等腰三角形的判定
- 格式:doc
- 大小:13.50 KB
- 文档页数:1
等腰三角形的性质与判定等腰三角形是初中数学中的一个重要概念,它具有一些独特的性质和判定方法。
在本文中,我们将探讨等腰三角形的性质和判定,并通过几个例子加深理解。
首先,我们来了解等腰三角形的定义。
等腰三角形是指具有两条边相等的三角形。
根据这个定义,我们可以得出等腰三角形的第一个性质:等腰三角形的底角(底边对应的角)是相等的。
这是因为等腰三角形的两条边相等,所以它们对应的角也必须相等。
接下来,我们来探讨等腰三角形的第二个性质:等腰三角形的高线(从顶点到底边的垂直线段)是对称轴。
这个性质可以通过几何推理来证明。
假设我们有一个等腰三角形ABC,其中AB = AC。
如果我们从顶点A向底边BC引一条垂直线段AD,我们可以证明BD = CD。
这是因为在等腰三角形中,高线将底边等分,所以BD = CD。
这也意味着高线AD是底边BC的中垂线,而中垂线是对称轴。
除了这些基本性质外,等腰三角形还有一些判定方法。
首先,我们可以通过边长判定法来判断一个三角形是否为等腰三角形。
如果一个三角形的两条边相等,那么它就是等腰三角形。
其次,我们可以通过角度判定法来判断一个三角形是否为等腰三角形。
如果一个三角形的两个角相等,那么它就是等腰三角形。
这两种判定方法可以互相验证,帮助我们确定一个三角形是否为等腰三角形。
让我们通过一个例子来加深对等腰三角形性质和判定的理解。
假设我们有一个三角形DEF,其中DE = DF。
我们可以通过边长判定法得出这个三角形是等腰三角形。
接下来,我们可以通过角度判定法验证这个结论。
如果我们发现角D和角E相等,那么我们可以确定这个三角形是等腰三角形。
通过计算角度,我们可以发现角D和角E的度数相等,所以我们可以得出结论:三角形DEF是等腰三角形。
在实际生活中,等腰三角形的性质和判定方法也有一些应用。
例如,在建筑设计中,等腰三角形的对称性可以用于设计对称美观的建筑物。
在工程测量中,等腰三角形的判定方法可以帮助工程师确定一个三角形的性质,从而更好地进行测量和计算。
等腰三角形的判定判定等腰三角形的基本方法:一是从定义入手,证明两条边相等;二是从角入手,证明一个三角形的两个角相等。
在实际的阶梯中,有些常用的技巧就是构造等腰三角形从而利用等腰三角形的性质为解题服务,常用的构造方法有1、“角平分线+平行线”构造等腰三角形。
2、“角平分线+垂线”构造等腰三角形。
3、用“三角形中角的2倍关系”构造等腰三角形。
例题求解【例题1】如图,在△ABC中,AB=7,AC=11,点M是BC的中点,AD是∠BAC的平分线,MF//AD。
则FC的长为________。
【例题2】如图,已知直角△ABC中,∠A=30°,在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有_____个。
【例题3】如图,△ABC中,AD⊥BC于点D,∠B=2∠C,求证:AB+BD=CD.【例题4】两个全等的含有30°、60°的三角板ADE和三角板ABC,如图所示放置,E,A,C三点在一条直线上,连接BD,取BD的中点M,连接ME,MC.试判断△EMC的形状,并说明理由.【例题5】如图,△ABC中,∠C=90°,∠CAD=30°,AC=BC=AD,求证:CD=BD。
学力训练基础夯实1、如图,∠ABC=50°,AD垂直平分线段BC于点D,∠ABC的角平分线BE交AD 于E,连接EC;则∠AEC等于(2、如图,△ABC中,AB=AC,∠ABC=36°,D,E是BC上的两点,且∠B A D=∠D A E=∠EAC,则图中等腰三角形的个数是()3、如图,△ABC中,AD平分∠BAC,AB+BD=AC,则∠B:∠C的值是_______。
4、已知等腰△ABC中,AB=AC,D是BC边上一点,连接AD,若△ACD和△ABD都是等腰三角形,则∠C的度数是________.5、如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的中垂线,E、N在BC上,则∠EAN=()6、如图所示,在△ABC中,∠B=2∠C,则AC与2AB之间的关系式______。
等腰三角形的性质:
1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
