2020年高考红对勾一轮复习文科数学人教版创新方案课件学案10-3
- 格式:ppt
- 大小:4.40 MB
- 文档页数:12
课时作业32 数列求和1.已知等比数列{a n }中,a 2·a 8=4a 5,等差数列{b n }中,b 4+b 6=a 5,则数列{b n }的前9项和S 9等于( B )A.9B.18C.36D.72解析:∵a 2·a 8=4a 5,即a 25=4a 5,∴a 5=4,∴a 5=b 4+b 6=2b 5=4,∴b 5=2.∴S 9=9b 5=18,故选B.2.(2019·广州调研)数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( A )A.n 2+1-12nB.2n 2-n +1-12n C.n 2+1-12n -1D.n 2-n +1-12n解析:该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+⎝ ⎛⎭⎪⎫12+122+…+12n =n 2+1-12n . 3.(2019·开封调研)已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 018=( B )A.22 018-1B.3×21 009-3C.3×21 009-1D.3×21 008-2解析:a 1=1,a 2=2a 1=2,又a n +2·a n +1a n +1·a n =2n +12n =2,∴a n +2a n =2.∴a 1,a 3,a 5,…成等比数列;a 2,a 4,a 6,…成等比数列,∴S 2 018=a 1+a 2+a 3+a 4+a 5+a 6+…+a 2 017+a 2 018 =(a 1+a 3+a 5+…+a 2 017)+(a 2+a 4+a 6+…+a 2 018) =1-21 0091-2+2(1-21 009)1-2=3×21 009-3.4.定义np 1+p 2+…+p n为n 个正数p 1,p 2,…,p n 的“均倒数”.若已知正项数列{a n }的前n 项的“均倒数”为12n +1,又b n =a n +14,则1b 1b 2+1b 2b 3+…+1b 10b 11=( C )A.111B.112C.1011D.1112解析:依题意有n a 1+a 2+…+a n =12n +1,即前n 项和S n =n (2n +1)=2n 2+n , 当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=4n -1,a 1=3满足该式. 则a n =4n -1,b n =a n +14=n . 因为1b n b n +1=1n (n +1)=1n -1n +1,所以1b 1b 2+1b 2b 3+…+1b 10b 11=1-12+12-13+…+110-111=1011.5.(2019·华中师大联盟质量测评)在数列{a n }中,已知a 1=3,且数列{a n +(-1)n }是公比为2的等比数列,对于任意的n ∈N *,不等式a 1+a 2+…+a n ≥λa n +1恒成立,则实数λ的取值范围是( C )A.⎝ ⎛⎦⎥⎤-∞,25B.⎝ ⎛⎦⎥⎤-∞,12 C.⎝ ⎛⎦⎥⎤-∞,23 D.(-∞,1]解析:由已知,a n +(-1)n =[3+(-1)1]·2n -1=2n ,∴a n =2n -(-1)n .当n 为偶数时,a 1+a 2+…+a n =(2+22+…+2n )-(-1+1-…+1)=2n +1-2,a n +1=2n +1-(-1)n +1=2n +1+1,由a 1+a 2+…+a n ≥λa n +1,得λ≤2n +1-22n +1+1=1-32n +1+1对n ∈N *恒成立,∴λ≤23;当n 为奇数时,a 1+a 2+…+a n =(2+22+…+2n )-(-1+1-…+1-1)=2n +1-1,a n +1=2n +1-(-1)n +1=2n +1-1, 由a 1+a 2+…+a n ≥λa n +1得, λ≤2n +1-12n +1-1=1对n ∈N *恒成立, 综上可知λ≤23.6.(2019·衡水质检)中国古代数学有着很多令人惊叹的成就.北宋沈括在《梦溪笔谈》卷十八《技艺》篇中首创隙积术,隙积术意即:将木桶一层层堆放成坛状,最上一层长有a 个,宽有b 个,共计ab 个木桶,每一层长宽各比上一层多一个,共堆放n 层,设最底层长有c 个,宽有d 个,则共计有木桶n [(2a +c )b +(2c +a )d +(d -b )]6个.假设最上层有长2宽1共2个木桶,每一层的长宽各比上一层多一个,共堆放15层,则木桶的个数为1_360.解析:各层木桶长与宽的木桶数自上而下组成一等差数列,且公差为1,根据题意得,a =2,b =1,c =2+14=16,d =1+14=15,n =15,则木桶的个数为15[(2×2+16)×1+(2×16+2)×15+(15-1)]6=1 360(个). 7.(2019·安阳模拟)已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=4n -1.解析:由已知得b 1=a 2=-3,q =-4, ∴b n =(-3)×(-4)n -1,∴|b n |=3×4n -1, 即{|b n |}是以3为首项,4为公比的等比数列,∴|b 1|+|b 2|+…+|b n |=3(1-4n )1-4=4n-1.8.