高考数学试题分类汇编(必修Ⅳ——向量)
- 格式:doc
- 大小:420.00 KB
- 文档页数:4
精品文档平面向量【任何时候写向量时都要带箭头】【根本概念与公式】aAB 1.向量:既有大小又有方向的量。
记作:。
或||AB||a或。
2.向量的模:向量的大小〔或长度〕,记作:e1 |e| 是单位向量,那么。
3.单位向量:长度为 1 的向量。
假设00 。
【0的向量。
记作:方向是任意的,且与任意向量平行】 4. 零向量:长度为:方向相同或相反的向量。
5. 平行向量〔共线向量〕:长度和方向都相同的向量。
6. 相等向量BA AB:长度相等,方向相反的向量。
7. 相反向量三角形法那么:8.CB AEABAC BC ACAB BC CD DEAB〔指向被减数〕;;9.平行四边形法那么:ba ba b,a ,以为临边的平行四边形的两条对角线分别为。
b/ a/b a00baa与b与反向。
当 10. 共线定理:时,时,同向;当11.基底:任意不共线的两个向量称为一组基底。
2 2222)a b|a b| (),ya x( yx a|| |a |a ,,那么,12.向量的模:假设b a cosb| |a| |a b cos13.数量积与夹角公式:;|b|a| |b xy xya b a b 0 xx a//ba yy 0 14.平行与垂直:;22121112题型 1. 根本概念判断正误:。
,那么 1〕假设与共线,〔与 2 共线,那么与〕假设共线。
〔ma naababnm ma mba bcabbca都不是零向量。
与,那么与不共线,那么。
〔 4〕假设〔 3〕假设。
〕假设 6,那么〕假设5〔,那么a//ba b||| a bba| b|||ba a |〔题型 2. 向量的加减运算精品文档.精品文档AC 为 AB 与 ADAC a,BD bAB AD,的和向量,且 4.,那么。
3AC BCBCABAC AB 。
5.点 C 在线段 AB 上,且, ,那么53. 题型向量的数乘运算13,8)( (1, 4),b ab 3a。
高一数学必修四《平面向量》基础知识与题型归类(1)一.向量有关概念:1、向量的概念:既有大小又有方向的量,2、零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向不确定;3、①单位向量:长度为一个单位长度的向量叫做单位向量;②a 的单位向量:与a 同方向且长度等于1的向量,记作0a u u r 并且0aa a =ru u r r ;③与a 共线的单位向量:与a 方向相同或相反且长度等于1的向量,可表示为aa±r r 。
4、相等向量:长度相等且方向相同的两个向量叫相等向量;5、平行向量(也叫共线向量):向量的基线平行或重合,称为向量共线或平行,记作:a ∥b ; 即共线的向量方向相同或相反;规定:零向量和任意向量平行。
6、相反向量:长度相等方向相反的向量叫做相反向量。
a 的相反向量是-a 。
二.向量的表示方法:1.几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后; 2.符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等;3.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,j 为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+=r r r,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。
如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。
三.向量的运算: 1.几何运算:(1)向量加法运算:①三角形法则的特点:首尾相连. ②平行四边形法则的特点:共起点.(2)向量的减法:三角形法则的特点:共起点,方向指向被减向量2、向量的数乘运算:实数λ与向量a 的积是一个向量,记作λa ,它的长度和方向规定如下:①,a a λλ=r r②当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反,当λ=0时,0a λ=r r,3、向量的坐标运算:设1122(,),(,)a x y b x y ==r r,则: ①向量的加减法运算:12(a b x x ±=±r r,12)y y ±。
2012-2021十年全国高考数学真题分类汇编 向量(精解精析)一、选择题1.(2020年高考数学课标Ⅲ卷理科)已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=+a a b ( )A .3135-B .1935-C .1735D .1935【答案】D 解析:5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()2222257a b a ba ab b +=+=+⋅+=-=,因此,()1919cos ,5735a a ba ab a a b⋅+<+>===⨯⋅+. 故选:D .【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.2.(2019年高考数学课标全国Ⅱ卷理科)已知()2,3AB =,()3,AC t =,1BC =,则AB BC ⋅=( )A .3-B .2-C .2D .3【答案】C【解析】∵()2,3AB =,()3,AC t =,∴()1,3BC AC AB t =-=-,∴211BC ==,解得3t =,即()1,0BC =,则AB BC ⋅=()()2,31,021302⋅=⨯+⨯=.【点评】本题考查平面向量数量积的坐标运算,渗透了直观想象和数学运算素养.采取公式法,利用转化与化归思想解题.本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.学生易在处理向量的法则运算和坐标运算处出错,借助向量的模的公式得到向量的坐标,然后计算向量数量积.3.(2019年高考数学课标全国Ⅰ卷理科)已知非零向量a ,b 满足2a b =,且()a b b -⊥,则a 与b 的夹角为( )A .6π B .3π C .23π D .56π【答案】B 解析:()()222,0,a b b a b b a b b a b b b-⊥∴-⋅=⋅-=∴⋅==,所以221cos ,22ba b a b a bb⋅===⋅, 所以,3a bπ=.4.(2019年高考数学课标全国Ⅰ卷理科)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比为120.618≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美 .若某人满足上述两个黄金 分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A .165cmB .175cmC .185cmD .190cm【答案】B解析:如图,0.618,0.618,0.618c aa b c d d b==∴==,26c <,则42.070.618c d =<,68.07a c d =+<,110.150.618ab =<,所以身高178.22h a b =+<,又105b >,所以0.61864.89a b =>,身高64.89105169.89h a b =+>+=故(169.89,178.22)h ∈,故选B .5.(2018年高考数学课标Ⅱ卷(理))已知向量a ,b 满足||1=a ,1⋅=-a b ,则a ( )A .4B .3C .2D .0【答案】B解析:2(2)2||213⋅-=-⋅=+=a a b a a b ,故选B .6.(2018年高考数学课标卷Ⅰ(理))在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )头顶咽喉肚脐足底A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 【答案】A解析:在ABC△中,AD 为BC 边上的中线,E为AD 的中点,()11312244EB AB AE AB AD AB AB AC AB AC =-=-=-+=-,故选A . 7.(2017年高考数学课标Ⅲ卷理科)在矩形中,,,动点在以点为圆心且与相切的圆上,若,则的最大值为 ( ) A . B .CD .