3环流与旋度和格林定理与亥姆霍兹定理
- 格式:doc
- 大小:36.00 KB
- 文档页数:2
例16 求V3解由上节例中可知因此根据(1.41c)式式中代人,在r#r',即及式0处V)J_ = A_ A^o R R3 V但由上式不能确定V2j在r-/点,即7?=0点的值,为此,计算▽■募V V 5以上应用了髙斯定理将体积分转换为面积分。
如果以上体积分中不包含/点,则在体积分体积中R^O,体积分的被积函数为零,积分也为零;如果以上体积分中包含r1点,可将积分体积设为中心在点,以a为半径的球,则在该球面上半径R=a为常数,X的方向与球面的法线方向相同,因此也就是—忐去=0对于三维<函数8(R)^S(r-r')^S(x~x' )S(y~y' )5(z—/),有S⑻=0 穴关0卜dv C比较可知-忐去4⑻即去=—inS(R)(1.4-12)去)dV =fl▽■▽I:-7▽ 2^dV=_V亥姆霣兹定理:若矢量场f•在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则当矢量场的散度及旋度给定后,该矢量场可表示为F(r) =- ▽0(r) +V X A(r) 式中V 证根据5函数的性质F(r) = JJ - r)dW(1.6-3)(1-6-4)(1- 6-5)(1.6-6) 将= 代人上式,V考虑到微分运算与积分运算的变量不同,由上式可得v^v\AV , V利用矢量恒等式,VXVX4=W-A-V !A,上式可写为 F(r> 二—▽▽ ■i^dW) + V X V X j^d^) V V即F(r) =—▽*+▽ x A 0(r) = V •仲)=v X i^VT dr > V(1.6-3)式得证。
将(1.6-8)和(1.6-9)式中的徽分与积分运算交换次序,分别得 中⑺:O=認▽ xV =—W X vVFC^ x v ,T^VT dv ,二 a厦,V V r X F<〆) 式中(1.6-7〉(1.6-8)(1.6-9〉V- M s(1.6-10)(1.6-11)打〆).v (t , \-|)dy ,A(r) = ▽ X<1.6-10)和(1.6-11)式的体积分是无限空间区域,封闭面积分是包围无限大空间区域的无限大的曲面。
《电磁场与电磁波》考试大纲课程类别:专业必修课课程编号:适用专业:电子信息科学与技术专业一、考试大纲说明1、课程的性质、目的与任务《电磁场与电磁波》是高等学校电子与电气信息类专业的一门重要技术基础课程,是所有强电专业和弱电专业的必修课程,也是信号与系统、通讯原理、电视机原理和信息光学等后续课程的基础。
通过本门课程的学习要求达到以下目的:(1)掌握电磁场与电磁波的基本理论知识、基本分析方法和初步应用,具有一定的分析和解决实际问题的能力,并为学习后继课程打下必要的基础。
(2)树立严肃认真的科学作风和理论联系实际的工程观点,培养科学思维能力、分析计算能力、实验研究能力和科学归纳能力。
(3)了解电磁理论发展史上某些重大的发现和发明过程中的科学思想和实验方法,了解电磁理论的发展与其它学科的关系等。
2、考试目标和要求(1)了解有关电磁现象和学科历史、概念和名词术语、电磁量及其单位、实验和规律、公式和图线。
(2)能对重要的电磁概念、模型、定理、定律的建立过程、物理意义、适用范围、成立的条件做出解释和说明。
能对同一电磁概念、规律等的不同表达形式(文字、数学解析式、图线等)进行简单的直接转换。
能根据对基本概念、定律、定理、公式的理解进行一些简单的推断,并会对典型问题做出定性的解释和定量计算等;(3)能够用所学的基本原理和概念处理新的问题。
(4)能将几个知识点多次应用于分析、判断与讨论之中,解决包含多个知识点、转几个弯子的具体问题或对复杂的具体电磁问题进行分类和解释,并从中找出解决问题的一般规律。
3、有关事项(1)考核形式:闭卷考试(2)考试时间:120分钟(3)评分方法:教师密封评卷(4)试卷难易度:较小难度20%,中等难度60%,较大难度20%(5)题型题量和分数分配:填空题20%,选择题20%,计算题60%4、教学参考书【1】Bhag Singh Guru, Hüseyin R. Hiziroglu 著.电磁场与电磁波. 周克定等译. 北京:机械工业出版社,2002.【2】杨儒贵. 电磁场与电磁波. 北京:高等教育出版社,2003.【3】杨显清,王园,赵家升. 电磁场与电磁波(第4版)教学指导书. 北京:高等教育出版社,2006.【4】杨儒贵. 电磁场与电磁波教学指导书. 北京:高等教育出版社,2003.【5】王家礼. 电磁场与电磁波学习指导. 西安:西安电子科技大学出版社,2002.二、考试内容和具体要求(一)矢量分析1、考试内容:矢量代数和正交坐标系、等值面与梯度和通量与散度、环流与旋度和格林定理与亥姆霍兹定理。
亥姆亥兹定理
亥姆霍兹定理是物理力学中的一个重要定理,它被广泛应用于液体力学、电磁学、热力学等领域。