(2019·海口调研)设数列{a n }的前n 项和为S n ,且a 1=1,a n +a n +1=12n (n =1,2,3,…),则S 2n +3=43⎝⎛⎭⎪⎫1-14n +2.解析:依题意得S 2n +3=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2n +2+a 2n +3)=1+14+116+…+14n +1=1-14n +21-14=43⎝ ⎛⎭⎪⎫1-14n +2. 9.(2019·广东潮州模拟)已知S n 为数列{a n }的前n 项和,a n =2·3n -1(n ∈N *),若b n =a n +1S n S n +1,则b 1+b 2+…+b n =12-13n +1-1.解析:因为a n +1a n=2·3n2·3n -1=3,且a 1=2,所以数列{a n }是以2为首项,3为公比的等比数列, 所以S n =2(1-3n )1-3=3n-1,又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1,所以b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1S 1-1S 2+⎝ ⎛⎭⎪⎫1S 2-1S 3+…+⎝ ⎛⎭⎪⎫1S n -1S n +1=1S 1-1S n +1=12-13n +1-1. 10.(2019·潍坊模拟)若数列{a n }的前n 项和S n 满足S n =2a n -λ(λ>0,n ∈N *).(1)证明数列{a n }为等比数列,并求a n ;(2)若λ=4,b n =⎩⎪⎨⎪⎧a n ,n 为奇数,log 2a n ,n 为偶数(n ∈N *),求数列{b n }的前2n 项和T 2n .解:(1)∵S n =2a n -λ,当n =1时,得a 1=λ, 当n ≥2时,S n -1=2a n -1-λ,∴S n -S n -1=2a n -2a n -1, 即a n =2a n -2a n -1,∴a n =2a n -1,∴数列{a n }是以λ为首项,2为公比的等比数列, ∴a n =λ2n -1.(2)∵λ=4,∴a n =4·2n -1=2n +1,∴b n =⎩⎪⎨⎪⎧2n +1,n 为奇数,n +1,n 为偶数,∴T 2n =22+3+24+5+26+7+…+22n +2n +1 =(22+24+…+22n )+(3+5+…+2n +1) =4-4n ·41-4+n (3+2n +1)2 =4n +1-43+n (n +2), ∴T 2n =4n +13+n 2+2n -43.11.(2019·江西百校联盟联考)已知数列{a n }的前n 项和为S n ,数列⎩⎨⎧⎭⎬⎫S n n 是公差为1的等差数列,且a 2=3,a 3=5. (1)求数列{a n }的通项公式;(2)设b n =a n ·3n ,求数列{b n }的前n 项和T n . 解:(1)由题意,得S nn =a 1+n -1, 即S n =n (a 1+n -1),所以a 1+a 2=2(a 1+1),a 1+a 2+a 3=3(a 1+2),且a 2=3,a 3=5. 解得a 1=1,所以S n =n 2,所以当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1, 又n =1时也满足,故a n =2n -1. (2)由(1)得b n =(2n -1)·3n ,所以T n =1×3+3×32+…+(2n -1)·3n , 则3T n =1×32+3×33+…+(2n -1)·3n +1.∴T n -3T n =3+2×(32+33+…+3n )-(2n -1)·3n +1,则-2T n =3+2×32-3n ×31-3-(2n -1)·3n +1=3n +1-6+(1-2n )·3n +1=(2-2n )·3n +1-6,故T n =(n -1)·3n +1+3.12.(2019·贵阳一模)已知数列{a n }的前n 项和是S n ,且S n +12a n =1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =log 13(1-S n +1)(n ∈N *),令T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n .解:(1)当n =1时,a 1=S 1,由S 1+12a 1=1,得a 1=23, 当n ≥2时,S n =1-12a n ,S n -1=1-12a n -1, 则S n -S n -1=12(a n -1-a n ),即a n =12(a n -1-a n ),所以a n =13a n -1(n ≥2). 故数列{a n }是以23为首项,13为公比的等比数列.故a n =23·⎝ ⎛⎭⎪⎫13n -1=2·⎝ ⎛⎭⎪⎫13n (n ∈N *). (2)因为1-S n =12a n =⎝ ⎛⎭⎪⎫13n .所以b n =log 13 (1-S n +1)=log 13⎝ ⎛⎭⎪⎫13n +1=n +1,因为1b n b n +1=1(n +1)(n +2)=1n +1-1n +2,所以T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2=12-1n +2=n 2(n +2).13.