【答案】A【解析】法一:以为坐标原点,所在直线为轴,所在直线为轴建立平面直角坐标系,如下图则,,,,连结,过点作于点 在中,有即所以圆的方程为 可设由可得 ABCD 1AB =2AD =P C BDAP AB AD λμ=+λμ+32A AB x AD y ()0,0A ()1,0B ()0,2D ()1,2C BD C CE BD ⊥E Rt BDC∆BD =1122ACD S BC CD BD CE =⨯⨯=⨯⨯△111222CE CE ⨯⨯=⇒=C ()()224125x y -+-=1,2P θθ⎛⎫+ ⎪ ⎪⎝⎭AP AB AD λμ=+()1,2,255θθλμ⎛⎫++= ⎪ ⎪⎝⎭所以,所以 其中, 所以的最大值为,故选A .法二:通过点作于点,由,,可求得又由,可求得由等和线定理可知,当点的切线(即)与平行时,取得最大值又点到的距离与点到直线而此时点到直线151λθμθ⎧=+⎪⎪⎨⎪=⎪⎩2λμθθ+=()2sin θϕ=++sin ϕ=cos ϕ=λμ+3C CE BD ⊥E 1AB =2AD =BD =1122ACD S CD CB BD CE =⨯⨯=⨯⨯△CE =P FH DB λμ+A BD C BD A FH 22r +=+=所以,所以的最大值为,故选A . 另一种表达:如图,由“等和线”相关知识知,当点在如图所示位置时,最大,且此时若,则有,由三角形全等可得,知,所以选A .法三:如图,建立平面直角坐标系设,即圆的方程是,若满足即 , ,所以,设 ,即,3AFAB ==λμ+3P λμ+AG xAB yAD =+x y λμ+=+2AD DF FG ===3,0x y ==()()()()0,1,0,0,2,1,,A B D P x y ()22425x y -+=()()(),1,0,1,2,0AP x y AB AD =-=-=AP AB AD λμ=+21x y μλ=⎧⎨-=-⎩,12x y μλ==-12x y λμ+=-+12x z y =-+102x y z -+-=点在圆上,所以圆心到直线的距离,,解得,所以的最大值是,即的最大值是,故选A . 法四:由题意,画出右图.设与切于点,连接.以为原点,为轴正半轴,为轴正半轴建立直角坐标系则点坐标为.∵,.∴.切于点.∴⊥.∴是中斜边上的高. 即在上.∴点的轨迹方程为.设点坐标,可以设出点坐标满足的参数方程如下:而,,. ∵ ∴,. 两式相加得:(),P x y ()22425x y -+=d r ≤≤13z ≤≤z 3λμ+3BD C E CE A AD x AB y C (2,1)||1CD =||2BC=BD BD C E CEBDCERt BCD△BD12||||22||||||BCD BC CD S EC BD BD ⋅⋅⋅====△C P C P 224(2)(1)5x y -+-=P 00(,)x y P 0021x y θθ⎧=+⎪⎪⎨⎪=⎪⎩00(,)AP x y =(0,1)AB =(2,0)AD =(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=0112x μθ==01y λθ==(其中,当且仅当,时,取得最大值3. 【考点】平面向量的坐标运算;平面向量基本定理【点评】(1)应用平面向量基本定理表示向量是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.8.(2017年高考数学课标Ⅱ卷理科)已知是边长为2的等边三角形,为平面内一点,则的最小值是( )A .B .C .D .【答案】B【命题意图】本题主要考查等边三角形的性质及平面向量的线性运算﹑数量积,意在考查考生 转化与化归思想和运算求解能力 【解析】解法一:建系法连接,,,.,∴∴ ∴,∴ ∴最小值为 解法二:均值法∵,∴112)2sin()3λμθθθϕθϕ+=+++=++=++≤sin ϕ=cos ϕ=π2π2k θϕ=+-k ∈Z λμ+ABC ∆P ABC ()PA PB PC ⋅+2-32-43-1-OP (OA =()1,0OB =-()1,0OC =2PC PB PO +=()(),PO PA x y x y ⋅=--⋅-222234PO PA x y x y ⎛⋅=+=+- ⎝⎭34PO PA ⋅≥-()322PA PC PB PO PA ⋅+=⋅≥-32-2PC PB PO +=()2PA PC PB PO PA ⋅+=⋅由上图可知:;两边平方可得∵ ,∴ ∴ ,∴最小值为解法三:配凑法 ∵∴∴最小值为【知识拓展】三角形与向量结合的题属于高考经典题,一般在压轴题出现,解决此类问题的通 法就是建系法,比较直接,易想,但有时计算量偏大. 【考点】 平面向量的坐标运算,函数的最值【点评】平面向量中有关最值问题的求解通常有两种思路:一是“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;二是“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式我解集,方程有解等问题,然后利用函数、不等式、方程的有关知识来解决. 9.(2016高考数学课标Ⅲ卷理科)已知向量1(,)22BA =,31()22BC =,则ABC ∠= ( )A .30︒B .45︒C .60︒D .120︒【答案】A【解析】由题意,得112222cos 112BA BC ABC BA BC⨯⋅∠===⨯⋅,所以30ABC ∠=︒,故选A . 10.(2016高考数学课标Ⅱ卷理科)已知向量(1,)(3,2)a m b =-,=,且()a b b ⊥+,则m = ( )A .8-B .6-C .6D .8【答案】D【解析】由()a b b ⊥+可得:()0a b b +=,所以20a bb,又(1,)(3,2)a m b =-,= 所以2232+(3(2))0m -+-=,所以8m ,故选D .11.(2015高考数学新课标1理科)设D 为ABC 所在平面内一点3BC CD =,则 ( )OA PA PO =-()()2232PA PO PA PO =+-⋅()()222PA POPA PO +≥-⋅322PO PA ⋅≥-()322PA PC PB PO PA ⋅+=⋅≥-32-2PC PB PO +=()()()()()222232222PO PA PO PA PO PA AO PA PC PB PO PA +--+-⋅+=⋅==≥-32-A .1433AD AB AC =-+ B .1433AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =- 【答案】A解析:由题知11()33AD AC CD AC BC AC AC AB =+=+=+-==1433AB AC -+,故选A . 考点:平面向量的线性运算12.(2014高考数学课标2理科)设向量a ,b 满足|a +b,|a -b,则a b = ( )A .1B .2C .3D .5【答案】A解析:因为222||()210,a b a b a b a b +=+=++⋅=222||()26,a b a b a b a b -=-=+-⋅= 两式相加得:228,a b +=所以1a b ⋅=,故选A . 考点:(1)平面向量的模;(2)平面向量的数量积难度:B 备注:常考题 二、填空题13.(2021年高考全国甲卷理科)已知向量()()3,1,1,0,a b c a kb ===+.若a c ⊥,则k =________.【答案】103-. 解析:()()()3,1,1,0,3,1a b c a kb k ==∴=+=+,(),33110a c a c k ⊥∴⋅=++⨯=,解得103k =-, 故答案为:103-. 【点睛】本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量()()1122,,,p x y q x y ==垂直的充分必要条件是其数量积12120x x y y +=.14.(2021年高考全国乙卷理科)已知向量()()1,3,3,4a b ==,若()a b b λ-⊥,则λ=__________.【答案】35解析:因为()()()1,33,413,34a b λλλλ-=-=--,所以由()a b b λ-⊥可得,()()3134340λλ-+-=,解得35λ=.⋅故答案为:35. 【点睛】本题解题关键是熟记平面向量数量积的坐标表示,设()()1122,,,a x y b x y ==,121200a b a b x x y y ⊥⇔⋅=⇔+=,注意与平面向量平行的坐标表示区分.15.(2020年高考数学课标Ⅰ卷理科)设,a b 为单位向量,且||1a b +=,则||a b -=______________.【解析】因为,a b 为单位向量,所以1a b == 所以()2222221a b a ba ab b a b +=+=+⋅+=+⋅=解得:21a b ⋅=- 所以()22223a b a ba ab b -=-=-⋅+=【点睛】本题主要考查了向量模的计算公式及转化能力,属于中档题.16.(2020年高考数学课标Ⅱ卷理科)已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.