亥姆霍兹定理习题解答
- 格式:pptx
- 大小:17.02 KB
- 文档页数:1
一、选择题1、下列的矢量运算规律有错误的一项是:( B ) A 、θsin AB e B A n →→→=⨯ B 、→→⨯B A =→→⨯A BC 、)()()(→→→→→→→→→⋅-⋅=⨯⨯B A C C A B C B A D 、)()(→→→→→→⨯=⨯⋅A C B C B A2、选出下列的场中不属于矢量场的项:( C ) A 、电场 B 、磁场 C 、高度场 D 、力场3、关于梯度的性质下列说法不正确的是:( D ) A 、标量场的梯度是一个矢量场B 、在标量场中,在给定点沿任意方向的方向导数等于梯度在该方向上的投影C 、标量场中每一点M 处的梯度,垂直于过该点的等值面D 、标量场中每一点M 处的梯度,指向场减小的方向 4、关于矢量场的性质,下列说法有误的是:( A )A 、在矢量线上,任一点的法线方向都与该点的场矢量方向相同B 、静电场中的正电荷就是发出电场线的正通量源C 、磁感应强度B 在某一曲面S 上的面积分就是矢量B 通过该曲面的磁通量D 、漩涡源产生的矢量线是闭合曲线5、下列不属于电磁学三大实验定律的是:( A )A 、高斯定律B 、安培定律C 、库伦定律D 、法拉第电磁感应定律 6、关于电荷,下列描述不正确的是:( B ) A 、点电荷是电荷分布的一种极限情况 B 、实际上带电体上的电荷分布是连续的C 、宏观上我们常用电荷密度来描述电荷的分布情况D 、电荷不能被创造也不能被消灭只能转移 7、关于静电场,下列说法中 (1)由空间位置固定的电荷产生 (2)由电量不随时间变化的电荷产生 (3)基本物理量是电场强度 (4)性质由其散度和旋度来描述 (5)基本实验定律是库仑定律 下列判断正确的是:( D )A 、都不对B 、有一个错C 、有三个错D 、全对 8、0E ερ=⋅∇→是高斯定理的微分形式,它表明任意一点电场强度的( C )与该处的电荷密度有关。
A 、梯度B 、旋度C 、散度D 、环流9、静磁场的磁感应强度在闭合曲线上的环量等于闭合曲线交链的恒定电流的代数和与( B )的乘积。
复习提纲第一章光和光的传播说明:灰色表示错误。
§1、光和光学判断选择练习题:1. 用单色仪获得的每条光谱线只含有唯一一个波长;2. 每条光谱线都具有一定的谱线宽度;3. 人眼视觉的白光感觉不仅与光谱成分有关,也与视觉生理因素有关;4. 汞灯的光谱成分与太阳光相同,因而呈现白光的视觉效果;§2、光的几何传播定律判断选择练习题:1. 光入射到两种不同折射率的透明介质界面时一定产生反射和折射现象;2. 几何光学三定律只有在空间障碍物以及反射和折射界面的尺寸远大于光的波长时才成立;3. 几何光学三定律在任何情况下总成立;§3、惠更斯原理1. 光是一种波动,因而无法沿直线方向传播,通过障碍物一定要绕到障碍物的几何阴影区;2. 惠更斯原理也可以解释波动过程中的直线传播现象;3. 波动的反射和折射无法用惠更斯原理来解释;§4、费马原理1)费马定理的含义,在三个几何光学定理证明中的应用。
判断选择练习题:§5、光度学基本概念1)辐射通量与光通量的含义,从辐射通量计算光通量,视见函数的计算2)计算一定亮度面光源产生的光通量3)发光强度单位坎德拉的定义。
判断选择练习题:1. 人眼存在适亮性和适暗性两种视见函数;2. 明亮环境和黑暗环境的视见函数是一样的;3. 昏暗环境中,视见函数的极大值朝短波(蓝色)方向移动;4. 明亮环境中,视见函数的极大值朝长波(绿色)方向移动;7. 在可见光谱范围内,相同的辐射通量,眼睛对每个波长的亮度感觉都一样;8. 在可见光谱范围内,相同的辐射通量,眼睛对波长为550nm 光辐射的亮度感觉最强;9. 理想漫射体的亮度与观察方向无关;10. 不同波长、相同辐射通量的光辐射在人眼引起的亮度感觉可能一样;填空计算练习题:计算结果要给出单位和正负1、波长为400nm、500nm、600nm 、700nm 的复合光照射到人眼中,已知这些波长的视见函数值分别为0.004、0.323、0.631、0.004,若这些波长的辐射通量分别为1W 、2W 、3W 、4W ,则这些光在人眼中产生的光通量等于。
电磁场与电磁波复习题第一部分矢量分析1、请解释电场与静电场的概念。
静止电荷产生的场表现为对于带电体有力的作用,这种场称为电场。
不随时间变化的电场称为静电场。
2、请解释磁场与恒定磁场的概念。
运动电荷或电流产生的场表现为对于磁铁和载流导体有力的作用,这种物质称为磁场。
不随时间变化的磁场称为恒定磁场。
3、请解释时变电磁场与电磁波的概念。