3.等腰三角形的两底角的平分线相等,两条腰上的中线相等,两条腰上的高相等。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
8.等腰三角形中腰的平方等于高的平方加底的一半的平方。
9.等腰三角形中腰大于高。
10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)。
等腰三角形的判定:
1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
3.三线合一逆定理:顶角的平分线,底边上的中分线,底边上的高,其中任意两个重合的三角形是等腰三角形。
等腰三角形的判定至少有两边相等的三角形叫做等腰三角形。
等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。
等腰三角形判定定理是:在一个三角形中,如果两个角相等,那么这两个角所对的边也相等。
判定方法有:等腰三角形的认定等腰三角形的认定方法1、在一个三角形中,如果一个角的平分线与该角对边上的中线重合,那么这个三角形是等腰三角形。
2、在一个三角形中,如果一个角的平分线与该角对边上的高重合,那么这个三角形就是等腰三角形。
3、在一个三角形中,如果一条边上的中线与该边上的高重合,那么这个三角形是等腰三角形。
4、存有两条角平分线或中线、或低成正比的三角形就是等腰三角形。
判定的方式:定义法:在同一三角形中,存有两条边成正比的三角形就是等腰三角形。
判定定理:在同一三角形中,如果两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
除了以上两种基本方法以外,除了如下认定的方式:1、在一个三角形中,如果一个角的平分线与该角对边上的中线重合,那么这个三角形是等腰三角形,且该角为顶角。
2、在一个三角形中,如果一个角的平分线与该角对边上的高重合,那么这个三角形就是等腰三角形,且该角为顶角。
3、在一个三角形中,如果一条边上的中线与该边上的高重合,那么这个三角形是等腰三角形,且该边为底边。
似乎,以上三条定理就是“三线合一”的逆定理。
4、有两条角平分线(或中线,或高)相等的三角形是等腰三角形。
等腰三角形的分类:1、等腰直角三角形:有一个角是直角的等腰三角形,叫做等腰直角三角形。
它是一种特殊的三角形,具有所有等腰三角形的性质,同时又具有所有直角三角形的性质。
2、等边三角形:就是三边都成正比的等腰三角形。
性质:1、等腰三角形的两个底角度数成正比(缩写成“等边对等角”)。
2、等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“等腰三角形三线合一”)。
3、等腰三角形的两底角的平分线成正比(两条腰上的中线成正比,两条腰上的高成正比)。
等腰三角形的判定题
等腰三角形是指两个边相等的三角形。
判定一个三角形是否是等腰三角形,需要满足以下条件之一:
1. 两边相等:如果一个三角形的两个边长度相等,那么这个三角形就是等腰三角形。
2. 两角相等:如果一个三角形的两个角的大小相等,那么这个三角形就是等腰三角形。
3. 底边和底角相等:如果一个三角形的底边的长度等于底角所对的斜边的一半,那么这个三角形就是等腰三角形。
需要注意的是,如果已知一个三角形是等腰三角形,那么它的底边和底角也就确定了,因为等腰三角形的底边和底角是相等的。
等腰三角形的五个判定一、等腰三角形的五个判定1、两条边相等:等腰三角形最典型的特点就是它的三条边长度都相等。
所以当我们有一个三角形,只需要找出它的三个边中有两个边长度相等的时候,就可以判定这个三角形为等腰三角形。
2、直角三角形:这个判定方式更为复杂,对于等腰三角形即解释为直角三角形,验证直角三角形充分必要条件是通过直角符号在三个角上标出一个直角,此时另外两边的斜边相等,即可判定这个三角形为等腰三角形。
3、边分两廓:另一种判定等腰三角形的方式也很常见,就是将一个等腰三角形从其中的一条边中间分成两块,然后另外两个边就会构成两个等边三角形,这种方式判定最为快捷。
4、两直角三角形:等腰三角形与两个直角三角形联系紧密,也就是一旦可以在等腰三角形中找到两个直角三角形,那么就可以判断这个三角形是等腰三角形。
5、其他外角相等:对于等腰三角形,可以判定它的其他外角是相等的,如果其他外角相等的话,那就可以判断这个三角形为等腰三角形。