【答案】2解析:由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:202k a a b k →→→⨯-⋅=-=,解得:2k =.【点睛】本题主要考查平面向量的数量积定义与运算法则,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.17.(2019年高考数学课标Ⅲ卷理科)已知a ,b 为单位向量,且·=0a b ,若25c a b =-,则cos ,a c 〈〉=___________.【答案】23. 【解析】因为25c a b =-,·=0a b ,所以225=2a c a a b ⋅=-⋅,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c 〈〉=22133a c a c ⋅==⨯⋅. 【点评】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案.18.(2018年高考数学课标Ⅲ卷(理))已知向量()1,2a =,()2,2b =-,()1,c λ=,若()//2c a b +,则λ= .【答案】12解析:依题意可得()()()22,42,24,2a b +=+-=,又()1,c λ=,()//2c a b +所以4210λ⨯-⨯=,解得12λ=. 19.(2017年高考数学新课标Ⅰ卷理科)已知向量,的夹角为,,,则__________.【答案】【解析】法一:所以.法二(秒杀解法):利用如下图形,可以判断出的模长是以为边长的菱形对角线的长度,则为法三:坐标法a b 60︒2a =1b =2a b +=222|2|||44||4421cos60412a b a a b b +=+⋅+=+⨯⨯⨯+=|2|23a b +=2a b +2依题意,可设,,所以 所以.【考点】平面向量的运算【点评】平面向量中涉及到有关模长的问题,用到的通法是将模长进行平方,利用向量数量积的知识进行解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.20.(2016高考数学课标Ⅰ卷理科)设向量(),1a m =,()1,2b =,且222a b a b +=+,则m = . 【答案】2m =-【解析】由已知得:()1,3a b m +=+∴()22222222213112a b a b m m +=+⇔++=+++,解得2m =-. 21.(2015高考数学新课标2理科)设向量a ,b 不平行,向量a b λ+与2a b +平行,则实数λ=_________. 【答案】12解析:因为向量a b λ+与2a b +平行,所以2a b k a b λ+=+(),则12,k k λ=⎧⎨=⎩,所以12λ=. 考点:向量共线.22.(2014高考数学课标1理科)已知A ,B ,C 是圆O 上的三点,若,则与的夹角为______.【答案】解析:∵,∴O 为线段BC 中点,故BC 为的直径, ∴,∴与的夹角为.考点:(1)平面向量在几何中的应用(2)向量的夹角(3)化归与转化思想难度:B备注:高频考点23.(2013高考数学新课标2理科)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=________.【答案】2解析:由题意知:2211402222AE BD AD AD AB AB ⋅=-⋅-=--= 考点:(1)5.1.2向量的线性运算;(2)5.3.1平面向量的数量积运算()2,0a=13,22b ⎛⎫= ⎪⎪⎝⎭()((22,0a b +=+=(223a b +=+=1()2AO AB AC =+AB AC 0901()2AO AB AC =+O 090BAC ∠=AB AC 090难度: A备注:高频考点24.(2013高考数学新课标1理科)已知两个单位向量,a b 的夹角为60°,(1)c ta t b =+-,若0b c •=,则t =_____.【答案】 2解析:•b c =[(1)]t t •+-b a b =2(1)t t •+-a b b =112t t +-=112t -=0,解得t =2. 考点: (1)5.3.1平面向量的数量积运算.难度:A备注:高频考点。
历年高考数学向量分类汇编(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(历年高考数学向量分类汇编(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为历年高考数学向量分类汇编(word版可编辑修改)的全部内容。
2011-2017新课标向量分类汇编一、理科【2011新课标】(10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈ ⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是( A )(A )14,P P (B )13,PP (C )23,P P (D)24,P P【2012新课标】(13)已知向量夹角为45︒ ,且;则【2013新课标1】13、已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t)b ,若b ·c =0,则t =__2___.【2013新课标2】13.已知正方形ABCD 的边长为2,E 为CD的中点,则=__________.【2014新课标1】15.已知A,B ,C 为圆O 上的三点,若=(+),则与的夹角为 _________ .【2014新课标2】3。
设向量a,b 满足|a+b |10|a —b |=6,则a ⋅b = ( A )A. 1 B 。
2 C 。
3 D. 5【2015新课标1】(7)设D 为△ABC 所在平面内一点BC ®=3CD ®,则( A )(A)→→→+-=AC AB AD 3431 (B)→→→-=AC AB AD 3431 (C )→→→+=AC AB AD 3134 (D )→→→-=AC AB AD 3134【2015新课标2】(13)设向量a ,b 不平行,向量a b λ+与2a b +平行,则实数λ=______12___.【2016新课标1】(13)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =2- 。
平面向量【基本概念与公式】【任何时候写向量时都要带箭头】1. 向量:既有大小又有方向的量。
记作:uuur rAB 或 a 。
uuur r2.向量的模:向量的大小(或长度),记作: | AB |或 | a |。
r r3. 单位向量:长度为 1 的向量。
若e是单位向量,则| e| 1。
r r4.零向量:长度为 0 的向量。
记作:0。
【0方向是任意的,且与任意向量平行】5.平行向量(共线向量):方向相同或相反的向量。
6.相等向量:长度和方向都相同的向量。
7.相反向量:长度相等,方向相反的向量。
8.三角形法则:uuur uuur AB BA。
uuur uuur uuur uuur uuur uuur uuur uuur uuur uuur uuurAB BC AC;AB BC CD DE AE; AB AC CB (指向被减数)9.平行四边形法则:r r r r r r以 a, b 为临边的平行四边形的两条对角线分别为a b , a b 。
r r r r r r r r10. 共线定理:a b a / /b 。
当0 时,a与b同向;当0 时,a与b反向。
11.基底:任意不共线的两个向量称为一组基底。
12.r rx2y 2r 2r r r r r2向量的模:若 a(x, y) ,则| a |, a| a |2, | a b |( a b)r r r rr rcos ra br13.数量积与夹角公式: a b| a | | b | cos;| a || b |r r r r r r r r14.平行与垂直: a / / b a b x1 y2x2 y1; a b a b0x1 x2y1 y2 0题型 1. 基本概念判断正误:(1)共线向量就是在同一条直线上的向量。
(2)若两个向量不相等,则它们的终点不可能是同一点。
( 3)与已知向量共线的单位向量是唯一的。
( 4)四边形 ABCD是平行四边形的条件是uuur uuurAB CD 。
向量高考经典试题一、选择题1.(全国1文理)已知向量(5,6)a =-,(6,5)b =,则a 与bA .垂直B .不垂直也不平行C .平行且同向D .平行且反向 解.已知向量(5,6)a =-,(6,5)b =,30300a b ⋅=-+=,则a 与b 垂直,选A 。