(2019·湖北四地七校联考)数列{a n }满足a 1=1,na n +1=(n +1)a n+n (n +1),且b n =a n cos 2n π3,记S n 为数列{b n }的前n 项和,则S 24=( D )A.294B.174C.470D.304解析:∵na n +1=(n +1)a n +n (n +1),∴a n +1n +1-a nn=1,∴数列⎩⎨⎧⎭⎬⎫a n n 是公差与首项都为1的等差数列.∴a nn =1+(n -1)×1,可得a n =n 2. ∵b n =a n cos 2n π3,∴b n =n 2cos 2n π3, 令n =3k -2,k ∈N *,则b 3k -2=(3k -2)2cos 2(3k -2)π3=-12(3k -2)2,k ∈N *, 同理可得b 3k -1=-12(3k -1)2,k ∈N *, b 3k =(3k )2,k ∈N *.∴b 3k -2+b 3k -1+b 3k =-12(3k -2)2-12(3k -1)2+(3k )2=9k -52,k ∈N *,则S 24=9×(1+2+…+8)-52×8=304.14.(2019·衡水联考)已知数列{a n }与{b n }的前n 项和分别为S n ,T n ,且a n >0,6S n =a 2n +3a n ,n ∈N *,b n =2a n(2a n -1)(2a n +1-1),若∀n ∈N *,k >T n恒成立,则k 的最小值是( B )A.17B.149C.49D.8441解析:当n =1时,6a 1=a 21+3a 1, 解得a 1=3或a 1=0. 由a n >0,得a 1=3.由6S n =a 2n +3a n ,得6S n +1=a 2n +1+3a n +1. 两式相减得6a n +1=a 2n +1-a 2n +3a n +1-3a n .所以(a n +1+a n )(a n +1-a n -3)=0. 因为a n >0,所以a n +1+a n >0,a n +1-a n =3. 即数列{a n }是以3为首项,3为公差的等差数列, 所以a n =3+3(n -1)=3n .所以b n =2a n (2a n -1)(2a n +1-1)=8n (8n -1)(8n +1-1)=17⎝ ⎛⎭⎪⎫18n -1-18n +1-1. 所以T n =17⎝ ⎛ 18-1-182-1+182-1-183-1+…+18n -1⎭⎪⎫-18n +1-1=17⎝ ⎛⎭⎪⎫17-18n +1-1<149. 要使∀n ∈N *,k >T n 恒成立,只需k ≥149.故选B.15.设f (x )=4x4x +2,若S =f ⎝ ⎛⎭⎪⎫12 017+f ⎝ ⎛⎭⎪⎫22 017+…+f ⎝ ⎛⎭⎪⎫2 0162 017,则S =1_008.解析:∵f (x )=4x4x +2,∴f (1-x )=41-x 41-x +2=22+4x,∴f (x )+f (1-x )=4x 4x +2+22+4x=1.S =f ⎝ ⎛⎭⎪⎫12 017+f ⎝ ⎛⎭⎪⎫22 017+…+f ⎝ ⎛⎭⎪⎫2 0162 017,①S =f ⎝ ⎛⎭⎪⎫2 0162 017+f ⎝ ⎛⎭⎪⎫2 0152 017+…+f ⎝ ⎛⎭⎪⎫12 017,②①+②,得2S =⎣⎢⎡⎦⎥⎤f ⎝⎛⎭⎪⎫12 017+f ⎝⎛⎭⎪⎫2 0162 017+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫22 017+f ⎝ ⎛⎭⎪⎫2 0152 017+…+ ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫2 0162 017+f ⎝ ⎛⎭⎪⎫12 017=2 016, ∴S =2 0162=1 008.16.已知数列{a n }的首项a 1=3,前n 项和为S n ,a n +1=2S n +3,n ∈N *. (1)求数列{a n }的通项公式.(2)设b n =log 3a n ,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n ,并证明:13≤T n <34.解:(1)由a n +1=2S n +3,得a n =2S n -1+3(n ≥2), 两式相减得a n +1-a n =2(S n -S n -1)=2a n , 故a n +1=3a n (n ≥2),所以当n ≥2时,{a n }是以3为公比的等比数列. 因为a 2=2S 1+3=2a 1+3=9,a 2a 1=3,所以{a n }是首项为3,公比为3的等比数列,a n =3n . (2)a n =3n ,故b n =log 3a n =log 33n =n ,b n a n =n3n =n ·⎝ ⎛⎭⎪⎫13n , T n =1×13+2×⎝ ⎛⎭⎪⎫132+3×⎝ ⎛⎭⎪⎫133+…+n ×⎝ ⎛⎭⎪⎫13n ,①13T n =1×⎝ ⎛⎭⎪⎫132+2×⎝ ⎛⎭⎪⎫133+3×⎝ ⎛⎭⎪⎫134+…+(n -1)×⎝ ⎛⎭⎪⎫13n +n ×⎝ ⎛⎭⎪⎫13n +1.②①-②,得23T n =13+⎝ ⎛⎭⎪⎫132+⎝ ⎛⎭⎪⎫133+…+⎝ ⎛⎭⎪⎫13n -n ×⎝ ⎛⎭⎪⎫13n +1=13-⎝ ⎛⎭⎪⎫13n +11-13-n ×⎝ ⎛⎭⎪⎫13n +1=12-⎝⎛⎭⎪⎫32+n ⎝ ⎛⎭⎪⎫13n +1,所以T n =34-12⎝ ⎛⎭⎪⎫32+n ⎝ ⎛⎭⎪⎫13n.因为⎝ ⎛⎭⎪⎫32+n ⎝ ⎛⎭⎪⎫13n >0,所以T n <34. 又因为T n +1-T n =n +13n +1>0,所以数列{T n }单调递增,所以(T n )min =T 1=13,所以13≤T n <34.。