如果电荷及电流均随时间改变,它们产生的电场及磁场也是随时变化的,时变的电场与时变的磁场可以相互转化,两者不可分割,它们构成统一的时变电磁场。
时变电场与时变磁场之间的相互转化作用,在空间形成了电磁波。
4、请解释自由空间的概念。
电磁场与电磁波既然是一种物质,它的存在和传播无需依赖于任何媒质。
在没有物质存在的真空环境中,电磁场与电磁波的存在和传播会感到更加“自由”。
因此对于电磁场与电磁波来说,真空环境通常被称为“自由空间”。
5、举例说明电磁场与波的应用。
静电复印、静电除尘以及静电喷漆等技术都是基于静电场对于带电粒子具有力的作用。
电磁铁、磁悬浮轴承以及磁悬浮列车等,都是利用磁场力的作用。
当今的无线通信、广播、雷达、遥控遥测、微波遥感、无线因特网、无线局域网、卫星定位以及光纤通信等信息技术都是利用电磁波作为媒介传输信息的。
6、请解释常矢与变矢的概念。
若某一矢量的模和方向都保持不变,此矢量称为常矢,如某物体所受到的重力。
而在实际问题中遇到的更多的是模和方向或两者之一会发生变化的矢量,这种矢量我们称为变矢,如沿着某一曲线物体运动的速度v等。
7、什么叫矢性函数?设t是一数性变量,A为变矢,对于某一区间G[a,b]内的每一个数值t,A 都有一个确定的矢量A(t)与之对应,则称A为数性变量t的矢性函数。
8、请解释静态场和动态场的概念。
如果在某一空间区域内的每一点,都对应着某个物理量的一个确定的值,则称在此区域内确定了该物理量的一个场。
换句话说,在某一空间区域中,物理量的无穷集合表示一种场。
11 麦克斯韦I 方程组.的微分形式 是:J . H =J JD,\ E = _。
「|_B =0,七出=:2静电场的基本方程积分形式为:性£虏=03理想导体(设为媒质 2)与空气(设为媒质 1)分界 面上,电磁场的边界条件为:4线性且各向同性媒质的 本构关系方程是:5电流连续性方程的微分形式为:。
6电位满足的泊松方程为;在两种完纯介质分界面上 电位满足的边界 。
7应用镜像法和其它间接方法解静 态场边值问题的理论依据是。
8.电场强度E Aj 单位是,电位移D t 勺单位是。
9.静电场的两个基本方程的微分 形式为“黑E =0 Q D = P ; 10.—个直流电流回路除 受到另一个直流电流回路的库仑力作用外还将受到安 培力作用1 .在分析恒定磁场时,引入矢量磁位A,并令冒=%,的依据是(c.V 值=0)2 . “某处的电位 中=0,则该处的电场强度 E=0的说法是(错误的)。
3 .自由空间中的平行双线传输线,导线半径为a ,线间距为D ,则传输线单位长度的电容为4 .点电荷产生的电场强度随距离变化的规律为( 1/r2)。
5 . N 个导体组成的系统的能量 W =1£ q * ,其中e i 2 t i i 是(除i 个导体外的其他导体)产生的电位。
6 .为了描述电荷分布在空间流动的状态, 定义体积电流密度J,其国际单位为(a/m2 )7 .应用高斯定理求解静电场要求电场具有(对称性)分布。
8 .如果某一点的电场强度为零,则该点电位的(不一 定为零 )。
9 .真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为( 1/r2 )。
10.半径为a 的球形电荷分布产生的电场的能量储存于(整个空间)。
三、海水的电导率为 4S/m,相对介电常数为 81,求频 率为1MHz 时,位幅与导幅比值?三、解:设电场随时间作正弦变化,表示为:E = e x E m cos t则位移电流密度为:J d =— = -ex :-. ■ 0 r E m Sin t;t其振幅彳1为:J dm = 网 5E m = 4.5X10- E m 传导电 流的振幅值为: J cm -二- E m = 4E m 因此:Jm =1.125/0J -cm四、自由空间中,有一半径为a 、带电荷量q 的导体球。
第一章 矢量场 1.1 z y x C z y x B z y x A ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+= 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B C ⨯ ; (e) () A B C ⨯⨯ (f) () A B C ⨯⋅ 解:(a) 14132222222=++=++=z y x A A A A ; (b) )ˆ2ˆˆ(61ˆz y x BB b -+== ( c) 7=⋅B A ; (d) z y xC B ˆ4ˆ7ˆ---=⨯ (e) z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯ (f) 