该定理是由德国科学家赫尔曼·冯·亥姆霍兹(Hermann von Helmholtz)在19世纪提出的。
亥姆霍兹定理分为两个部分,即“法向分量”与“切向分量”。
1.法向分量:在数学上,亥姆霍兹定理的“法向分量”又称为散度定理。
该定理描述了一个有限多面体表面积分等于该多面体内部的体积分的散度。
换言之,对于一个向量场V,其在有限多面体Ω的表面的通量等于V在Ω内的散度的体积积分。
2.切向分量:亥姆霍兹定理的另一部分是切向分量,也称作旋度定理。
该定理描述了一个矢量场在一个闭合曲面的切向通量与该矢量场在该曲面所围成的区域上的环向积分的关系。
也就是说,切向分量可以将矢量场的旋度与环向积分相联系。
以上信息仅供参考,可以查阅相关的物理书籍或者咨询专业人士,以获取更全面更准确的信息。
电磁场与电磁波总结第1章 场论初步一、矢量代数A •B =AB cos θA B ⨯=AB e AB sin θA •(B ⨯C ) = B •(C ⨯A ) = C •(A ⨯B ) A ⨯ (B ⨯C ) = B (A •C ) – C •(A •B ) 二、三种正交坐标系 1. 直角坐标系矢量线元 x y z =++l e e e d x y z矢量面元 =++S e e e x y z d dxdy dzdx dxdy 体积元 d V = dx dy dz单位矢量的关系 ⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y 2. 圆柱形坐标系矢量线元 =++l e e e z d d d dz ρϕρρϕl 矢量面元 =+e e z dS d dz d d ρρϕρρϕ 体积元 dV = ρ d ρ d ϕ d z 单位矢量的关系 ⨯=⨯⨯=e e e e e =e e e e zz z ρϕϕρρϕ3. 球坐标系矢量线元 d l = e r d r + e θ r d θ + e ϕ r sin θ d ϕ 矢量面元 d S = e r r 2sin θ d θ d ϕ 体积元 dv = r 2sin θ d r d θ d ϕ 单位矢量的关系 ⨯=⨯⨯=e e e e e =e e e e r r r θϕθϕϕθcos sin 0sin cos 0 001x r y z z A A A A A A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ϕϕϕϕϕsin cos sin sin cos cos cos cos sin sin sin cos 0x r y z A A A A A A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦θϕθϕθϕθθϕθϕθϕϕsin 0cos cos 0sin 010r r z A A A A A A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦θϕϕθθθθ三、矢量场的散度和旋度 1. 通量与散度=⋅⎰A S Sd Φ 0lim∆→⋅=∇⋅=∆⎰A S A A Sv d div v2. 环流量与旋度=⋅⎰A l ld Γ maxn 0rot =lim∆→⋅∆⎰A lA e lS d S3. 计算公式∂∂∂∇=++∂∂∂⋅A y x zA A A x y z11()∂∂∂∇=++∂∂∂⋅A zA A A z ϕρρρρρϕ 22111()(sin )sin sin ∂∂∂∇=++∂∂∂⋅A r A r A A r r r r ϕθθθθθϕx y z ∂∂∂∇⨯=∂∂∂e e e A x y z x y z A A A ∂∂∂∇⨯=∂∂∂e e e A z z z A A A ρϕρϕρρϕρ sin sin ∂∂∂∇⨯=∂∂∂e e e A r r zr r r A r A r A ρϕθθθϕθ 4. 矢量场的高斯定理与斯托克斯定理⋅=∇⋅⎰⎰A S A SV d dV⋅=∇⨯⋅⎰⎰A l A S lSd d四、标量场的梯度 1. 方向导数与梯度00()()lim∆→-∂=∂∆l P u M u M u llcos cos cos ∂∂∂∂=++∂∂∂∂P uu u ulx y zαβγ cos ∇⋅=∇e l u u θ grad ∂∂∂∂==+∂∂∂∂e e e +e n x y zu u u uu n x y z2. 计算公式∂∂∂∇=++∂∂∂e e e xy z u u uu x y z1∂∂∂∇=++∂∂∂e e e z u u u u z ρϕρρϕ 11sin ∂∂∂∇=++∂∂∂e e e r u u uu r r r zθϕθθ 五、无散场与无旋场1. 无散场 ()0∇⋅∇⨯=A =∇⨯F A2. 无旋场 ()0∇⨯∇=u =∇F u六、拉普拉斯运算算子 1. 