课时作业33 数列的综合应用1.已知数列{a n }为等差数列,且满足OA →=a 3OB →+a 2 015OC →,其中点A ,B ,C 在一条直线上,点O 为直线AB 外一点,记数列{a n }的前n 项和为S n ,则S 2 017的值为( A )A.2 0172 B.2 017 C.2 018 D.2 015解析:因为点A ,B ,C 在一条直线上,所以a 3+a 2 015=1,则S 2 017=2 017(a 1+a 2 017)2=2 017(a 3+a 2 015)2=2 0172,故选A. 2.某制药厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产n 年的累计产量为f (n )=13(n +1)(n +2)(2n +3)吨,但如果年产量超过130吨,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是( C )A.5年B.6年C.7年D.8年解析:由题意知第一年产量为a 1=13×2×3×5=10; 以后各年产量分别为a n =f (n )-f (n -1)=13(n +1)(n +2)(2n +3)-13n ·(n +1)(2n +1)=2(n +1)2(n ∈N *), 令2(n +1)2≤130,所以1≤n ≤65-1, 所以1≤n ≤7.故最长的生产期限为7年.3.定义:若数列{a n }对任意的正整数n ,都有|a n +1|+|a n |=d (d 为常数),则称{a n }为“绝对和数列”,d 叫作“绝对公和”.在“绝对和数列”{a n }中,a 1=2,绝对公和为3,则其前2 017项的和S 2 017的最小值为( C )A.-2 017B.-3 014C.-3 022D.3 032解析:依题意,要使其前2 017项的和S 2 017的值最小,只需每一项都取最小值即可.因为|a n +1|+|a n |=3,所以有-a 3-a 2=-a 5-a 4=…=-a 2 017-a 2 016=3,即a 3+a 2=a 5+a 4=…=a 2 017+a 2 016=-3,所以S 2 017的最小值为2+2 017-12×(-3)=-3 022,故选C. 4.设等比数列{a n }的公比为q ,其前n 项之积为T n ,并且满足条件:a 1>1,a 2 015a 2 016>1,a 2 015-1a 2 016-1<0.给出下列结论:(1)0<q <1;(2)a 2 015a 2017-1>0;(3)T 2 016的值是T n 中最大的;(4)使T n >1成立的最大自然数等于4 030.其中正确的结论为( C )A.(1)(3)B.(2)(3)C.(1)(4)D.(2)(4)解析:由a 2 015-1a 2 016-1<0可知a 2 015<1或a 2 016<1.如果a 2 015<1,那么a 2 016>1, 若a 2 015<0,则q <0;又∵a 2 016=a 1q 2 015,∴a 2 016应与a 1异号, 即a 2 016<0,这与假设矛盾,故q >0.若q ≥1,则a 2 015>1且a 2 016>1,与推出的结论矛盾,故0<q <1,故(1)正确.又a 2 015a 2 017=a 22 016<1,故(2)错误.由结论(1)可知a 2 015>1,a 2 016<1,故数列从第 2 016项开始小于1,则T 2 015最大,故(3)错误.由结论(1)可知数列从第2 016项开始小于1,而T n =a 1a 2a 3…a n ,故当T n =(a 2 015)n 时,求得T n >1对应的自然数为4 030,故(4)正确.5.(2019·太原模拟)已知数列{a n }中,a 1=0,a n -a n -1-1=2(n -1)(n∈N *,n ≥2),若数列{b n }满足b n =n ·a n +1+1·⎝ ⎛⎭⎪⎫811n -1,则数列{b n }的最大项为第6项.解析:由a 1=0,且a n -a n -1-1=2(n -1)(n ∈N *,n ≥2),得a n -a n -1=2n -1(n ≥2),则a 2-a 1=2×2-1,a 3-a 2=2×3-1,a 4-a 3=2×4-1,…,a n -a n -1=2n -1(n ≥2),以上各式累加得a n =2(2+3+…+n )-(n -1)=2×(n +2)(n -1)2-n +1=n 2-1(n ≥2),当n =1时,上式仍成立,所以b n =n ·a n +1+1·⎝ ⎛⎭⎪⎫811n -1=n ·(n +1)2·⎝ ⎛⎭⎪⎫811n -1=(n 2+n )·⎝ ⎛⎭⎪⎫811n -1(n ∈N *).由⎩⎪⎨⎪⎧b n ≥b n -1,b n ≥b n +1,得 ⎩⎪⎨⎪⎧(n 2+n )·⎝ ⎛⎭⎪⎫811n -1≥(n 2-n )·⎝⎛⎭⎪⎫811n -2,(n 2+n )·⎝ ⎛⎭⎪⎫811n -1≥(n 2+3n +2)·⎝ ⎛⎭⎪⎫811n ,解得163≤n ≤193. 