二、等腰三角形的重要性等腰三角形既有美学价值又被广泛的应用于很多领域,它的出现让我们更加意识到规律性与美的存在,令我们对自然有更深刻的理解。
在运筹学中,等腰三角形被应用在路线规划中,不仅可以帮助人们快速计算出单位距离经过时间,还能帮助准确计算出距离,从而为物流事业或外出旅游带来便利。
此外,等腰三角形也是建筑工程中不可或缺的结构形式,能把结构力学中的重力集中起来支撑起桥梁和大楼,是以节省材料的形式帮助我们构筑物理环境的重要部分。
综上所述,可见等腰三角形的重要性不言而喻。
并且,由于各种判断等腰三角形的方法有了相应的技术支持,等腰三角形的应用在日益广泛,即使在精密的科技测量中也能。
等腰三角形判定定理的证明
要证明一个三角形是等腰三角形,需要证明其两条边相等。
设三角形的三条边分别为a、b、c,且为等腰三角形。
不失一般性,假设a=b,则有以下两种情况:
1. 如果a=b=c,则三角形是等边三角形,也是等腰三角形。
2. 如果a=b≠c,则根据等腰三角形的定义,只需要证明c是a 和b的中线即可。
我们可以通过使用三角形的余弦定理来证明这一点。
根据三角形的余弦定理,可以得到以下等式:
c^2 = a^2 + b^2 - 2ab * cos(∠C)
由于a=b,所以a^2 = b^2,上述等式可以简化为:
c^2 = 2a^2 - 2a^2 * cos(∠C)
因为∠C是锐角或直角,所以cos(∠C) < 1,因此2a^2 * cos(∠C) < 2a^2。
因此,c^2 < 2a^2,或者说c < √2 * a。
因此,在这种情况下,c < √2 * a,证明了c是a和b的中线。
因此,三角形是等腰三角形。
综上所述,根据等腰三角形的定义和余弦定理的推导,我们可以得出等腰三角形判定定理的证明。
等腰三角形的判定等腰三角形是指两条边长相等的三角形。
在几何学中,判断一个三角形是否为等腰三角形一直是重要的问题,本文将介绍几种判定方法。
方法一:根据角度判定一个三角形是等腰三角形的充分必要条件是它有两个角度相等。
设三角形的三个角度为A、B、C,则可以通过比较角度大小来判断等腰三角形。
方法二:根据边长判定另一种常用的判断等腰三角形的方法是根据三角形的边长。
一个三角形是等腰三角形的充分必要条件是它有两条边长相等。
具体判定步骤如下:1. 测量三角形的三条边长,记作a、b、c;2. 判断是否存在两条边长相等的边;3. 如果有两条边长相等的边,那么该三角形就是等腰三角形;4. 如果不存在两条边长相等的边,那么该三角形就不是等腰三角形。
方法三:根据边与角的关系判定还有一种判定等腰三角形的方法是根据边和角之间的关系。
一个三角形是等腰三角形的充分必要条件是它两边之间的夹角相等。
具体判定步骤如下:1. 测量三角形的三个角度,记作A、B、C;2. 查找两个相等的角度;3. 对应这两个相等的角度,判断它们对应的两条边是否相等;4. 如果相等,那么该三角形是等腰三角形。
方法四:使用勾股定理判定勾股定理是指直角三角形中的一个性质,即直角边的平方等于另外两条边平方的和。
据此,可以使用勾股定理判定等腰三角形。
具体判定步骤如下:1. 设等腰三角形的两条等边长度为a,底边长度为b;2. 根据勾股定理,可以得到a^2=b^2/2,或者b^2=2a^2;3. 根据等式判断三角形是否为等腰三角形。
总结:判定一个三角形是否为等腰三角形,可以根据角度、边长、边与角的关系以及勾股定理进行判定。
根据需求选择不同的判定方法,更加准确地判断等腰三角形。
注意:在进行判定时,需要准确测量三角形的角度和边长,以避免误判。
同时,可以结合不同的判定方法进行综合分析,提高判断的准确性。
等腰三角形性质定理和判定定理
定义:有两边相等的三角形是等腰三角形
等腰三角形的性质:
等腰三角形的两个底角相等.(简写成“等边对等角”)
等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简写成“三线合一”)
等腰三角形的两底角的平分线相等.(两条腰上的中线相等,两条腰上的高相等)
等腰三角形的底边上到两条腰的距离相等
等腰三角形的一腰上的高与底边的夹角等于顶角的一半
等腰三角形的判定:
有两条腰相等的三角形是等腰三角形
1.三角形的任何两边的和一定大于第三边,由此亦可证明得三角形的任意两边的差一定小于第三边.
2.三角形内角和等于180度
3.等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一.
