当前位置:文档之家› 2020年高考数学试题分类汇编 应用题 精品

2020年高考数学试题分类汇编 应用题 精品

2020年高考数学试题分类汇编 应用题 精品
2020年高考数学试题分类汇编 应用题 精品

应用题

1.(四川理9)某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和

7辆载重量为6吨的乙型卡车.某天需运往A 地至少72吨的货物,派用的每辆车虚满载且只运送一次.派用的每辆甲型卡车虚配2名工人,运送一次可得利润450元;派用的每辆乙型卡车虚配1名工人,运送一次可得利润350元.该公司合理计划当天派用两类卡车的车辆数,可得最大利润z= A .4650元 B .4700元 C .4900元 D .5000元 【答案】C

【解析】由题意设派甲,乙,x y 辆,则利润450350z x y =+,得约束条件

08071210672219

x y x y x y x y ≤≤??≤≤??

+≤??+≥?+≤??画

出可行域在12219x y x y +≤??+≤?的点7

5x y =??=?代入目标函数4900z =

2.(湖北理10)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,

这种现象称为衰变。假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)

与时间t (单位:年)满足函数关系:30

0()2

t

M t M -

=,其中M 0为t=0时铯137的含量。已知t=30时,铯137含量的变化率是-10In2(太贝克/年),则M (60)= A .5太贝克 B .75In2太贝克 C .150In2太贝克 D .150太贝克 【答案】D 3.(北京理)。根据统计,一名工作组装第x 件某产品所用的时间(单位:分钟)为

???

???

?

≥<=A

x A

c A x x c x f ,,,)((A ,C 为常数)。已知工人组装第4件产品用时30分钟,组装第A

件产品用时15分钟,那么C 和A 的值分别是 A .75,25 B .75,16 C .60,25 D .60,16 【答案】D 4.(陕西理)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距

10米。开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为 (米)。 【答案】2000 5.(湖北理)《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等

差数列,上面4节的容积共为3升,下面3节的容积共4升,则第5节的容积为 升。

【答案】67

66

6.(湖北理)提高过江大桥的车辆通行能力可改善整个城市的交通状况。在一般情况下,大

桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数。当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20

辆/千米时,车流速度为60千米/小时,研究表明;当20200x ≤≤时,车流速度v 是车流密度x 的一次函数.

(Ⅰ)当0200x ≤≤时,求函数()

v x 的表达式;

(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)()()

.f x x v x =可以达到最大,并求出最大值(精确到1辆/小时)

本小题主要考查函数、最值等基础知识,同时考查运用数学知识解决实际问题的能力。(满分

12分)

解:(Ⅰ)由题意:当020,()60x v x ≤≤=时;当20200,()x v x ax b ≤≤=+时设

再由已知得

1,2000,32060,200.

3a a b a b b ?

=-?+=???

?+=??=??解得

故函数()v x 的表达式为60,020,()1

(200),202003x v x x x ≤≤??=?-≤≤??

(Ⅱ)依题意并由(Ⅰ)可得60,020,()1

(200),202003x x f x x x x ≤

当020,()x f x ≤≤时为增函数,故当20x =时,其最大值为60×20=1200;

当20200x ≤≤时,

211(200)10000()(200)[]3323x x f x x x +-=-≤=

当且仅当200x x =-,即100x =时,等号成立。

所以,当100,()x f x =时在区间[20,200]上取得最大值10000

.

3

综上,当100x =时,()f x 在区间[0,200]上取得最大值10000

3333

3≈。

即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时。

7.(湖南理20)。如图6,长方体物体E 在雨中沿面P (面积为S )的垂直方向作匀速移动,

速度为v (v >0),雨速沿E 移动方向的分速度为

()

c c R ∈。E 移动时单位时间内的淋雨

量包括两部分:(1)P 或P 的平行面(只有一个面淋雨)的淋雨量,假设其值与

v c

-×S

成正比,比例系数为110;(2)其它面的淋雨量之和,其值为1

2,记y 为E 移动过程中的

总淋雨量,当移动距离d=100,面积S=3

2时。

(Ⅰ)写出y 的表达式 (Ⅱ)设0<v ≤10,0<c ≤5,试根据c 的不同取值范围,确定移动速度v ,使总淋雨量y 最少。

解:(I )由题意知,E 移动时单位时间内的淋雨量为31||20

2v c -+

, 故100315(||)(3||10)

202y v c v c v v =-+=-+,

(II )由(I )知

当0v c <≤时,55(310)

(3310)15;

c y c v v v +=-+=- 当55(103c)

10,y (3v 3c 10)15.

v v c v -<≤=-+=+时

故(310)

15,0,5(103)15,10.c v c v

y c c v v 5+?-<≤??=?