因为n ∈N *,所以n =6,所以数列{b n }的最大项为第6项.6.将正整数12分解成两个正整数的乘积有1×12,2×6,3×4三种,其中3×4是这三种分解中两数差的绝对值最小的,我们称3×4为12的最佳分解.当p ×q (p ≤q 且p ,q ∈N *)是正整数n 的最佳分解时,我们定义函数f (n )=q -p ,例如f (12)=4-3=1,数列{f (3n )}的前100项和为350-1.解析:当n 为偶数时,f (3n )=0;当n 为奇数时,f (3n )=3n +12-3n -12,因此数列{f (3n )}的前100项和为31-30+32-31+…+350-349=350-1.7.(2019·长沙、南昌联考)已知数列{a n }的前n 项和为S n ,且满足:a 1=1,a n >0,a 2n +1=4S n +4n +1(n ∈N *),若不等式4n 2-8n +3<(5-m )2n ·a n 对任意的n ∈N *恒成立,则整数m 的最大值为( B )A.3B.4C.5D.6解析:当n ≥2时,⎩⎪⎨⎪⎧a 2n +1=4S n +4n +1,a 2n =4S n -1+4(n -1)+1,两式相减得a 2n +1-a 2n =4a n +4, 即a 2n +1=a 2n +4a n +4=(a n +2)2,又a n >0,所以a n +1=a n +2(n ≥2). 对a 2n +1=4S n +4n +1,令n =1,可得a 22=4a 1+4+1=9, 所以a 2=3,则a 2-a 1=2,所以数列{a n }是以1为首项,2为公差的等差数列, 故a n =2n -1.因为4n 2-8n +3=(2n -1)(2n -3),n ∈N *,2n -1>0,所以不等式4n 2-8n +3<(5-m )2n·a n 等价于5-m >2n -32n .记b n =2n -32n ,则b n +1b n=2n -12n +12n -32n =2n -14n -6,当n ≥3时,b n +1b n <1,又b 1=-12,b 2=14,b 3=38, 所以(b n )max =b 3=38. 故5-m >38,得m <378, 所以整数m 的最大值为4.8.(2019·南昌调研)已知正项数列{a n }的前n 项和为S n ,∀n ∈N *,2S n=a 2n +a n .令b n =1a na n +1+a n +1a n,设{b n }的前n 项和为T n ,则在T 1,T 2,T 3,…,T 100中有理数的个数为9.解析:∵2S n =a 2n +a n ,① ∴2S n +1=a 2n +1+a n +1,②②-①,得2a n +1=a 2n +1+a n +1-a 2n -a n ,a 2n +1-a 2n -a n +1-a n =0,(a n +1+a n )(a n +1-a n -1)=0.又∵{a n }为正项数列,∴a n +1-a n -1=0, 即a n +1-a n =1.在2S n =a 2n +a n 中,令n =1,可得a 1=1.∴数列{a n }是以1为首项,1为公差的等差数列. ∴a n =n ,∴b n =1n n +1+(n +1)n=(n +1)n -n n +1[n n +1+(n +1)n ][(n +1)n -n n +1] =(n +1)n -n n +1n (n +1)=1n -1n +1,∴T n =1-12+12-13+…+1n -1-1n +1n -1n +1=1-1n +1, 要使T n 为有理数,只需1n +1为有理数, 令n +1=t 2,∵1≤n ≤100,∴n =3,8,15,24,35,48,63,80,99,共9个数. ∴T 1,T 2,T 3,…,T 100中有理数的个数为9.9.(2019·福建漳州模拟)已知数列{a n }满足na n -(n +1)·a n -1=2n 2+2n (n =2,3,4,…),a 1=6.(1)求证:⎩⎨⎧⎭⎬⎫a n n +1为等差数列,并求出{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,求证:S n <512.解:(1)由na n -(n +1)a n -1=2n 2+2n (n =2,3,4,…),a 1=6,可得a nn +1-a n -1n =2,a 11+1=3,则⎩⎨⎧⎭⎬⎫a n n +1是首项为3,公差为2的等差数列,可得a n n +1=3+2(n -1)=2n +1,则a n =(n +1)(2n +1)(n ∈N *).(2)证明:由1(n +1)(2n +1)<12n (n +1)=12⎝ ⎛⎭⎪⎫1n -1n +1, 可得数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和S n =1a 1+1a 2+…+1a n≤16+12×⎝ ⎛⎭⎪⎫12-13+13-14+…+1n -1n +1=16+12⎝ ⎛⎭⎪⎫12-1n +1<16+14=512, 即S n <512.10.