有线数字电视网络测量指标分析
- 格式:pdf
- 大小:237.43 KB
- 文档页数:3
②另一个主要原因是:通常 64QAM 调制的数字频道,其频道内统计峰值电平比平均功率高约 10dB,256QAM 高约 6dB。
为避免放大器失真,产生互调干扰,干扰其他频道信号,需要使数字频道的峰值电平调整到同模拟频道的峰值电平相同大小的程度,这样64QAM 数字频道平均功率同比模拟频道峰值电平就低 10dB。
2 调制误差率MER对于 QAM 接收机接收到的每个符号,I 和 Q 是 QAM 接收机星座图中接收到一个符号的理想位置的数值,(δI,δQ)是误差矢量,定义为被选中符号的理想位置(星座图中定义的符号所在方框的中心)到接收到的实际符号位置的距离。
N 是一段时间内捕获符号的点数,它一般比星座图中的点数多的多。
定义原理如图所示。
理想符号矢量幅度的平方和除以实际符号误差矢量幅度的平方和,计算的结果取对数以 dB 表示,定义为 MER。
理想I,Q值对的位置在定义区域的中心位置QI,Q值对的误差矢量II,Q值对的实际位置∑(δIS max j表示 RMS 误差矢量幅度与最大符号幅度的百分比值。
信号质量下降时,EVM 将会增大。
计算方法:EVM RMS= 1NN j=122j+δ Q2 )⨯10%其中 Smax 是 M 相 QAM 星座图中最远状态的矢量的幅度。
Q目标符号误差向量传输符号IEVM 测量类似于 MER,但表达形式不同。
EVM 表达为 RMS 误差矢量幅度与最大符号幅度的百分比值。
信号缺陷增加时,EVM 将会增大,而 MER 则会减小。
MER 和 EVM 彼此可以相互进行转换。
4 比特误码率BER定义:BER(比特误码率)是发生误码的位数与传输的总位数之比。
BER通常以科学计数法表示,如误码率为 3E-7,表示在 10 的 7 次方个传送位中有 3个误码,,此比率是采用少数的实际传送码来实际分析并统计而推估的值,越低的 BER 代表越好的信号质量。
BER(Pre-FEC)纠错前误码率:FEC 纠错算法可以检测出的实际错误码数量。
浅析数字电视发射机测量指标随着数字电视快速发展,人们已经不仅仅单纯满足收看数字电视节目而是越来越重视数字电视的质量,数字电视质量的好坏很大程度取决于发射机指标是否达到正常标准。
因此对数字电视发射机指标进行了解显得非常重要。
一、带肩比带肩比是数字电视发射机重要指标之一,它是用来描述发射机功放的线性指标。
数字发射机在一个8MHz射频带宽内,采用OFDM多载波的调制方式,载波信号经过放大器后在频道外的互调产物为连续频谱,这时频道外连续频谱在频道附近会产生“肩”部效应,这就是常说的带肩。
带肩比是指:信号的中心频点功率值与偏离信号中心的载波外的某点功率的比值。
每个电视频道采用8MHz带宽, 带肩比规定:信号频率中心的功率与偏离中心±4.2MHz处的功率比值。
数字发射机采用OFDM多载波的调制方式,信号的峰均比非常高,对发射机功放的线性要求也就比较高,功放线性越好,带肩比也就越高,数字电视发射机实际测试过程中带肩比一般要求≥36dB。
数字电视发射机中,功放是其主要的非线性器件,其效率和线性是一对矛盾。
通常为了提高功放效率,功放会表现出较强的非线性。
这种非线性将会造成信号的畸变,使信号的输出频谱发生变化,产生带内、外干扰,反映在频谱上就是带肩比较差。
要提高带肩比有功率回退和非线性校正两种办法。
但是为了满足非线性失真指标,采用功率回退的办法,操作上不现实,功率回退会增加功放管数量,降低发射机的效率,发射机的性价比也就不高。
目前较多的使用非线性校正技术来提高功放的线性指标。
功放的非线性预校正技术包括前馈法、反馈法与预失真方法, 其中数字基带预失真由于其实现简单、灵活,是现在普遍采用的一种校正方式。
图一:-4.2MHz带肩图图二:+4.2MHz带肩图二、调制误码率(MER)MER是对叠加在数字调制信号上的失真的对数测量结果。