4.;等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)等腰三角形的判定1有两条边相等的三角形是等腰三角形
2有两个角相等的三角形是等腰三角形(简称:等角对等边)3顶角的平分线,底边上的中线,底边上的高的重合的三角形是等腰三角形(4所有的等边三角形为等腰三角形)。
等腰三角形判定条件1. 嘿,你知道吗?有两条边相等的三角形那就是等腰三角形呀!就像一个人有两只一样长的胳膊,那多特别呀!比如一个三角形,两条边都是 5 厘米,这不就是等腰三角形嘛!2. 哇塞,要是一个三角形里有两个角相等,那它也能被判定为等腰三角形哦!这就好像两个人有同样的爱好,那他们就有相似之处呀!像那个三角形,两个角都是 40 度,那肯定就是等腰三角形啦!3. 嘿呀,难道你还不明白吗?等角对等边呀,这可是判定等腰三角形的重要条件呢!就好比说,你有一样的笑容就有一样的快乐呀!那个三角形中两角相等,它不就是等腰三角形嘛!4. 哎呀,你想想看呀,要是一个三角形能满足这些条件,那它不就是等腰三角形嘛!这就跟找朋友一样,有相同点就容易成为朋友呀!像这个三角形,有相等的边或角,不就是等腰的嘛!5. 嘿,你可别小瞧了这些条件哦!它们能准确地帮我们判断等腰三角形呢!就像指南针能指引方向一样!比如有个三角形,很明显两条边一样长,那它肯定是等腰三角形呀!6. 哇哦,当你发现一个三角形有这样的特征时,那它大概率就是等腰三角形啦!这就好像看到一个熟悉的标志就知道是什么地方一样!像那个三角形,两角相等,肯定就是等腰的咯!7. 嘿,你仔细琢磨琢磨呀,这些判定条件多有用呀!就像钥匙能开锁一样关键!那个三角形,两边相等得很明显,不就是等腰三角形嘛!8. 哎呀呀,你还不理解吗?等腰三角形的判定条件就摆在这里呢!就如同宝藏的线索就在眼前!像那个三角形,角角相等,那就是等腰三角形呀!9. 嘿,朋友,记住这些条件呀,它们可是识别等腰三角形的法宝呢!就像你记住好朋友的特点一样!比如这个三角形,有相等的边呀,那就是等腰的嘛!10. 哇,等腰三角形的判定条件真的很有趣呀!它们能让我们快速认出等腰三角形!就好像看到独特的标志就知道是什么物品一样!那个三角形,一看就有相等的角,绝对是等腰三角形呀!我的观点结论:只要掌握了这些判定条件,我们就能轻松地判断一个三角形是不是等腰三角形啦!。
3等腰三角形
第3课时等腰三角形的识别
教学目的
1.通过探索一个三角形是等腰三角形的条件,培养学生的探索能力.
2.能利用一个三角形是等腰三角形的条件,正确判断某个三角形是否为等腰三角形.
重点、难点
重点:让学生掌握一个三角形是等腰三角形的条件和正确应用.
难点:一个三角形是等腰三角形的条件的正确文字叙述.
教学过程
一、复习引入
等腰三角形具有哪些性质?
等腰三角形的两底角相等,底边上的高、中线及顶角平分线“三线合一”.
二、新课
对于一个三角形,怎样识别它是不是等腰三角形呢?我们已经知道的方法是看它是否有两条边相等.这一节,我们再学习另一种识别方法.
我们已学过,等腰三角形的两个底角相等,反过来,在一个三角形中,如果有两个角相等,那么它是等腰三角形吗?
为了回答这个问题,请同学们分别拿出一张半透明纸,做一个实验,按以下方法进行操作:
1.在半透明纸上画一个线段BC.
2.以BC为始边,分别以点B和点C为顶点,用量角器画两个相等的角,两角终边的交点为A.
3.用刻度尺找出BC的中点D,连接AD,然后沿AD对折.
问题1:AB与AC是否重合?
问题2:本实验的条件与结论如何用文字语言加以叙述?
如果一个三角形有两个角相等,那么这两个角所对的边也相等,简写成“等角对等边”.
也就是说,如果一个三角形中有两个角相等,那么它就是等腰三角形.一个三角形是等腰三角形的条件,可以用来判定一个三角形是否为等腰三角形.
例1.在△ABC中,已知∠A=40°,∠B=70°,判断△ABC是什么三角形,为什么?
问题3:三个角都是60°的三角形是等边三角形吗?你能说明理由吗?
等腰直角三角形:顶角是直角的等腰三角形是等腰直角三角形,如图所示.
问题4:你能说出等腰直角三角形各角的大小吗?
问题5:请你画一个等腰直角三角形,使∠C=90°,CD是底边上的高,数一数图中共有几个等腰直角三角形?
三、练习巩固
P99练习l、2、3.
四、小结
这节课,,我们学习了一个三角形是等腰三角形的条件:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”),此条件可以做为判断一个三角形是等腰三角形的依据.因此,要牢记并能熟练应用它.
五、作业
P99习题第5题.
- 1 -。