已知函数f (x )=⎝ ⎛⎭⎪⎫sin x2+cos x 22-1cos 2x 2-sin 2x2,函数y =f (x )-3在(0,+∞)上的零点按从小到大的顺序构成数列{a n }(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =3πa n(4n 2-1)(3n -2),求数列{b n }的前n 项和S n .解:(1)f (x )=⎝ ⎛⎭⎪⎫sin x2+cos x 22-1cos 2x 2-sin 2x2=sin xcos x =tan x , 由tan x =3及x >0得x =k π+π3(k ∈N ),数列{a n }是首项a 1=π3,公差d =π的等差数列,所以a n =π3+(n -1)π=n π-2π3.(2)b n =3πa n (4n 2-1)(3n -2)=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1.S n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1. 11.已知{a n }是公差不为0的等差数列,{b n }是等比数列,且a 1=b 1=1,a 2=b 2,a 5=b 3.(1)求数列{a n },{b n }的通项公式;(2)记S n =a 1b 1+a 2b 2+…+a nb n,是否存在m ∈N *,使得S m ≥3成立,若存在,求出m ,若不存在,请说明理由.解:(1)设数列{a n }的公差为d (d ≠0),数列{b n }的公比为q ,则由题意知⎩⎪⎨⎪⎧1+d =1·q ,1·q 2=1+4d ,∴d =0或d =2,∵d ≠0,∴d =2,q =3,∴a n =2n -1,b n =3n -1. (2)由(1)可知,S n =a 1b 1+a 2b 2+…+a n b n =11+331+532+…+2n -33n -2+2n -13n -1,13S n =131+332+533+…+2n -33n -1+2n -13n ,两式相减得,23S n =1+231+232+…+23n -1-2n -13n =1+23×1-⎝ ⎛⎭⎪⎫13n -11-13-2n -13n =2-2n +23n <2,∴S n <3.故不存在m ∈N *,使得S m ≥3成立.12.(2019·河南洛阳模拟)已知等差数列{a n }的公差d ≠0,且a 3=5,a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式;(2)设b n =1a 2n +4n -2,S n是数列{b n }的前n 项和,若对任意正整数n ,不等式2S n +(-1)n +1·a >0恒成立,求实数a 的取值范围.解:(1)因为a 3=5,a 1,a 2,a 5成等比数列,所以⎩⎪⎨⎪⎧a 1+2d =5,(a 1+d )2=a 1(a 1+4d ),解得a 1=1,d =2, 所以数列{a n }的通项公式为a n =2n -1. (2)因为b n =1a 2n +4n -2=1(2n -1)2+4n -2=14n 2-1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1, 所以S n =b 1+b 2+…+b n =12⎝ ⎛⎭⎪⎫1-13+12⎝ ⎛⎭⎪⎫13-15+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝ ⎛⎭⎪⎫1-12n +1, 依题意,对任意正整数n ,不等式1-12n +1+(-1)n +1a >0,当n 为奇数时,1-12n +1+(-1)n +1a >0即a >-1+12n +1,所以a>-23;当n 为偶数时,1-12n +1+(-1)n +1a >0即a <1-12n +1,所以a <45.所以实数a 的取值范围是⎝ ⎛⎭⎪⎫-23,45.。
课时作业2 命题及其关系、充分条件与必要条件1.命题“若a >b ,则a +c >b +c ”的否命题是( A ) A.若a ≤b ,则a +c ≤b +c B.若a +c ≤b +c ,则a ≤b C.若a +c >b +c ,则a >b D.若a >b ,则a +c ≤b +c解析:将条件、结论都否定.命题的否命题是“若a ≤b ,则a +c ≤b+c ”.2.(2019·江西九江十校联考)已知函数f (x )=⎩⎪⎨⎪⎧e x ,x ≥-1,ln (-x ),x <-1,则“x =0”是“f (x )=1”的( B )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:若x =0,则f (0)=e 0=1;若f (x )=1,则e x =1或ln(-x )=1,解得x =0或x =-e.故“x =0”是“f (x )=1”的充分不必要条件.3.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( D )A.都真B.都假C.否命题真D.逆否命题真解析:对于原命题:“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题:“若{x |ax 2+bx +c <0}≠∅,则抛物线y =ax 2+bx +c 的开口向下”是一个假命题,因为当不等式ax 2+bx +c <0的解集非空时,可以有a >0,即抛物线的开口可以向上,因此否命题也是假命题,故选D.4.