19)(-=⋅⨯C B A 1.2 A z =++2 ρπϕ; B z =-+- ρϕ32 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) B A + 解:(a) 25π+=A ;(b) )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ;(c) 43-=⋅πB A (d) z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπ (e) z B A ˆˆ)3(ˆ-++=+ϕπρ 1.3 A r =+-22 πθπϕ; B r =- πθ 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) A B + 解:(a) 254π+=A ; (b) )ˆˆ(11ˆ2θππ-+=r b ; (c) 22π-=⋅B A ;(d) ϕπθππˆ3ˆ2ˆ22++=⨯r A B ; (e) ϕπˆ2ˆ3-=+r B A 1.4 A x y z =+- 2; B x y z =+-α 3 当 A B ⊥时,求α。
解:当 A B ⊥时, A B ⋅=0, 由此得 5-=α 1.5 将直角坐标系中的矢量场 F x y z x F x y z y 12(,,) ,(,,) ==分别用圆柱和圆球坐标系中的坐标分量表示。
《电磁场与电磁波》复习题A一、填空题1、研究一个矢量场,必须研究它的 和 ,才能确定该矢量场的性质,这一规律即为亥姆霍兹定理。
2、在静电场中,电场强度E 和标量电位ϕ之间的微分关系为 ,法拉第电磁感应定律的微分形式 。
3、镜像法是用等效的 来代替原来电场的分布,间接求解静电场边值问题,其理论依据是 。
4、一理想导体放置在静电场中,导体内部电场强度为 ,导体表面电场强度方向 。
5、电磁波电场的表达式为()00cos ),(ϕω+-=kz t E t z E ,其中波的传播方向是 ,相位是 。
二、选择题1、描述静电场错误的是( )A .静电场是保守场B .静电场是发散场C .静电场是无旋场D .静电场是有旋场2、真空中两个带电量为1q 和2q 的点电荷,距离为R ,距离矢量为R a ρ,则它们满足的库仑定律是( )A .2021124R q q a F Rπερρ= B .R q q a F R021124περρ= C .2102124q q R a F Rπερρ= D .3021124R q q a F R περρ=3、关于电容描述正确的是( )A. 电容只与导体的相对位置、几何形状、尺寸及填充介质无关,和导体带电量无关B. 电容只与导体的相对位置、几何形状、尺寸及填充介质有关,和导体带电量无关C. 电容只与导体的相对位置、几何形状、尺寸及填充介质无关,和导体带电量有关D. 电容只与导体的相对位置、几何形状、尺寸及填充介质有关,和导体带电量有关 4、媒质1与媒质2分界面上自由电荷的面密度为s ρ,电场法向边界条件是( )A .021=-n n D DB. 021=-t t E EC. s n n D D ρ=-21D. s t t E E ρ=-215、两种磁介质1μ和2μ分界面上的面电流密度为零,磁场在分界面发生折射,入射角1θ和折射角2θ之间的关系是( ) A .2121tan tan μμθθ= B .1221tan tan μμθθ= C .2121sin sin μμθθ= D .2121cos cos μμθθ= 6、某一闭合曲线l ,有电流I 1、I 2、以及I 3,如图1所示,则满足安培环路定理的公式是( )图1A .21lI I l H +=•⎰d B .21lI I l H -=•⎰dC .321lI I I l H -+=•⎰d D .321lI I I l H +-=•⎰d7、两个频率相等方向垂直的波叠加,当振幅相等,相位差为2/π±时,将形成( ) A . 线极化波 B. 圆极化波 C. 椭圆极化波 D.圆与线极化波8、在线性、均匀且各向同性的媒质中,其中不属于本构方程的是( ) A .E D ε= B.H B μ= C .E J σ= D. E J P •= 9、关于理想导体内部磁场描述正确的是 ( )A. 理想导体内部没有磁场,理想导体表面磁场平行于导体表面B. 理想导体内部没有磁场,理想导体表面磁场垂直于导体表面C. 理想导体内部有磁场,理想导体表面磁场垂直于导体表面D. 理想导体内部有磁场,理想导体表面磁场平行于导体表面10、无耗媒质中,电磁波具有以下特点,错误的是 ( )A .电磁波中电场、磁场以及能量传播方向相互垂直,且成右手螺旋定则。