2、(文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( )A .1BC .2D .4【答案】:C 【分析】:2(3,)n -a b =,由2-a b 与b 垂直可得:2(3,)(1,)30n n n n ⋅-=-+=⇒= 2=a 。
3、(文4理10)若向量,a b 满足||||1a b ==,,a b 的夹角为60°,则a a a b ⋅+⋅=______; 答案:32;解析:1311122a a ab ⋅+⋅=+⨯⨯=, 4、(天津理10) 设两个向量22(2,cos )a λλα=+-和(,sin ),2mb m α=+其中,,m λα为实数.若2,a b =则mλ的取值围是( )A.[6,1]-B.[4,8]C.(,1]-∞D.[1,6]-【答案】A【分析】由22(2,cos )a λλα=+-,(,sin ),2mb m α=+2,a b =可得2222cos 2sin m m λλαα+=⎧⎨-=+⎩,设k m λ=代入方程组可得22222cos 2sin km m k m m αα+=⎧⎨-=+⎩消去m 化简得2222cos 2sin 22k k k αα⎛⎫-=+ ⎪--⎝⎭,再化简得22422cos 2sin 022k k αα⎛⎫+-+-= ⎪--⎝⎭再令12t k =-代入上式得222(sin 1)(16182)0t t α-+++=可得2(16182)[0,4]t t -++∈解不等式得1[1,]8t ∈--因而11128k -≤≤--解得61k -≤≤.故选A5、(理11)在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是 (A )2AC AC AB =⋅ (B ) 2BC BA BC =⋅ (C )2AB AC CD =⋅ (D ) 22()()AC AB BA BC CD AB⋅⨯⋅=【答案】:C.【分析】: 2()00AC AC AB AC AC AB AC BC =⋅⇔⋅-=⇔⋅=,A 是正确的,同理B 也正确,对于D 答案可变形为2222CD AB AC BC ⋅=⋅,通过等积变换判断为正确.6、(全国2 理5)在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =CB CA λ+31,则λ=(A)32(B)31(C) -31(D) -32 解.在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,=CB CA λ+31,则22()33CD CA AD CA AB CA CB CA =+=+=+-=1233CA CB +,4 λ=32,选A 。
2022届全国高考数学真题分类(平面向量)汇编一、选择题 1.(2022∙全国乙(文)T3) 已知向量(2,1)(2,4)a b ==- ,,则a b -r r ( )A. 2B. 3C. 4D. 52.(2022∙全国乙(理)T3) 已知向量,a b 满足||1,||2|3a b a b ==-= ,则a b ⋅= ( ) A. 2- B. 1- C. 1 D. 2 3.(2022∙新高考Ⅰ卷T3) 在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n == ,,则CB =( )A. 32m n -B. 23m n -+C. 32m n +D. 23m n +4.(2022∙新高考Ⅱ卷T4) 已知(3,4),(1,0),t ===+ a b c a b ,若,,<>=<> a c b c ,则t =( )A. 6-B. 5-C. 5D. 6二、填空题 1.(2022∙全国甲(文)T13) 已知向量(,3),(1,1)a m b m ==+ .若a b ⊥ ,则m =______________.2.(2022∙全国甲(理)T13) 设向量a ,b 的夹角的余弦值为13,且1a = ,3b =r ,则()2a b b +⋅= _________.参考答案一、选择题1.【答案】D【答案解析】【名师分析】先求得a b - ,然后求得a b -r r .【答案详解】因为()()()2,12,44,3a b -=--=- ,所以5-== a b .故选:D2.【答案】C【答案解析】【名师分析】根据给定模长,利用向量的数量积运算求解即可. 【答案详解】解:∵222|2|||44-=-⋅+ a b a a b b ,又∵||1,||2|3,==-= a b a b ∴91443134=-⋅+⨯=-⋅ a b a b , ∴1a b ⋅= 故选:C.3. 【答案】B【答案解析】【名师分析】根据几何条件以及平面向量的线性运算即可解出.【答案详解】因为点D 在边AB 上,2BD DA =,所以2BD DA = ,即()2CD CB CA CD -=- , 所以CB =3232CD CA n m -=- 23m n =-+.故选:B .4.【答案】C【答案解析】【名师分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得 【答案详解】解:()3,4c t =+ ,cos ,cos ,a c b c = ,即931635t t c c+++= ,解得5t =, 故选:C二、填空题1. 【答案】34-或0.75- 【答案解析】 【名师分析】直接由向量垂直的坐标表示求解即可.【答案详解】由题意知:3(1)0a b m m ⋅=++= ,解得34m =-. 故答案为:34-. 2. 【答案】11【答案解析】【名师分析】设a 与b 的夹角为θ,依题意可得1cos 3θ=,再根据数量积的定义求出a b ⋅ ,最后根据数量积的运算律计算可得.【答案详解】解:设a 与b 的夹角为θ,因为a 与b 的夹角的余弦值为13,即1cos 3θ=, 又1a = ,3b =r ,所以1cos 1313a b a b θ⋅=⋅=⨯⨯= , 所以()22222221311a b b a b b a b b +⋅=⋅+=⋅+=⨯+= . 故答案为:11.。
第五章 第二节一、选择题1.(文)(2014·郑州月考)设向量a =(m,1),b =(1,m ),如果a 与b 共线且方向相反,则m 的值为( )A .-1B .1C .-2D .2[答案] A[解析] 设a =λb (λ<0),即m =λ且1=λm .解得m =±1,由于λ<0,∴m =-1.[点评] 1.注意向量共线与向量垂直的坐标表示的区别,若a =(x 1,y 1),b =(x 1,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0,当a ,b 都是非零向量时,a ⊥b ⇔x 1x 2+y 1y 2=0,同时还要注意a ∥b 与x 1x 2=y 1y 2不等价. 2.证明共线(或平行)问题的主要依据:(1)对于向量a ,b ,若存在实数λ,使得b =λa ,则向量a 与b 共线(平行). (2)a =(x 1,y 1),b =(x 2,y 2),若x 1y 2-x 2y 1=0,则向量a ∥b . (3)对于向量a ,b ,若|a ·b |=|a |·|b |,则a 与b 共线. 要注意向量平行与直线平行是有区别的.(理)(2013·荆州质检)已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则m n =( )A .-2B .2C .-12D .12[答案] C[解析] 由向量a =(2,3),b =(-1,2)得m a +n b =(2m -n,3m +2n ),a -2b =(4,-1),因为m a +n b 与a -2b 共线,所以(2m -n )×(-1)-(3m +2n )×4=0,整理得m n =-12.2.(2014·山东青岛期中)设a ,b 都是非零向量,下列四个条件中,一定能使a |a |+b|b |=0成立的是( )A .a =-13bB .a ∥bC .a =2bD .a ⊥b[答案] A[解析] 由题意得a |a |=-b |b |,而a |a |表示与a 同向的单位向量,-b|b |表示与b 反向的单位向量,则a 与b 反向.而当a =-13b 时,a 与b 反向,可推出题中条件.易知B ,C ,D 都不正确,故选A.[警示] 由于对单位向量、相等向量以及共线向量的概念理解不到位从而导致错误,特别对于这些概念:(1)单位向量a|a |,要知道它的模长为1,方向同a 的方向;(2)对于任意非零向量a 来说,都有两个单位向量,一个与a 同向,另一个与a 反向;(3)平面内的所有单位向量的起点都移到原点,则单位向量的终点的轨迹是个单位圆;(4)相等向量的大小不仅相等,方向也必须相同,而相反向量大小相等,方向是相反的;(5)相等向量和相反向量都是共线向量,但共线向量不一定是相等向量,也有可能是相反向量.3.