直角坐标系22222222222222222222222222222222∂∂∂∇=++∇=∇+∇+∇∂∂∂∂∂∂∂∂∂∂∂∂∇=++∇=++∇=++∂∂∂∂∂∂∂∂∂A e e e x x y y z zy y y x x x z z z x y zu u u u A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212⎛⎫∂∂∂∂∇=++ ⎪∂∂∂∂⎝⎭∂∂⎛⎫⎛⎫∇=∇--+∇-++∇ ⎪ ⎪∂∂⎝⎭⎝⎭A e e e z z u u uu zA A A A A A A ϕρρρρϕϕϕρρρρρϕρρϕρρϕ3. 球坐标系22222222111sin sin sin ⎛⎫∂∂∂∂∂⎛⎫∇=++ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭u u uu r r r r r r θθθϕθϕ ⎪⎪⎭⎫⎝⎛∂∂+-∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂--∂∂+∇+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂---∇=∇ϕθθθϕθϕθθθθϕθθθθϕϕϕϕθθθϕθθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 222222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果矢量场F 在无限区域中处处是单值的,且其导数连续有界,则当矢量场的散度、旋度和边界条件(即矢量场在有限区域V ’边界上的分布)给定后,该矢量场F 唯一确定为()()()=-∇+∇⨯F r r A r φ其中 1()()4''∇⋅'='-⎰F r r r r V dV φπ1()()4''∇⨯'='-⎰F r A r r r V dV π第2章 电磁学基本规律一、麦克斯韦方程组 1. 静电场基本规律真空中方程:d ⋅=⎰SE S qεd 0⋅=⎰lE l 0∇⋅=E ρε 0∇⨯=E 场位关系:3''()(')'4'-=-⎰r r E r r r r V q dV ρπε =-∇E φ 01()()d 4π''='-⎰r r |r r |V V ρφε介质中方程:d ⋅=⎰D S Sqd 0⋅=⎰lE l ∇⋅=D ρ 0∇⨯=E极化:0=+D E P ε e 00(1)=+==D E E E r χεεεε 极化电荷:==⋅P e PS n n P ρ =-∇⋅P P ρ2. 恒定电场基本规律电荷守恒定律:0∂∇⋅+=∂J tρ传导电流: =J E σ 与运流电流:ρ=J v恒定电场方程:d 0⋅=⎰J S Sd 0l⋅=⎰E l 0∇⋅=J 0∇⨯E =3. 恒定磁场基本规律真空中方程:0 d ⋅=⎰B l lI μ d 0⋅=⎰SB S 0∇⨯=B J μ 0∇⋅=B场位关系:03()( )()d 4π ''⨯-'='-⎰J r r r B r r r VV μ =∇⨯B A 0 ()()d 4π'''='-⎰J r A r r r V V μ 介质中方程:d ⋅=⎰H l lId 0⋅=⎰SB S ∇⨯=H J 0∇⋅=B磁化:0=-BH M μ m 00(1)=+B H =H =H r χμμμμ 磁化电流:m =∇⨯J M ms n =⨯J M e4. 电磁感应定律d d ⋅=-⋅⎰⎰S E l B S ld dt ∂∇⨯=-∂BE t5. 全电流定律和位移电流全电流定律: d ()d ∂⋅=+⋅∂⎰⎰D H l J S l S t ∂∇⨯=+∂DH J t 位移电流: d =DJ d dt6. Maxwell Equationsd ()d d d d d 0∂⎧⋅=+⋅⎪∂⎪∂⎪⋅=-⋅⎪∂⎨⎪⋅=⎪⎪⋅=⎪⎩⎰⎰⎰⎰⎰⎰⎰D H J S B E S D S B S l S l SSV Sl t l t V d ρ 0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩D H J B E D B t t ρ ()() ()()0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩E H E H E E H t t εσμερμ 二、电与磁的对偶性e m e m e m e e m m e e m mm e 00∂∂⎫⎧∇⨯=-∇⨯=⎪⎪∂∂⎪⎪∂∂⎪⎪∇⨯=+∇⨯=--⎬⎨∂∂⎪⎪∇=∇=⎪⎪⎪⎪∇=∇=⎩⎭⋅⋅⋅⋅B D E H D B H J E J D B D B t t &t t ρρ m e e m ∂⎧∇⨯=--⎪∂⎪∂⎪∇⨯=+⇒⎨∂⎪∇=⎪⎪∇=⎩⋅⋅B E J D H J D B tt ρρ 三、边界条件 1. 