MER受多种因素的影响,包括载噪比、突发脉冲、各种失真以及偏移量对信号造成的损伤。
.数字电视的主要测量技术指标1.1.1引言我们要准确把握数字电视传输网络质量的好坏,应该分三步。
第一步:对平均功率,MER,BER这三个指标进行测量。
MER、BER测量门限(实际经验总结)第二步:当这些指标恶化的时候,应该对其它指标进行详细的测量,判断造成网络质量恶化的原因。
因为MER的恶化是最主要的因素,它将直接导致BER的下降并最终影响用户接收机的接收效果。
所以因主要测试调制质量参数,找出问题原因。
调制质量参数主要有:调制误差率、载波抑制、幅度不平衡、正交误差、相位抖动,RS解码前误码率等。
其中调制误差率反映了调制的总体质量;载波抑制、幅度不平衡等反映调制中可能引起误差的主要原因;RS解码前误码率则反映了整个信道的可靠性的性能。
对数字调制的直接测量是找到信号失真源头的有用工具。
调制质量的估价是放在数字解调之后,自适应均衡器附近.第三步:利用星座图进行逐级排查。
当然我们一般的测试工作只需要做第一步就可以,当网络有问题的时候做第二,三步;而且绝大多数时候我们第二,三步是同时进行的。
建议即使网络正常也因该定时在网络前端执行第二,三步操作便于防范问题于未然。
1.1.1.平均功率1.1.1.1.数字信号电平和模拟信号电平的区别因为模拟电视图像内容是通过幅度调制来传送的,图像的内容是随时变化的,所以模拟电视的信道的功率取决于图像内容,根据图像的内容的不同,信道功率不断的变化。
由于模拟电视行/场同步脉冲电平相对稳定,故我们把测量峰值电平作为判别模拟电视信号强弱的测量标准。
所有的数字调制信号都有类似噪声的特性,信号在调制到射频载波之前被进行了随机化处理,所以当发送一个数字信号时,无论它是否传送数据,在频域中观察一般都是相同的。
而且在频域中观察这样的信号通常也说明不了有关的调制方式,例如是QPSK,16QAM,还是64QAM,它只能说明信号的幅度、频率、平坦度、频谱再生等等。
噪声信号的最大响应与噪声信号的功率没有关系。
数字电视的主要测量技术指标(五)1.2.9.星座图测量画面技术指标说明ENM:估计噪声裕量:噪声裕量比BER更为有用,此测量可初步指示出数字业务接近失效的裕量,这是一个检查合格与否的快速而简单的测量方法,它可用来在安装过程中检查信号质量,还可以作为一种维护手段,对通过网络的信号质量作基本监测。
BER(Pre-FEC):纠错前误码率:FEC纠错算法可以检测出错误比特的数量,同时还可以纠正其中的一部分错误,纠错前的误码率就是实际发生错误的比特数量和总的传送比特数量的比值。
BER(Post-FEC):纠错后误码率:FEC纠错算法在检测出有多少错误比特后,根据自身的纠错能力,纠正错误比特当中的一部分或者全部的错误,用还没有被纠正的错误比特数量与总的传送比特数量进行比较就是纠错后的误码率。
当信号质量很好的情况下,纠错前与纠错后的误码率数值是相同的,但有一定干扰存在的情况下,纠错前和纠错后的误码率是不同的,纠错后的误码率要更好。
MER:调制误差率:MER包括了可能存在于商用接收机判决电路输入全部信号的劣化,因此能够指示出接收机正确解码信号的能力。
调制误差率(MER)的定义是所有的理想矢量的平方和被所有矢量的平方和除的结果,用dB表示。
详细的定义和解释在本文前面部分有叙述。
EVM:误差矢量幅度:本文前面部分有详细叙述。
PJ:相位抖动:此项测量能够表明用在电缆分配系统(也就是QAM调制器或频率变换器)中的本地振荡器的相位起伏和频率起伏。
此指标从一定程度上表征网络中相位噪声的情况,恶化到一定程度会大大提高误码率。
TJ:时间抖动:接收符号时钟的抖动;此指标的恶化会影响符号的判决,形成误码;很差时会破坏整个传输系统。
QE: IQ正交载波相位正交(90°)误差AI:IQ正交载波幅度不平衡度Freq offset:QAM调制载波频率偏移Real Symb:当前真实符号率SNR: 信噪比。
这里的S/N主要描述解调之后的信号S/N。