(2015·广州执信中学期中)在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若P A →=(4,3),PQ →=(1,5),则BC →=( )A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21)[答案] B[解析] 由条件知,PC →=2PQ →-P A →=2(1,5)-(4,3)=(-2,7), ∵BP →=2PC →=(-4,14), ∴BC →=BP →+PC →=(-6,21).4.在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,其中a ,b 不共线,则四边形ABCD 为( )A .平行四边形B .矩形C .梯形D .菱形 [答案] C[解析] ∵AD →=AB →+BC →+CD →=-8a -2b =2BC →, ∴四边形ABCD 为梯形.5.(文)(2014·德州模拟)设OB →=xOA →+yOC →,x ,y ∈R 且A ,B ,C 三点共线(该直线不过点O ),则x +y =( )A .-1B .1C .0D .2[答案] B[解析] 如图,设AB →=λAC →,则OB →=OA →+AB →=OA →+λAC →=OA →+λ(OC →-OA →) =OA →+λOC →-λOA →=(1-λ)OA →+λOC → ∴x =1-λ,y =λ,∴x +y =1.[点评] 用已知向量来表示另外一些向量是用向量解题的基本功.在进行向量运算时,要尽可能将它们转化到平行四边形或三角形中,以便使用向量的运算法则进行求解.充分利用平面几何的性质,可把未知向量用已知向量表示出来.(理)(2013·安庆二模)已知a ,b 是不共线的两个向量,AB →=x a +b ,AC →=a +y b (x ,y ∈R ),若A ,B ,C 三点共线,则点P (x ,y )的轨迹是( )A .直线B .双曲线C .圆D .椭圆[答案] B[解析] ∵A ,B ,C 三点共线, ∴存在实数λ,使AB →=λAC →.则x a +b =λ(a +y b )⇒⎩⎪⎨⎪⎧x =λ,1=λy ⇒xy =1,故选B.6.(2014·湖北武汉调研)如图所示的方格纸中有定点O ,P ,Q ,E ,F ,G ,H ,则OP →+OQ →=( )A.OH → B .OG → C.EO → D .FO →[答案] D[解析] 由平行四边形法则和图示可知,选D.二、填空题7.已知a =(2,-3),b =(sin α,cos 2α),α∈⎝⎛⎭⎫-π2,π2,若a ∥b ,则tan α=________. [答案] -33[解析] ∵a ∥b ,∴sin α2=cos 2α-3,∴2cos 2α=-3sin α,∴2sin 2α-3sin α-2=0, ∵|sin α|≤1,∴sin α=-12,∵α∈⎝⎛⎭⎫-π2,π2,∴cos α=32,∴tan α=-33. 8.(文)(2014·宜春质检)如图所示,在△ABC 中,H 为BC 上异于B ,C 的任一点,M 为AH 的中点,若AM →=λAB →+μAC →,则λ+μ=________.[答案] 12[分析] 由B ,H ,C 三点共线可用向量AB →,AC →来表示AH →.[解析] 由B ,H ,C 三点共线,可令AH →=xAB →+(1-x )AC →,又M 是AH 的中点,所以AM →=12AH →=12xAB →+12(1-x )·AC →,又AM →=λAB →+μAC →.所以λ+μ=12x +12(1-x )=12. [点评] 应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算,共线向量定理的应用起着至关重要的作用.当基底确定后,任一向量的表示都是唯一的.(理)(2014·河北二调)在△ABC 中,AC =1,AB =2,A =2π3,过点A 作AP ⊥BC 于点P ,且AP →=λAB →+μAC →,则λμ=________.[答案]1049[解析] 由题意知AB →·AC →=2×1×cos 2π3=-1,∵AP ⊥BC ,∴AP →·BC →=0,即(λAB →+μAC →)·(AC →-AB →)=0,∴(λ-μ)AB →·AC →-λAB →2+μAC →2=0,即μ-λ-4λ+μ=0,∴μ=52λ,①∵P ,B ,C 三点共线,∴λ+μ=1,②由①②联立解得⎩⎨⎧λ=27μ=57,即λμ=27×57=1049.9.(文)已知G 是△ABC 的重心,直线EF 过点G 且与边AB 、AC 分别交于点E 、F ,AE →=αAB →,AF →=βAC →,则1α+1β=______.[答案] 3[解析] 连结AG 并延长交BC 于D ,∵G 是△ABC 的重心,∴AG →=23AD →=13(AB →+AC →),设EG →=λGF →,∴AG →-AE →=λ(AF →-AG →),∴AG →=11+λAE →+λ1+λAF →,∴13AB →+13AC →=α1+λAB →+λβ1+λAC →, ∴⎩⎪⎨⎪⎧ α1+λ=13,λβ1+λ=13,∴⎩⎪⎨⎪⎧1α=31+λ,1β=3λ1+λ,∴1α+1β=3. (理)在△ABC 中,过中线AD 的中点E 任作一条直线分别交AB 、AC 于M 、N 两点,若AM →=xAB →,AN →=yAC →,则4x +y 的最小值为________.[答案] 94[解析] 如图所示,由题意知AD →=12(AB →+AC →),AE →=12AD →,又M ,E ,N 三点共线,所以AE →=λAM →+(1-λ)AN →(其中0<λ<1), 又AM →=xAB →,AN →=yAC →,所以14(AB →+AC →)=λx AB →+(1-λ)yAC →,因此有⎩⎪⎨⎪⎧4λx =1,4(1-λ)y =1,解得x =14λ,y =14(1-λ),令1λ=t ,∴t >1, 则4x +y =1λ+14(1-λ)=t +t4(t -1)=(t -1)+14(t -1)+54≥94,当且仅当t =32,即λ=23时取得等号.三、解答题10.(文)已知O (0,0)、A (2,-1)、B (1,3)、OP →=OA →+tOB →,求 (1)t 为何值时,点P 在x 轴上?点P 在y 轴上?点P 在第四象限? (2)四点O 、A 、B 、P 能否成为平行四边形的四个顶点,说明你的理由. [解析] (1)OP →=OA →+tOB →=(t +2,3t -1).若点P 在x 轴上,则3t -1=0,∴t =13;若点P 在y 轴上,则t +2=0,∴t =-2;若点P 在第四象限,则⎩⎪⎨⎪⎧t +2>03t -1<0,∴-2<t <13.(2)OA →=(2,-1),PB →=(-t -1,-3t +4). 若四边形OABP 为平行四边形,则OA →=PB →.∴⎩⎪⎨⎪⎧-t -1=2-3t +4=-1无解. ∴ 四边形OABP 不可能为平行四边形.同理可知,当t =1时,四边形OAPB 为平行四边形,当t =-1时,四边形OP AB 为平行四边形.(理)已知向量a =(1,2),b =(cos α,sin α),设m =a +t b (t 为实数). (1)若α=π4,求当|m |取最小值时实数t 的值;(2)若a ⊥b ,问:是否存在实数t ,使得向量a -b 和向量m 的夹角为π4,若存在,请求出t ;若不存在,请说明理由.[解析] (1)∵α=π4,∴b =(22,22),a ·b =322,∴|m |=(a +t b )2=5+t 2+2t a ·b =t 2+32t +5=(t +322)2+12, ∴当t =-322时,|m |取到最小值,最小值为22.(2)由条件得cos π4=(a -b )·(a +t b )|a -b ||a +t b |,∵|a -b |=(a -b )2=6,|a +t b |=(a +t b )2=5+t 2,(a -b )·(a +t b )=5-t ,∴5-t 65+t 2=22,且t <5∴t 2+5t -5=0,∴存在t =-5±352满足条件.一、选择题11.平面上有四个互异的点A 、B 、C 、D ,满足(AB →-BC →)·(AD →-CD →)=0,则三角形ABC 是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形[答案] B[解析] (AB →-BC →)·(AD →-CD →) =(AB →-BC →)·(AD →+DC →)=(AB →-BC →)·AC →=(AB →-BC →)·(AB →+BC →) =|AB →|2-|BC →|2=0,故|AB →|=|BC →|,即△ABC 是等腰三角形.12.如图,△ABC 中,AD =DB ,AE =EC ,CD 与BE 交于F ,设AB →=a ,AC →=b ,AF →=x a +y b ,则(x ,y )为( )A.⎝⎛⎭⎫12,12 B .⎝⎛⎭⎫23,23 C.⎝⎛⎭⎫13,13 D .