(2019·河南郑州一模)下列说法正确的是( D ) A.“若a >1,则a 2>1”的否命题是“若a >1,则a 2≤1” B.“若am 2<bm 2,则a <b ”的逆命题为真命题 C.存在x 0∈(0,+∞),使3x 0>4x 0成立D.“若sin α≠12,则α≠π6”是真命题解析:对于选项A,“若a >1,则a 2>1”的否命题是“若a ≤1,则a 2≤1”,故选项A 错误;对于选项B,“若am 2<bm 2,则a <b ”的逆命题为“若a <b ,则am 2<bm 2”,因为当m =0时,am 2=bm 2,所以逆命题为假命题,故选项B 错误;对于选项C,由指数函数的图象知,对任意的x ∈(0,+∞),都有4x>3x,故选项C 错误;对于选项D,“若sin α≠12,则α≠π6”的逆否命题为“若α=π6,则sin α=12”,该逆否命题为真命题,所以原命题为真命题,故选D.5.(2019·江西鹰谭中学月考)设f (x )=x 2-4x (x ∈R ),则f (x )>0的一个必要不充分条件是( C )A.x <0B.x <0或x >4C.|x -1|>1D.|x -2|>3解析:依题意,f (x )>0⇔x 2-4x >0⇔x <0或x >4.又|x -1|>1⇔x -1<-1或x -1>1,即x <0或x >2,而{x |x <0或x >x |x <0或x >2},因此选C.6.(2019·山东日照联考)“m <0”是“函数f (x )=m +log 2x (x ≥1)存在零点”的( A )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当m <0时,由图象的平移变换可知,函数f (x )必有零点;当函数f (x )有零点时,m ≤0,所以“m <0”是“函数f (x )=m +log 2x (x ≥1)存在零点”的充分不必要条件,故选A.7.(2019·安徽两校阶段性测试)设a ∈R ,则“a =4”是“直线l 1:ax +8y -8=0与直线l 2:2x +ay -a =0平行”的( D )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:∵当a ≠0时,a 2=8a =-8-a⇒直线l 1与直线l 2重合,∴无论a取何值,直线l 1与直线l 2均不可能平行,当a =4时,l 1与l 2重合.故选D.8.(2019·山西太原模拟)已知a ,b 都是实数,那么“2a >2b ”是“a 2>b 2”的( D )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:充分性:若2a >2b , 则2a -b >1,∴a -b >0,∴a >b . 当a =-1,b =-2时,满足2a >2b , 但a 2<b 2,故由2a >2b 不能得出a 2>b 2, 因此充分性不成立. 必要性:若a 2>b 2,则|a |>|b |.当a =-2,b =1时,满足a 2>b 2,但2-2<21, 即2a <2b ,故必要性不成立.综上,“2a >2b ”是“a 2>b 2”的既不充分也不必要条件,故选D. 9.(2017·天津卷)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( A )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 解析:∵⎪⎪⎪⎪⎪⎪θ-π12<π12⇔-π12<θ-π12<π12⇔0<θ<π6,sin θ<12⇔θ∈⎝⎛⎭⎪⎫2k π-7π6,2k π+π6,k ∈Z ,⎝⎛⎭⎪⎫0,π6⎝⎛⎭⎪⎫2k π-7π6,2k π+π6,k ∈Z ,∴“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件. 10.(2019·江西红色七校模拟)在△ABC 中,角A ,B 均为锐角,则“cos A >sin B ”是“△ABC 为钝角三角形”的( C )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:因为cos A >sin B ,所以cos A >cos ⎝ ⎛⎭⎪⎫π2-B ,因为角A ,B 均为锐角,所以π2-B 为锐角, 又因为余弦函数y =cos x 在(0,π)上单调递减, 所以A <π2-B ,所以A +B <π2, 在△ABC 中,A +B +C =π,所以C >π2, 所以△ABC 为钝角三角形;若△ABC 为钝角三角形,角A ,B 均为锐角, 则C >π2,所以A +B <π2,所以A <π2-B ,所以cos A >cos ⎝ ⎛⎭⎪⎫π2-B ,即cos A >sin B .故“cos A >sin B ”是“△ABC 为钝角三角形”的充要条件. 11.设向量a =(sin2θ,cos θ),b =(cos θ,1),则“a ∥b ”是“tan θ=12成立”的必要不充分__条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)解析:a ∥b ⇔sin2θ=cos 2θ⇔cos θ=0或2sin θ=cos θ⇔cos θ=0或tan θ=12,所以“a ∥b ”是“tan θ=12成立”的必要不充分条件.12.