《电磁场与电磁波基础教程》(第2版)习题解答第1章1.1 解:(1)==A B=C(2))))23452A x y zB y zC x z ==+-=+=-,,;A a a a a a -a a a a a A(3)()()+2431223x y z x y z =+-+-+=--=+;A B a a a a a a A B (4)()()23411x y z y z ⋅=+-⋅-+=-;A B a a a a a (5)()()234104x y z y z x y z ⨯=+-⋅-+=---;A B a a a a a a a a (6)()()()1045242x y z x z ⨯⋅=-++⋅-=-;A B C a a a a a(7)()()()x 2104522405x y z x z y ⨯⨯=-++⨯-=-+A B C a a a a a a a a 。
1.2解:cos 68.56θθ⋅===︒;A B A BA 在B 上的投影cos 1.37B A θ===A ;B 在A 上的投影cos 3.21A B θ===B 。
1.3 解:()()()()()()()4264280⋅=-++-=正交A B 。
1.4 解:1110x x y y z z x y y z z y ⋅=⋅=⋅=⋅=⋅=⋅=,,;;a a a a a a a a a a a a 0x x y y z z ⨯=⨯=⨯=;a a a a a a x y z y z x z x y ⨯=⨯=⨯=;,a a a a a a a a a 。
1.5 解:(1)111000z z z z ρρϕϕρϕϕρ⋅=⋅=⋅=⋅=⋅=⋅=,,;,,a a a a a a a a a a a a ;000z z z z z ρρϕϕρϕϕρρϕ⨯=⨯=⨯=⨯=⨯=⨯=,,;,,a a a a a a a a a a a a a a a 。
1. 同轴电缆内外导体半径分别为R 1和R 2,长度为l ,中间为线性各向同性电介质,相对电容 率 εr =2。
已知内外导体间的电压为U , 求:1)介质中的D 、E 和P ;2)内导体表面的自由电荷量q 3)介质内表面的极化电荷量qP 解:设内导体表面带电量为q ,由qd s =⋅⎰s D得rl r q e D ⋅=π2 rr l r q l r q e e D E ⋅=⋅==004)2(2πεεπε由于1200ln 442121R R l qr dr l q d U R R R R πεπε==⋅=⎰⎰l E内导体的自由电荷量120ln4R R lU q πε= (C)故得介质中的场强rR R r Ue E 12ln ⋅=rR R r UeE D 120ln2⋅⋅==εε rr R R r UR R r U U ee E D P 12012000lnln 2⋅⋅=⋅-=-=εεεε介质内表面的极化电荷量0012211122lnln P sUl Uq d R l R R R R R επεπ⋅⋅=-⋅=-⋅=-⋅⎰P s 2.长直圆柱体导磁材料的半径为a ,磁导率μ ,μ0,已知其被永久磁化,磁化强度 M = M 0e z ,求:1)永磁材料表面上单位长度的磁化电流I m 2)永磁材料中的B 和H解:1)因磁化强度M=M 0e z 沿z 轴方向,所以圆柱体表面的磁化电流沿圆周e α方向,单位长度通过的磁化电流为010MM d I z z m =⋅=⋅=⎰e e l M (A)2)圆柱体永磁材料的表面有磁化电流,相当于无限长螺线管。
众所周知,其外部B =0;内部为均匀场,由于永磁体表面无自由电流,故 mm lI I I d 00)(μμ=+=⋅∑⎰l B即 l M l B ∆=∆⋅00μ,所以 M e B 000μμ==z M (Wb/m2)M BH -=μ000=-=M Mμμ (A/m )3. 长直载流导线通电流i (t)= I m sin ωt ,附近有一单匝矩形线框与其共面(如图所示)。
1、亥姆霍兹定理的数学表达式是 ,其中标量函数可以表示为 ,矢量函数可以表示为 。
2、麦克斯韦方程组的积分形式是 ,, ,。
3、静电场E 线的微分方程的表达式是 。
4、两种不同磁媒质分界面上,若该两种磁媒质均为线性且各向同性,当分界面上K =0时,分界面处B 线和H 线的折射规律为 。
5、磁场能量的分布密度='m ω 。
6、写出)sin()cos(αβωαβω+-++-=x t E e x t E e E zm z ym y的复矢量(有效值)。