⎝⎛⎭⎫23,12[答案] C[解析] 设CF →=λCD →,∵E 、D 分别为AC 、AB 的中点, ∴BE →=BA →+AE →=-a +12b ,BF →=BC →+CF →=(b -a )+λ(12a -b )=⎝⎛⎭⎫12λ-1a +(1-λ)b ,∵BE →与BF →共线,∴12λ-1-1=1-λ12,∴λ=23,∴AF →=AC →+CF →=b +23CD →=b +23⎝⎛⎭⎫12a -b =13a +13b ,故x =13,y =13. 13.已知平行四边形ABCD ,点P 为四边形内部或者边界上任意一点,向量AP →=xAB →+yAD →,则“0≤x ≤12,0≤y ≤23”的概率是( )A.13 B .23C.14 D .12[答案] A[解析] 根据平面向量基本定理,点P 只要在如图所示的区域AB 1C 1D 1内即可,这个区域的面积是整个四边形面积的12×23=13,故所求的概率是13.14.(文)(2014·浙江十校联考)称d (a ,b )=|a -b |为两个向量a ,b 间的“距离”.若向量a ,b 满足:①|b |=1;②a ≠b ;③对任意的t ∈R ,恒有d (a ,t b )≥d (a ,b ),则( )A .a ⊥bB .b ⊥(a -b )C .a ⊥(a -b )D .(a +b )⊥(a -b )[答案] B[解析] 由于d (a ,b )=|a -b |,所以对任意的t ∈R ,恒有d (a ,t b )≥d (a ,b ),即|a -t b |≥|a -b |,由图示可知,向量a -t b 的模的最小值是a -b 的模,故a -b 与b 垂直,故选B.(理)(2014·浙江)记max{x ,y }=⎩⎪⎨⎪⎧ x ,x ≥y y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y x ,x <y ,设a ,b 为平面向量,则( )A .min{|a +b |,|a -b |}≤min{|a |,|b |}B .min{|a +b |,|a -b |}≥min{|a |,|b |}C .max{|a +b |2,|a -b |2}≤|a |2+|b |2D .max{|a +b |2,|a -b |2}≥|a |2+|b |2 [答案] D[解析] 由新定义知,max{x ,y }是x 与y 中的较大值,min{x ,y }是x ,y 中的较小值,据此可知A 、B 是比较|a +b |与|a -b |中的较小值与|a |与|b |中的较小值的大小,由平行四边形法则知其大小与〈a ,b 〉有关,故A 、B 错;当〈a ,b 〉为锐角时,|a +b |>|a -b |,此时|a +b |2>|a |2+|b |2. 当〈a ,b 〉为钝角时,|a +b |<|a -b |,此时|a +b |2<|a |2+|b |2<|a -b |2. 当〈a ,b 〉=90°时,|a +b |=|a -b |,此时|a +b |2=|a |2+|b |2. 故选D. 二、填空题15.(2013·广东江门质检)设a ,b 是两个不共线向量,AB →=2a +p b ,BC →=a +b ,CD →=a -2b ,若A 、B 、D 三点共线,则实数p 的值是________.[答案] -1[解析] ∵A 、B 、D 三点共线,∴AB →与BD →共线, ∵AB →=2a +p b ,BD →=BC →+CD →=2a -b , ∴存在实数λ,使2a +p b =λ(2a -b ), ∵a 与b 不共线,∴λ=1,p =-1.16.(2014·广雅中学月考)梯形ABCD 中,AB ∥CD ,AB =2CD ,M 、N 分别是CD 、AB 的中点,设AB →=a ,AD →=b .若MN →=m a +n b ,则n m=________.[答案] -4[解析] MN →=MD →+DA →+AN →=-14a -b +12a =14a -b ,∴m =14,n =-1,∴n m =-4.三、解答题17.(2014·福建三明检测)已知向量a =(sin α,-2),b =(1,cos α),其中α∈(0,π2).(1)向量a ,b 能平行吗?请说明理由.(2)若a ⊥b ,求sin α和cos α的值.(3)在(2)的条件下,若cos β=1010,β∈(0,π2),求α+β的值. [解析] (1)向量a ,b 不能平行.若平行,需sin αcos α+2=0,即sin2α=-4,而-4∉[-1,1],∴向量a ,b 不能平行.(2)∵a ⊥b ,∴a ·b =sin α-2cos α=0,即sin α=2cos α.又∵sin 2α+cos 2α=1,∴4cos 2α+cos 2α=1,即cos 2α=15, ∴sin 2α=45.又α∈(0,π2), ∴sin α=255,cos α=55. (3)由(2)知sin α=255,cos α=55,cos β=1010,β∈(0,π2),得sin β=31010. 则cos(α+β)=cos αcos β-sin αsin β=55×1010-255×31010=-22. 又α+β∈(0,π),则α+β=3π4. 18.(2014·宁阳一中检测)如图所示,△ABC 中,点M 是BC 的中点,点N 在边AC 上,且AN =2NC ,AM 与BN 相交于点P ,求AP PM 的值.[解析] 设BM →=e 1,CN →=e 2,则AM →=AC →+CM →=-3e 2-e 1,BN →=2e 1+e 2,∵A 、P 、M 和B 、P 、N 分别共线,∴存在λ、μ∈R ,使AP →=λAM →=-λe 1-3λe 2,BP →=μBN →=2μe 1+μe 2. 故BA →=BP →-AP →=(λ+2μ)e 1+(3λ+μ)e 2, 而BA →=BC →+CA →=2e 1+3e 2,∴由平面向量基本定理得⎩⎪⎨⎪⎧ λ+2μ=2,3λ+μ=3,∴⎩⎨⎧ λ=45,μ=35.∴AP →=45AM →,即AP PM =4 1.。
2020年高考数学分类汇编:向量、不等式、二项式定理6. 已知向量a,b 满足5a =,6b =,·6a b =-,则cos(,)a a b += A.3135-B. 1935-C.1735 D.193512.已知5458<,45138<,设5a log 3=,8b=log 5,13c log 8=,则 A. a b c << B. b a c << C. b c a << D. c a b <<10.设3log 2a =,5log 3b =,23c =,则 A .a c b << B.a b c << C. b c a << D. c a b <<7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范用是 A .()2,6- B .()6,2- C .()2,4-D .()4,6-11.已知a >0,b >0,且a +b =1,则A .2212a b +≥B .122a b ->C .22log log 2a b +≥-D5.已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是 A .a +2bB .2a +bC .a –2bD .2a –b13.若x,y 满足约束条件x 02x 01y y x +≥⎧⎪-≥⎨⎪≤⎩,则z=3x+2y 的最大值为_____.14.262x )x+(的展开式中常数项是______(用数字作答). 13.若x ,y 满足约束条件x 02x 01y y x +≥⎧⎪-≥⎨⎪≤⎩,则z=3x+2y 的最大值为_____.3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有 A .120种 B .90种 C .60种D .30种7.执行右面的程序框图,若输入的k =0,a =0,则输出的k 为A .2B .3C .4D .512.若2x -2y <3−x -3−y ,则A .ln(y -x +1)>0B .ln(y -x +1)<0C .ln ∣x -y ∣>0D .ln ∣x -y ∣<015.若x ,y 满足约束条件1121,x y x y x y +≥-⎧⎪-≥-⎨⎪-≤⎩,,则2z x y =+的最大值是__________.11.若2x -2y <3−x -3−y ,则A .ln(y -x +1)>0B .ln(y -x +1)<0C .ln ∣x -y ∣>0D .ln ∣x -y ∣<013.已知单位向量a ,b 的夹角为45°,k a –b 与a 垂直,则k =__________.14.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.13.若x ,y 满足约束条件220,10,10,x y x y y +-≤⎧⎪--≥⎨⎪+≥⎩则z =x +7y 的最大值为.14.