已知条件p :2x 2-3x +1≤0,条件q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是⎣⎢⎡⎦⎥⎤0,12 . 解析:方法一 命题p 为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12≤x ≤1,命题q 为{x |a ≤x ≤a +1}.綈p 对应的集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >1或x <12.綈q 对应的集合B ={x |x >a +1或x <a }.∵綈p 是綈q 的必要不充分条件,∴⎩⎨⎧ a +1>1,a ≤12或⎩⎨⎧ a +1≥1,a <12,∴0≤a ≤12.方法二 命题p :A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12≤x ≤1,命题q :B ={x |a ≤x ≤a +1}. ∵綈p 是綈q 的必要不充分条件, ∴p 是q 的充分不必要条件,即A B ,∴⎩⎨⎧a +1≥1,a <12或⎩⎨⎧a +1>1,a ≤12,∴0≤a ≤12.13.已知p :函数f (x )=|x +a |在(-∞,-1)上是单调函数,q :函数g (x )=log a (x +1)(a >0,且a ≠1)在(-1,+∞)上是增函数,则綈p 是q 的( C )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:易知p 成立⇔a ≤1,q 成立⇔a >1,所以綈p 成立⇔a >1,则綈p 是q 的充要条件,故选C.14.(2019·昆明诊断)下列选项中,说法正确的是( D ) A.若a >b >0,则ln a <ln bB.向量a =(1,m ),b =(m,2m -1)(m ∈R )垂直的充要条件是m =1C.命题“∀n ∈N *,3n >(n +2)·2n -1”的否定是“∀n ∈N *,3n ≥(n +2)·2n -1”D.已知函数f (x )在区间[a ,b ]上的图象是连续不断的,则命题“若f (a )·f (b )<0,则f (x )在区间(a ,b )内至少有一个零点”的逆命题为假命题解析:∵函数y =ln x (x >0)是增函数,∴若a >b >0,则ln a >ln b ,故A 错误;若a ⊥b ,则m +m (2m -1)=0,解得m =0,故B 错误;命题“∀n ∈N *,3n >(n +2)·2n -1”的否定是“∃n ∈N *,3n ≤(n +2)·2n -1”,故C 错误;命题“若f (a )·f (b )<0,则f (x )在区间(a ,b )内至少有一个零点”的逆命题“若f (x )在区间(a ,b )内至少有一个零点,则f (a )·f (b )<0”是假命题,如函数f (x )=x 2-2x -3在区间[-2,4]上的图象连续不断,且在区间(-2,4)内有两个零点,但f (-2)·f (4)>0,D 正确.15.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12<2x<8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是(2,+∞)__.解析:A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12<2x<8,x ∈R ={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴AB ,∴m +1>3,即m >2.16.(2019·石家庄模拟)已知p :⎪⎪⎪⎪⎪⎪1-x -13≤2,q :x 2-2x +1-m 2≤0(m >0),且綈p 是綈q 的必要不充分条件,则实数m 的取值范围是[9,+∞)__.解析:法一:由⎪⎪⎪⎪⎪⎪1-x -13≤2,得-2≤x ≤10, ∴綈p 对应的集合为{x |x >10或x <-2}, 设A ={x |x >10或x <-2}. 由x 2-2x +1-m 2≤0(m >0), 得1-m ≤x ≤1+m (m >0),∴綈q 对应的集合为{x |x >1+m 或x <1-m ,m >0}, 设B ={x |x >1+m 或x <1-m ,m >0}. ∵綈p 是綈q 的必要不充分条件,∴B A ,∴⎩⎪⎨⎪⎧m >0,1-m <-2,1+m ≥10或⎩⎪⎨⎪⎧m >0,1-m ≤-2,1+m >10,解得m ≥9,∴实数m 的取值范围为[9,+∞). 法二:∵綈p 是綈q 的必要不充分条件, ∴q 是p 的必要不充分条件. 即p 是q 的充分不必要条件, 由x 2-2x +1-m 2≤0(m >0), 得1-m ≤x ≤1+m (m >0).∴q 对应的集合为{x |1-m ≤x ≤1+m ,m >0}, 设M ={x |1-m ≤x ≤1+m ,m >0},又由⎪⎪⎪⎪⎪⎪1-x -13≤2,得-2≤x ≤10, ∴p 对应的集合为{x |-2≤x ≤10}, 设N ={x |-2≤x ≤10}. 由p 是q 的充分不必要条件知,N M ,∴⎩⎪⎨⎪⎧m >0,1-m <-2,1+m ≥10或⎩⎪⎨⎪⎧m >0,1-m ≤-2,1+m >10,解得m ≥9.∴实数m 的取值范围为[9,+∞).。