7、凡满足 条件的时变电磁场,其在每一瞬间场量的解答均可按静态场规律进行分析,这类时变电磁场称为 。
8、坡印廷定理的积分形式是 ,其物理意义反映了。
9、散度定理的数学表达式是 ,10.静电场是 场, 场.(旋,散)11、麦克斯韦方程组的微分形式是 ,, ,。
12、磁场B 线的微分方程的表达式是 。
13、准静态场中,不同媒质分界面上,若该两种媒质均为线性且各向同性,关于E,D,B,H的边界条件 , , , .14、静电场能量的分布密度='e ω 。
15、凡满足 条件的时变电磁场,其在每一瞬间场量的解答均可按静态场规律进行分析,这类时变电磁场称为 。
16、电磁场物理模型构造中,基本源量:包括 ,和电流 。
根据恒等式 ,任一无旋场一定可以表示为一个 ; 17、E 线的微分方程可以表示为 。
18、在两种介质形成的边界上,电场强度的切向分量是 。
在两种各向同性的线性介质形成的边界上,电位移的切向分量是 。
19、静电系统具有能量,其中 是将许多元电荷 “压紧”构成 q 所需作的功。
是由于多个带电体之间的相互作用引起的能量。
20、恒定电场是无散无旋场,其微分表示为 , 。
21、在库仑规范条件下,有源区域内,磁矢位A 应满足泊松方程,其微分表 达式为 ,无源区域内,磁矢位A 应满足拉普拉斯方 程,其微分表达式为 。
22、定义坡印亭矢 量,表示单位时间内流过与电磁波传播方向相 面积上的电磁能量,亦称为 密度,S 的方向代表波传播的方向,也是 流动的方向。
电磁场与电磁波复习题(含答案)电磁场与电磁波复习题⼀、填空题1、⽮量的通量物理含义是⽮量穿过曲⾯的⽮量线总数,散度的物理意义⽮量场中任意⼀点处通量对体积的变化率。
散度与通量的关系是⽮量场中任意⼀点处通量对体积的变化率。
2、散度在直⾓坐标系的表达式 z A y A x A z yxA A ??++=??=ρρdiv ;散度在圆柱坐标系下的表达;3、⽮量函数的环量定义⽮量A 沿空间有向闭合曲线C 的线积分,旋度的定义过点P 作⼀微⼩曲⾯S,它的边界曲线记为L,⾯的法线⽅与曲线绕向成右⼿螺旋法则。
当S 点P 时,存在极限环量密度。
⼆者的关系 ndS dC e A ρρ?=rot ;旋度的物理意义点P 的旋度的⼤⼩是该点环量密度的最⼤值;点P 的旋度的⽅向是该点最⼤环量密度的⽅向。
4.⽮量的旋度在直⾓坐标系下的表达式。
5、梯度的物理意义标量场的梯度是⼀个⽮量,是空间坐标点的函数。
梯度的⼤⼩为该点标量函数?的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向等值⾯、⽅向导数与梯度的关系是梯度的⼤⼩为该点标量函数的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向.; 6、⽤⽅向余弦cos ,cos ,cos αβγ写出直⾓坐标系中单位⽮量l e r 的表达式;7、直⾓坐标系下⽅向导数u的数学表达式是,梯度的表达式8、亥姆霍兹定理的表述在有限区域内,⽮量场由它的散度、旋度及边界条件唯⼀地确定,说明的问题是⽮量场的散度应满⾜的关系及旋度应满⾜的关系决定了⽮量场的基本性质。
9、麦克斯韦⽅程组的积分形式分别为 0()s l s s l sD dS Q BE dl dS t B dS D H dl J dS t ?=??=-??=?=+r r r r r r r r g r r r r r g ????其物理描述分别为10、麦克斯韦⽅程组的微分形式分别为 020E /E /t B 0B //t B c J E ρεε??=??=-=??=+??r r r r r r r其物理意义分别为11、时谐场是激励源按照单⼀频率随时间作正弦变化时所激发的也随时间按照正弦变化的场,⼀般采⽤时谐场来分析时变电磁场的⼀般规律,是因为任何时变周期函数都可以⽤正弦函数表⽰的傅⾥叶级数来表⽰;在线性条件下,可以使⽤叠加原理。
习题1414-1.如图所示的弓形线框中通有电流I ,求圆心O 处的磁感应强度B 。
解:圆弧在O 点的磁感应强度:00146I IB R Rμθμπ==,方向:垂直纸面向外; 直导线在O点的磁感应强度:000020[cos30cos(150)]4cos602II B R Rμππ=-=,方向:⊗;∴总场强:01)23IB Rμπ=-,方向⊗。
14-2.如图所示,两个半径均为R 的线圈平行共轴放置,其圆心O 1、O 2相距为a ,在两线圈中通以电流强度均为I 的同方向电流。
(1)以O 1O 2连线的中点O 为原点,求轴线上坐标为x 的任意点的磁感应强度大小;(2)试证明:当a R =时,O 点处的磁场最为均匀。