设,a b 为单位向量,且||1+=a b ,则||-=a b .8.25()()x x y xy ++的展开式中x 3y 3的系数为 A .5 B .10 C .15D .2012.若242log 42log a ba b +=+,则A .2a b >B .2a b <C .2a b >D .2a b <13.若x ,y 满足约束条件220,10,10,x y x y y +-≤⎧⎪--≥⎨⎪+≥⎩则z =x +7y 的最大值为.14.设向量(1,1),(1,24)m m =-=+-a b ,若⊥a b ,则m =. 5.如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是▲.12.已知22451(,)x y y x y +=∈R ,则22x y +的最小值是___▲_______.13.在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是__▲________.3.若实数x ,y 满足约束条件31030x y x y -+≤⎧⎨+-≥⎩,则2z x y =+的取值范围是A .(,4]-∞B .[4,)+∞C .[5,)+∞D .(,)-∞+∞9.已知a ,b ∈R 且ab ≠0,对于任意x ≥0均有(x –a )(x –b )(x –2a –b )≥0,则 A .a <0B .a >0C .b <0D .b >010.设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有2个元素,且S ,T 满足:①对于任意的x ,y ∈S ,若x ≠y ,则xy ∈T ;②对于任意的x ,y ∈T ,若x <y ,则yx∈S .下列命题正确的是 A .若S 有4个元素,则S ∪T 有7个元素 B .若S 有4个元素,则S ∪T 有6个元素 C .若S 有3个元素,则S ∪T 有5个元素 D .若S 有3个元素,则S ∪T 有4个元素12.二项展开式23450123545(2)1x a a x a x a x a x a x ++++++=,则4a =_______,135a a a ++=________.17.已知平面单位向量1e ,2e 满足122||-≤e e 设12=+a e e ,123=+b e e ,向量a ,b 的夹角为θ,则2cos θ的最小值是_______.2.设a ∈R ,则“1a >”是“2a a >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.在52)的展开式中,2x 的系数为( ).A .5-B .5C .10-D .10 6.已知函数()21xf x x =--,则不等式()0f x >的解集是( ). A .(1,1)- B .(,1)(1,)-∞-⋃+∞ C .(0,1) D .(,0)(1,)-∞⋃+∞ 6.设0.70.80.713,(),log 0.83a b c -===,则,,a b c 的大小关系为A .a b c <<B .b a c <<C .b c a <<D .c a b <<13.已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+,则||PD =_________;PB PD ⋅=_________. 11.在522()x x+的展开式中,2x 的系数是_________. 14.已知0,0a b >>,且1ab =,则11822a b a b+++的最小值为_________. 15.如图,在四边形ABCD 中,60,3B AB ∠=︒=,6BC =,且3,2AD BC AD AB λ=⋅=-,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN =,则DM DN ⋅的最小值为_________.。
第五章 平面向量一 平面向量的概念及基本运算【考点阐述】向量.向量的加法与减法.实数与向量的积.平面向量的坐标表示.【考试要求】(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念.(2)掌握向量的加法和减法.(3)掌握实数与向量的积,理解两个向量共线的充要条件.(4)了解平面向量的基本定理.理解平面向量的坐标的概念,掌握平面向量的坐标运算.1.(安徽卷理3文2)在平行四边形ABCD 中,AC 为一条对角线,若(2,4)AB =,(1,3)AC =,则BD =( )A . (-2,-4)B .(-3,-5)C .(3,5)D .(2,4)2.(广东卷理8)在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =( B )A .1142+a bB .2133+a bC .1124+a bD .1233+a b 3.(广东卷文3)已知平面向量(1,2)a =,(2,)b m =-,且a //b ,则23a b +=( )A 、(5,10)--B 、(4,8)--C 、(3,6)--D 、(2,4)--4.(海南宁夏卷理8文9)平面向量a ,b 共线的充要条件是( )A. a ,b 方向相同B. a ,b 两向量中至少有一个为零向量C. R λ∃∈, b a λ=D. 存在不全为零的实数1λ,2λ,120a b λλ+=5.(海南宁夏卷文5)已知平面向量a =(1,-3),b =(4,-2),a b λ+与a 垂直,则λ是( )A. -1B. 1C. -2D. 26.(湖北卷理1文1)设(1,2)a =-,(3,4)b =-,则(2)a b c +=A.(15,12)-B.0C.3-D.11-7.(辽宁卷理5)已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足20AC CB +=,则OC =( )A .2OA OB - B .2OA OB -+C .2133OA OB -D .1233OA OB -+ 8.(辽宁卷文5)已知四边形ABCD 的三个顶点(02)A ,,(12)B --,,(31)C ,,且2B C A D =,则顶点D 的坐标为( )A .722⎛⎫ ⎪⎝⎭, B .122⎛⎫- ⎪⎝⎭, C .(32), D .(13),9.(全国Ⅰ卷理3文5)在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =A .2133+b cB .5233-c bC .2133-b cD .1233+b c 10.(四川卷文3)设平面向量()()3,5,2,1a b ==-,则2a b -=( )(A)()7,3 (B)()7,7 (C)()1,7 (D)()1,311.(上海春卷13)已知向量(2,3),(3,)a b λ=-=,若//a b ,则λ等于( ) (A )23. (B )2-. (C )92-. (D )23- 12.(湖南卷文11)已知向量)3,1(=a ,)0,2(-=b ,则b a +=_____________________.13.(全国Ⅱ卷理13文13)设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ .14.(浙江卷理11)已知a >0,若平面内三点A (1,-a ),B (2,2a ),C (3,3a )共线,则a =________。
2008年高考数学试题分类汇编(必修Ⅳ——向量)
(一)选择题
1、【08安徽理3】在平行四边形ABCD 中,AC 为一条对角线,若(2,4)AB =,(1,3)AC =,则AB =( B )
A . (-2,-4)
B .(-3,-5)
C .(3,5)
D .(2,4)
2、【08安徽文2】若(2,4)AB =,(1,3)AC =, 则BC =( B ) A . (1,1)
B .(-1,-1)
C .(3,7)
D .(-3,-7)
3、【08广东文3】已知平面向量(1,2)a =,(2,)b m =-,且a //b ,则23a b +=( B ) A 、(5,10)-- B 、(4,8)-- C 、(3,6)-- D 、(2,4)--
4、【08湖北文1】设(1,2),(3,4),(3,2),(2)a b c a b c =-=-=+=则(C ) A.(15,12)- B.0 C.-3 D.-11
5、【08湖南理7】设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且
2,DC BD =2,CE EA =
2,AF FB =则AD BE CF ++与BC (A )
A.反向平行
B.同向平行
C.互相垂直
D.既不平行也不垂直
6、【08辽宁理5】已知,,O A B 是平面上的三个点,直线AB 上有一点C ,满足2AC CB +=0,则OC 等于(A )
A.2OA OB -
B.2OA OB -+
C.