一般形式12121212()0()()()0⨯-=⨯-=⋅-=⋅-=e E E e H H J e D D e B B n n S n Sn ρ2. 理想导体界面 和 理想介质界面111100⨯=⎧⎪⨯=⎪⎨⋅=⎪⎪⋅=⎩e E e H J e D e B n n Sn S n ρ 12121212()0()0()0()0⨯-=⎧⎪⨯-=⎪⎨⋅-=⎪⎪⋅-=⎩e E E e H H e D D e B B n n n n 第3章 静态场分析一、静电场分析1. 位函数方程与边界条件位函数方程: 220∇=-∇=ρφφε电位的边界条件:121212=⎧⎪⎨∂∂-=-⎪∂∂⎩s nn φφφφεερ 111=⎧⎪⎨∂=-⎪∂⎩s const nφφερ(媒质2为导体) 2. 电容定义:=qC φ两导体间的电容:=C q /U任意双导体系统电容求解方法:2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε 3. 静电场的能量N 个导体: 112==∑ne i i i W q φ 连续分布: 12=⎰e VW dV φρ 电场能量密度:12D E ω=⋅e二、恒定电场分析1. 位函数微分方程与边界条件位函数微分方程:20∇=φ边界条件:121212=⎧⎪⎨∂∂=⎪∂∂⎩nn φφφφεε 12()0⋅-=e J J n 1212[]0⨯-=J J e n σσ 2. 欧姆定律与焦耳定律欧姆定律的微分形式: =J E σ 焦耳定律的微分形式: =⋅⎰E J VP dV3. 任意电阻的计算2211d d 1⋅⋅====⋅⋅⎰⎰⎰⎰E l E l J SE SSSU R G Id d σ (L R =σS )4. 静电比拟法:C —— G ,ε —— σ2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε 2211d d d ⋅⋅===⋅⋅⎰⎰⎰⎰J S E SE lE lS S d I G Uσ三、恒定磁场分析1. 位函数微分方程与边界条件矢量位:2∇=-A J μ 12121211⨯⨯⨯A A e A A J n s μμ()=∇-∇=标量位:20m φ∇= 211221∂∂==∂∂m m m m n nφφφφμμ 2. 电感定义:d d ⋅⋅===⎰⎰B S A l SlL IIIψ=+i L L L3. 恒定磁场的能量 N 个线圈:112==∑Nm j j j W I ψ 连续分布:m 1d 2A J =⋅⎰V W V 磁场能量密度:m 12H B ω=⋅ 第4章 静电场边值问题的解一、边值问题的类型● 狄利克利问题:给定整个场域边界上的位函数值()=f s φ ● 纽曼问题:给定待求位函数在边界上的法向导数值()∂=∂f s nφ● 混合问题:给定边界上的位函数及其向导数的线性组合:2112()()∂==∂f s f s nφφ ● 自然边界:lim r r φ→∞=有限值二、唯一性定理静电场的惟一性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表面电荷分布)下,空间静电场被唯一确定。
如何理解亥姆霍兹定理亥姆霍兹定理(Helmholtz theorem)是一个基本的数学定理,它与向量场的分解和表示有关。
它是由德国物理学家赫尔曼·冯·亥姆霍兹于19世纪提出的,并以他的名字命名。
亥姆霍兹定理的核心内容是:任何连续可微的矢量场都可以分解为两个无旋矢量场和一个无散矢量场的和。
也就是说,一个向量场可以表示为其旋度和散度的线性叠加。
具体地说,设V为一个三维欧氏空间中的连续可微矢量场,其定义为V(x,y,z)=(Vx(x,y,z),Vy(x,y,z),Vz(x,y,z))。
亥姆霍兹定理可以表示为:V=-∇Φ+∇×A其中,Φ是一个标量势场(也称为无旋场),A是一个矢量势场(也称为无散场),∇是向量微分算子,∇Φ表示Φ的梯度(也称为梯度场),∇×A表示A的旋度(也称为旋度场)。
亥姆霍兹定理的重要性在于它将向量场分解为两个具有特定性质的子场。
无旋场的旋度为零,意味着其闭合环路的线积分为零,因此无旋场可用来描述势能场,如重力场和电场。
无散场的散度为零,意味着其电场线是连续的,无源的,而且电通量守恒。
这些性质在物理学中有着广泛的应用,如电磁学、流体力学、热传导等。
亥姆霍兹定理的证明利用了向量微积分和高等数学的相关知识,需要深入的数学基础。
具体证明可以参考高等数学或者数学物理学的教材。
亥姆霍兹定理的一个直接应用是麦克斯韦方程组的分解。
麦克斯韦方程组是电磁学的基本方程组,描述了电场和磁场的演化规律。
根据亥姆霍兹定理,电磁场可以分解为一个有电荷和电流产生的无散电场和一个无源的无旋磁场的叠加。
这种分解方便了对电磁现象的研究和应用,为电磁学理论奠定了良好的数学基础。