数字电视的主要测量技术指标(一)2008-08-12 11:55 来源: 作者:网友评论 0 条浏览次数 821我们要准确把握数字电视传输网络质量的好坏,应该分三步。
第一步:对平均功率,MER,BER这三个指标进行测量。
MER、BER测量门限(实际经验总结)前端MER Pro FECBERPost FECBER64QAM优良38dBuv>1.00E-9>1.00E-9正常值36dBuv 1.00E-8>1.00E-9临界值34dBuv 1.00E-7 1.00E-8光节点MER Pro FECBERPost FECBER64QAM优良36dBuv>1.00E-9>1.00E-9正常值34dBuv 1.00E-8>1.00E-9临界值32dBuv 1.00E-7 1.00E-8放大器MER Pro FECBERPost FECBER64QAM优良35dBuv 1.00E-9>1.00E-9正常值33dBuv 1.00E-8 1.00E-9临界值28dBuv 1.00E-7 1.00E-8分支器MER Pro FEC Post FEC64QAM BER BER优良32dBuv 1.00E-8>1.00E-9正常值28dBuv 1.00E-7 1.00E-9临界值24dBuv 1.00E-6 1.00E-8机顶盒MER Pro FECBERPost FECBER64QAM优良32dBuv 1.00E-8>1.00E-9正常值28dBuv 1.00E-7 1.00E-8临界值24dBuv 1.00E-6 1.00E-7第二步:当这些指标恶化的时候,应该对其它指标进行详细的测量,判断造成网络质量恶化的原因。
因为MER的恶化是最主要的因素,它将直接导致BER的下降并最终影响用户接收机的接收效果。
所以因主要测试调制质量参数,找出问题原因。
调制质量参数主要有:调制误差率、载波抑制、幅度不平衡、正交误差、相位抖动,RS解码前误码率等。
有线数字电视系统测量技术参考第一部分:传输流测试1.1 传输码流参数及测试对MPEG-2 TS流参数的测试,主要是依据“DVB系统测试指导”文件TR101290。
MPEG-2 TS流参数的监测和特性分析包括:TR101290测试标准3级错误检测、PSI/SI信息分析、TS 流语法分析、PCR分析及缓冲区分析等。
一般采用码流分析仪对TS流进行检测分析。
TR101290的3个优生级(priority)错误的基本理解:依据最新的TR101290标准将DVB/MPEG-2 TS流的测试错误指示分为3个等级:第一等级是可正确解码所必须的几个参数;第二等级是达到同步后可连续工作必须的参数和需要周期监测的参数;第三等级是依赖于应用的几个参数。
1.1.1 DVB/MPEG-2 TS流的第一优先级测试第一级共6种错误,包括:同步错误、同步字节错误、PAT错误、连续计数错误、PMT 错误及PID错误。
(1)同步错误(TS Sync Loss):同步错误是衡量传输流质量的最重要的指标。
用码流仪可观察某个TS有无同步错误的报警信息。
评测标准:连续检测到连续5个正常同步视为同步,连续检测到2个以上不正确同步则为同步丢失错误。
故障表现:传输流失去同步,标志着传输过程中会有一部分数据丢失,直接影响解码后的画面的质量,严重的同步丢失将导致TS传输中断。
在机顶盒端的表现为节目画面有马赛克,甚至节目播放中断。
(2)同步字节错误(Sync Byte Error):同步字节错误和同步丢失错误的区别在于同步字节错误传输数据仍是188或204包长,但同步字头的0X47被其他数字代替。
评测标准:同步字节值只要不是0X47即可判断为同步字节错误。
故障表现:严重时会导致解码器解不出信号。
在机顶盒端的表现为节目播发有停顿,马赛克,甚至节目播放中断。
(3)PAT错误(PAT Error):PAT在DVB标准中用于指示当前节目及其在数据流中的位置,标识节目相关表PAT的PID为0x0000。