2133OA OB - D.12
33
OA OB -+ 7、【08宁夏理8】平面向量a ,b 共线的充要条件是( D )
A .a ,b 方向相同
B .a ,b 两向量中至少有一个为零向量
C .λ∈R ∃,λ=b a
D .存在不全为零的实数1λ,2λ,12λλ+=0a b
8、【08宁夏文5】已知平面向量(1
3)=-,a ,(42)=-,b ,λ+a b 与a 垂直, 则λ=( A )
A .1-
B .1
C .2-
D .2
9、【08全国Ⅰ理3】在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =( A ) A .
21
33
+b c
B .5
233
-
c b C .
2133
-b c
D .1
233
+
b c 10、【08全国Ⅰ文5】在ABC △中,AB c =,AC b =.若点D 满足2BD DC =,则AD =( A )
A .
21
33b c + B .5
23
3c b -
C .2133b c -
D .12
33
b c + 11、【08浙江理9】已知,a b 是平面内两个互相垂直的单位向量,若向量c 满足
()()0
--=a c b c ,则c 的最大值是( C ) A .1
B .2
C
D
.
2
(二)填空题
12、【08江苏5】b a ,的夹角为
120,1,3a b ==,则5a b -= 7
13、【08江西理13】直角坐标平面内三点()()()1,23,29,7A B C -、、,若E F 、为线段BC
的三等分点,则AE ·AF = 22 .
14、【08江西文16】如图,正六边形ABCDEF 中,有下列四个命题: A .2AC AF BC += B .22AD AB AF =+
C .AC A
D AD AB ⋅=⋅
D .()()AD AF EF AD AF EF ⋅=⋅
其中真命题的代号是 A,B,D (写出所有真命题的代号)
15、【08北京文11】已知向量a 与b 的夹角为120,且4==a b ,那么a b 的值为 -8
16、【08宁夏理13】已知向量(011)=-,
,a ,(410)=,,b
,λ+=a b 0λ>,则λ=
3 .
17、【08全国Ⅱ理13】设向量(1
2)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ 2 .
18、【08陕西理15】关于平面向量,,a b c .有下列三个命题:
①若a b =a c ,则=b c .②若(1
)(26)k ==-,,,a b ,∥a b ,则3k =-. A
B
D
E
C
F
③非零向量a 和b 满足||||||==-a b a b ,则a 与+a b 的夹角为60. 其中真命题的序号为 ② .(写出所有真命题的序号)
19、【08上海理5】若向量→a 、→b 满足|→a |=1,|→b |=2,且→a 与→b 的夹角为π3,则|→a +→
b |=
20、【08天津文14】已知平面向量(24)=,a ,(12)=-,b ,若()=-c a a b b ,则=c
21、【08浙江理11】已知0a >,若平面内三点23(1)(2)(3)A a B a C a -,,,,,共线,则
a = 1
22、【08浙江文16】已知a 是平面内的单位向量,若向量b 满足()0b a b -=,则||b 的取
值范围是 [0,1] 。
(三)解答题
23、【08安徽理22】设椭圆22
22:1(0)x y C a b
a b
+=>>
过点M ,且着焦点为
1(F
(Ⅰ)求椭圆C 的方程;
(Ⅱ)当过点(4,1)P 的动直线l 与椭圆C 相交与两不同点,A B 时,在线段AB 上取点Q ,满足AP QB AQ PB =,证明:点Q 总在某定直线上 解 (1)由题意:
2222222
211c a b c a b ⎧=⎪
⎪+=⎨⎪⎪=-⎩
,解得22
4,2a b ==,所求椭圆方程为
22142x y += (2)方法一
设点Q 、A 、B 的坐标分别为1122(,),(,),(,)x y x y x y 。
由题设知,,,AP PB AQ QB 均不为零,记AP AQ PB
QB
λ=
=
,则0λ>且1λ≠
又A ,P ,B ,Q 四点共线,从而,AP PB AQ QB λλ=-=
于是 12
41x x λλ-=-, 12
11y y λλ-=-
12
1x x x λλ
+=+, 12
1y y y λλ
+=
+
从而
222
12
2
41x x x λλ
-=-,(1) 222
122
1y y y λλ
-=-,(2)
又点A 、B 在椭圆C 上,即
2
21124,
(3)x y += 22
2224,
(4)x y +=
(1)+(2)×2并结合(3),(4)得424s y += 即点(,)Q x y 总在定直线220x y +-=上 方法二
设点1122(,),(,),(,)Q x y A x y B x y ,由题设,,,,PA PB AQ QB 均不为零。
且
PA PB AQ
QB
=
又 ,,,P A Q B 四点共线,可设,(0,1)PA AQ PB BQ λλλ=-=≠±,于是
1141,11x y
x y λλλλ--=
=-- (1) 2241,11x y
x y λλλλ
++==++ (2) 由于1122(,),(,)A x y B x y 在椭圆C 上,将(1),(2)分别代入C 的方程2
2
24,x y +=整理得
222(24)4(22)140x y x y λλ+--+-+= (3) 222(24)4(22)140x y x y λλ+-++-+= (4)
(4)-(3) 得 8(22)0x y λ+-= 0,220x y λ≠+-=∵∴
即点(,)Q x y 总在定直线220x y +-=上。