解:见书中载流圆线圈轴线上的磁场,有公式:2032222()I R B R z μ=+。
(1)左线圈在x 处P 点产生的磁感应强度:20132222[()]2P I R B a R x μ=++,右线圈在x 处P 点产生的磁感应强度:20232222[()]2P I R B aR x μ=+-,1P B 和2P B 方向一致,均沿轴线水平向左,∴P 点磁感应强度:12P P P B B B =+=2330222222[()][()]222I R a a R x R x μ--⎧⎫++++-⎨⎬⎩⎭;(2)因为P B 随x 变化,变化率为d Bd x,若此变化率在0x =处的变化最缓慢,则O 点处的磁场最为均匀,下面讨论O 点附近磁感应强度随x 变化情况,即对P B 的各阶导数进行讨论。
对B 求一阶导数:d B d x 25502222223()[()]()[()]22222I R a a a a x R x x R x μ--⎧⎫=-++++-+-⎨⎬⎩⎭当0x =时,0d Bd x=,可见在O 点,磁感应强度B 有极值。
对B 求二阶导数:22()d d B d B d x d x d x==222057572222222222225()5()311222[()][()][()][()]2222a a x x I R a a a a R x R x R x R x μ⎧⎫+-⎪⎪⎪⎪--+-⎨⎬⎪⎪+++++-+-⎪⎪⎩⎭当0x =时,202x d B d x==222072223[()]2a R I R a R μ-+, 可见,当a R >时,2020x d Bd x =>,O 点的磁感应强度B 有极小值,当a R <时,2020x d Bd x =<,O 点的磁感应强度B 有极大值,当a R =时,2020x d Bd x ==,说明磁感应强度B 在O 点附近的磁场是相当均匀的,可看成匀强磁场。
第1~2章 矢量分析 宏观电磁现象的基本规律1. 设:直角坐标系中,标量场zx yz xy u ++=的梯度为A,则A= ,=⨯∇A 0 。
2.已知矢量场xz e xy e z y eA z y x ˆ4ˆ)(ˆ2+++=,则在M (1,1,1)处=⋅∇A9 。
3. 亥姆霍兹定理指出,若唯一地确定一个矢量场(场量为A),则必须同时给定该场矢量的旋度 及 散度 。
4. 写出线性和各项同性介质中场量D 、E 、B 、H、J 所满足的方程(结构方程): 。
5.电流连续性方程的微分和积分形式分别为 和 。
6. 设理想导体的表面A 的电场强度为E 、磁场强度为B,则(a )E 、B皆与A 垂直。
(b )E 与A 垂直,B与A 平行。
(c )E 与A 平行,B与A 垂直。
(d )E 、B皆与A 平行。
答案:b7. 设自由真空区域电场强度(V/m) )sin(ˆ0βz ωt E e E y -=,其中0E 、ω、β为常数。
则空间位移电流密度d J(A/m 2)为:(a ) )cos(ˆ0βz ωt E ey - (b ) )cos(ˆ0βz ωt ωE e y - (c ) )cos(ˆ00βz ωt E ωey -ε (d ) )cos(ˆ0βz ωt βE e y -- 答案:c8.已知无限大空间的相对介电常数为4=εr ,电场强度)(ˆ)(ˆ)(ˆy x e z x e z y e z y x +++++A ⋅∇A ⨯∇E J H B E D σ=μ=ε= , ,tqS d J S∂∂-=⋅⎰ t J ∂ρ∂-=⋅∇(V/m) 2cos ˆ0dxe E x πρ= ,其中0ρ、d 为常数。
则d x =处电荷体密度ρ为:(a )d 04πρ-(b )d 004ρπε- (c )d 02πρ- (d )d02ρπε- 答案:d9.已知半径为R 0球面内外为真空,电场强度分布为⎪⎪⎩⎪⎪⎨⎧>θ+θ<θ+θ-=θθ )R ( )sin ˆcos 2ˆ()R ( )sin ˆcos ˆ(20300r e e r B r e e R E r r 求(1)常数B ;(2)球面上的面电荷密度;(3)球面内外的体电荷密度。
电磁场与电磁波复习题 一、填空题1、矢量的通量物理含义是矢量穿过曲面的矢量线总数,散度的物理意义矢量场中任意一点处通量对体积的变化率。
散度与通量的关系是矢量场中任意一点处通量对体积的变化率。
2、 散度在直角坐标系的表达式 z A y A x A z yxA A ∂∂∂∂∂∂++=⋅∇= div ;散度在圆柱坐标系下的表达;3、矢量函数的环量定义矢量A 沿空间有向闭合曲线C 的线积分, 旋度的定义 过点P 作一微小曲面S,它的边界曲线记为L,面的法线方与曲线绕向成右手螺旋法则。
