.在△ABC 中,AB =AC ,若∠B =56º,则DCBAED CBADCB A 3334∠C =__________.2. 若等腰三角形的一个角是50°,则这个等腰三角形的底角为_____________.3. 若等腰三角形的两边长分别为x cm 和(2x-6)cm ,且周长为17cm ,则第三边的长为________.4. 如图,在△ABC 中,AB =AC ,AD ⊥BC 于D ,BE ⊥AC 于E ,若∠CAD =25°,则∠ABE = ,若BC =6,则CD = .5.△ABC 中,AB =AC ,∠ABC =36°,D .E 是BC 上的点,∠BAD =∠DAE =∠EAC ,则图中等腰三角形有______个6.等腰三角形一腰上的高与底边夹角为20°,则其顶角的大小为___________. 7.如图,∠ABC =50°,∠ACB =80°,延长CB 到D ,使BD =AB ,延长BC 到E ,使CE =CA ,连接AD .AE ,则∠DAE =_______.EDCB A8.如下列图,△MNP 中,∠P =60°,MN =NP ,MQ ⊥PN ,垂足为Q ,延长MN 至G ,取NG =NQ ,若△MNP 的周长为12,MQ =a ,则△MGQ 周长是 .9.△ABC 中,∠C =∠B ,D .E 分别是AB .AC上的点,•AE =•2cm ,•且DE •∥BC ,•则AD =______10.如图,∠AOB 是一个钢架且∠AOB =10°,为了使钢架更加牢固,需在内部添加一些钢管EF ,FG ,GH ,…,添加的钢管长度都与OE 相等,则最多能添加这样的钢管______根.11.如图△ABC 中,AB =AC ,AD 、BE 是△ABC 的高,它们相交于H ,且AE=BE . 求证:AH =2BD . 12.△ABC 为非等腰三角形,分别以AB 、AC 为 向△ABC 外作等腰直角三角形ABD 和等腰直角三角 形ACE ,且∠DAB =∠EAC =90°. 求证:(1)BE =CD ;(2)BE ⊥CD .13.如图,点D 、E 在ABC ∆的边BC 上,AB AC =,AD AE =. 求证:BD CE = 14.如图,AB AC =,30BAD ∠=,且AD AE =.求EDC ∠的度数.15.如图,ABC ∆中,90ACB ∠=,CD BA ⊥于D ,AE 平分BAC ∠交CD 于F ,交BC 于E ,求证:CEF ∆是等腰三角形.16.Rt ABC ∆中,AB AC =,90BAC ∠=,O 为 AB 中点,若点M .N 分别在线段AB .AC 上移 动,且在移动过程中保持AN BM =,试判断 OMN ∆的形状,并证明你的结论.17.已知:如图,△ABC 中,D 在AB 上,E 在AC 延长线上,且BD =CE ,DE 交BC 于M ,MD =ME ,求证:△ABC 是等腰三角形.18.已知一个等腰三角形,从它的一个顶点出发引一条直线将它分成两个等腰三角形,这样的等腰三角形有几种情况?画出图形并写出原等腰三角形各角度数. E D C B AP QM N G 35E M DCB A36。