当S 点P 时,存在极限环量密度。
二者的关系n dS dC e A ⋅=rot ;旋度的物理意义点P 的旋度的大小是该点环量密度的最大值;点P 的旋度的方向是该点最 大环量密度的方向。
4.矢量的旋度在直角坐标系下的表达式。
5、梯度的物理意义标量场的梯度是一个矢量,是空间坐标点的函数。
梯度的大小为该点标量函数ϕ的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向等值面、方向导数与梯度的关系是梯度的大小为该点标量函数ϕ的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向.; 6、用方向余弦cos ,cos ,cos αβγ写出直角坐标系中单位矢量l e 的表达式 ; 7、直角坐标系下方向导数u ∂的数学表达式是cos cos cos l αβγ∂∂∂∂∂∂∂∂uuuu=++xyz ,梯度的表达式x y z G e e e grad x y z φφφφφ∂∂∂=++=∇=∂∂∂;8、亥姆霍兹定理的表述在有限区域内,矢量场由它的散度、旋度及边界条件唯一地确定,说明的问题是矢量场的散度应满足的关系及旋度应满足的关系决定了矢量场的基本性质。
9、麦克斯韦方程组的积分形式分别为0()s l s s l s D dS Q B E dl dS t B dS D H dl J dS t ⋅=∂⋅=-⋅∂=∂=+⋅∂⎰⎰⎰⎰⎰⎰其物理描述分别为10、麦克斯韦方程组的微分形式分别为20E /E /tB 0B //tB c J E ρεε∇⋅=∇⨯=-∂∂∇⋅=∇⨯=+∂∂其物理意义分别为 11、时谐场是激励源按照单一频率随时间作正弦变化时所激发的也随时间按照正弦变化的场, 一般采用时谐场来分析时变电磁场的一般规律,是因为任何时变周期函数都可以用正弦函数表示的傅里叶级数来表示;在线性条件下,可以使用叠加原理。
第一章 矢量分析一、基本概念与公式1.标量与矢量矢量:一个既有大小又有方向的量。
标量:一个仅用大小就能够完整描述的物理量。
2.矢量运算1.加法矢量的加法符合交换律和结合律A B B A +=+ ()A B C A B A C ⋅+=⋅+⋅2.矢量的乘法 1) 数乘一个标量k 与一个矢量A 的乘积kA 仍为一个矢量,即x y z x y z k A kA e kA e kA e =++ 若0k >,则kA 与A 同方向;若0k <,则kA 与A 与反方向。
2) 标量积AB cos A B AB θ⋅=x x y y z z A B A B A B =++3)矢量积||||sin n AB A B A B e θ⨯=xy zxy z xyzxe e e A A A B B B = ()()()x y z y z z y z x x z x y y x e A B A B e A B A B e A B A B =-+-+-4)三个矢量的乘积标量三重积:()A B C ⋅⨯ 的结果为一标量。
有如下循环互换规律:()()()A B C B C A C A B ⋅⨯=⋅⨯=⋅⨯ 矢量三重积:)(C B A⨯⨯的结果为一矢量。
可展成下述两矢量之差:()()()A B C B A C C A B ⨯⨯=⋅-⋅3.三种常用的正交坐标系 1)直角坐标系在直角坐标系内的任一矢量A 可以表示为(,,)(,,)(,,)(,,)x y z x y z A x y z A x y z e A x y z e A x y z e =++式中,,,x y z A A A 分别为矢量A 在,,x y z e e e 方向上的分量。
位置矢量: x y z r xe ye ze =++ ( 位置矢量的微分为 x yzd r d x ed ye d z e =++ 与三个坐标面单位矢量相垂直的三个面积元分别为 x d S d y d z =,y dS dxdz =,z dS dxdy =体积元为 dV dxdydz =2)柱坐标系任一矢量场A 在圆柱坐标系中可表示为z z A A e A e A e ρρϕϕ=++ 式中,,z A A A ρϕ称为圆柱坐标分量,是矢量A 在三个垂直坐标轴上的投影。
第二章 静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。
利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。
通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。
至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。
讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。
介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。
关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。
介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。
至于电容和部分电容一节可以从简。
重要公式真空中静电场方程:积分形式:⎰=⋅SS E 0d εq⎰=⋅ll E 0d微分形式: 0ερ=⋅∇E0=⨯∇E已知电荷分布求解电场强度:1,)()(r r E ϕ-∇=;⎰''-'=V Vd )(41)(|r r |r r ρπεϕ2,⎰'''-'-'=V V 3d |4))(()(|r r r r r r E περ3,⎰=⋅SS E 0d εq高斯定律介质中静电场方程:积分形式:q S=⋅⎰ d S D⎰=⋅ll E 0d微分形式:ρ=⋅∇D0=⨯∇E线性均匀各向同性介质中静电场方程:积分形式:εqS=⋅⎰ d S E⎰=⋅ll E 0d微分形式: ερ=⋅∇E0=⨯∇E静电场边界条件:1,t t E E 21=。
对于两种各向同性的线性介质,则2211εεttD D =2,s n n D D ρ=-12。
在两种介质形成的边界上,则n n D D 21=对于两种各向同性的线性介质,则n n E E 2211εε=3,介质与导体的边界条件:0=⨯E e n ; S n D e ρ=⋅若导体周围是各向同性的线性介质,则ερS n E =;ερϕS n -=∂∂静电场的能量:孤立带电体的能量:Q C Q W e 21212Φ== 离散带电体的能量:∑==ni i i e Q W 121Φ分布电荷的能量:l S V W l l S S Ve d 21d 21d 21ρϕρϕρϕ⎰⎰⎰===静电场的能量密度:E D ⋅=21e w 对于各向同性的线性介质,则2 21E w e ε=电场力:库仑定律:rrq q e F 2 4πε'=常电荷系统:常数=-=q e lW F d d常电位系统:常数==ϕlW F e d d题 解2-1 若真空中相距为d 的两个电荷q 1及q 2的电量分别为q 及4q ,当点电荷位于q 1及q 2的连线上时,系统处于平衡状态,试求的大小及位置。
电磁场与电磁波复习材料 简答1. 简述恒定磁场的性质,并写出其两个基本方程。
2. 试写出在理想导体表面电位所满足的边界条件。
3. 试简述静电平衡状态下带电导体的性质。
答:静电平衡状态下,带电导体是等位体,导体表面为等位面;(2分) 导体内部电场强度等于零,在导体表面只有电场的法向分量。
(3分) 4. 什么是色散?色散将对信号产生什么影响?答:在导电媒质中,电磁波的传播速度随频率变化的现象称为色散。
(3分) 色散将使信号产生失真,从而影响通信质量。
(2分)5.已知麦克斯韦第二方程为t B E ∂∂-=⨯∇ ,试说明其物理意义,并写出方程的积分形式。
6.试简述唯一性定理,并说明其意义。
7.什么是群速?试写出群速与相速之间的关系式。
8.写出位移电流的表达式,它的提出有何意义?9.简述亥姆霍兹定理,并说明其意义。
答:当一个矢量场的两类源(标量源和矢量源)在空间的分布确定时,该矢量场就唯一地确定了,这一规律称为亥姆霍兹定理。
(3分) 亥姆霍兹定理告诉我们,研究任意一个矢量场(如电场、磁场等),需要从散度和旋度两个方面去研究,或者是从矢量场的通量和环量两个方面去研究10.已知麦克斯韦第二方程为S d t B l d E S C⋅∂∂-=⋅⎰⎰,试说明其物理意义,并写出方程的微分形式。
答:其物理意义:随时间变化的磁场可以产生电场。
(3分)方程的微分形式:11.什么是电磁波的极化?极化分为哪三种?答:电磁波的电场强度矢量的方向随时间变化所描绘的轨迹称为极化。
(2分) 极化可以分为:线极化、圆极化、椭圆极化。
12.已知麦克斯韦第一方程为t D J H ∂∂+=⨯∇,试说明其物理意义,并写出方程的积分形式。
13.试简述什么是均匀平面波。
答:与传播方向垂直的平面称为横向平面;(1分)电磁场HE 和的分量都在横向平面中,则称这种波称为平面波;(2分)在其横向平面中场值的大小和方向都不变的平面波为均匀平面波。
(2分) 14.试简述静电场的性质,并写出静电场的两个基本方程。