-?+<≤??

(1)当

10

03c <≤

时,y 是关于v 的减函数, 故当

min 310,20.

2c

v y ==-时 (2)当10

5

3c <≤时,在

(]0,c 上,y 是关于v 的减函数, 在

(],10c 上,y 是关于v 的增函数,

故当

min 50,.v c y c ==

8.(江苏17)请你设计一个包装盒,如图所示,ABCD 是边长为60cm 的正方形硬纸片,切去

阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E 、F 在AB 上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x cm

(1)某广告商要求包装盒侧面积S (cm 2

)最大,试问x 应取何值?

(2)某广告商要求包装盒容积V (cm 3

)最大,试问x 应取何值?并求出此时包装盒的高

与底面边长的比值。

本小题主要考查函数的概念、导数等基础知识,考查数学建模能力、空间想象力、数学阅读

能力及解决实际问题的能力。满分14分. 解:设馐盒的高为h (cm ),底面边长为a (cm ),由已知得

高考数学试题分类汇编集合理

2013年全国高考理科数学试题分类汇编1:集合 一、选择题 1 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知全集 {}1,2,3,4U =,集合{}=12A ,,{}=23B ,,则 ()=U A B ( ) A.{}134, , B.{}34, C. {}3 D. {}4 【答案】D 2 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知集合 {}{}4|0log 1,|2A x x B x x A B =<<=≤=,则 A.()01, B.(]02, C.()1,2 D.(]12, 【答案】D 3 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ?= (A) (,2]-∞ (B) [1,2] (C) [2,2] (D) [-2,1] 【答案】D 4 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))设S,T,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈ 对任意12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( ) A.* ,A N B N == B.{|13},{|8010}A x x B x x x =-≤≤==-<≤或 C.{|01},A x x B R =<<= D.,A Z B Q == 【答案】D 5 .(2013 年高考上海卷(理))设常数a R ∈,集合 {|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ?=,则a 的取值范围为( ) (A) (,2)-∞ (B) (,2]-∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】B. 6 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))已知集合 A ={0,1,2},则集合 B ={},x y x A y A -∈∈中元素的个数是 (A) 1 (B) 3 (C)5 (D)9 【答案】C

历年中考真题分类汇编(数学)

第一篇基础知识梳理 第一章数与式 §1.1实数 A组2015年全国中考题组 一、选择题 1.(2015·浙江湖州,1,3分)-5的绝对值是() A.-5 B.5 C.-1 5 D. 1 5 解析∵|-5|=5,∴-5的绝对值是5,故选B. 答案 B 2.(2015·浙江嘉兴,1,4分)计算2-3的结果为() A.-1 B.-2 C.1 D.2 解析2-3=-1,故选A. 答案 A 3.(2015·浙江绍兴,1,4分)计算(-1)×3的结果是() A.-3 B.-2 C.2 D.3 解析(-1)×3=-3,故选A. 答案 A 4.(2015·浙江湖州,3,3分)4的算术平方根是() A.±2 B.2 C.-2 D. 2 解析∵4的算术平方根是2,故选B. 答案 B 5.(2015·浙江宁波,3,4分)2015年中国高端装备制造业收入将超过6万亿元,其中6万亿元用科学记数法可表示为()

A.0.6×1013元B.60×1011元 C.6×1012元D.6×1013元 解析6万亿=60 000×100 000 000=6×104×108=6×1012,故选C.答案 C 6.(2015·江苏南京,5,2分)估计5-1 2介于() A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间解析∵5≈2.236,∴5-1≈1.236, ∴5-1 2≈0.618,∴ 5-1 2介于0.6与0.7之间. 答案 C 7.(2015·浙江杭州,2,3分)下列计算正确的是() A.23+26=29B.23-26=2-3 C.26×23=29D.26÷23=22 解析只有“同底数的幂相乘,底数不变,指数相加”,“同底数幂相除,底数不变,指数相减”,故选C. 答案 C 8.★(2015·浙江杭州,6,3分)若k<90<k+1(k是整数),则k=() A.6 B.7 C.8 D.9 解析∵81<90<100,∴9<90<100.∴k=9. 答案 D 9.(2015·浙江金华,6,3分)如图,数轴上的A,B,C,D四点中,与表示数-3的点最接近的是 () A.点A B.点B C.点C D.点D

高考数学试题分类大全

2015年高考数学试题分类汇编及答案解析(22个专题) 目录 专题一集合..................................................................................................................................................... 专题二函数..................................................................................................................................................... 专题三三角函数............................................................................................................................................ 专题四解三角形............................................................................................................................................ 专题五平面向量............................................................................................................................................ 专题六数列..................................................................................................................................................... 专题七不等式................................................................................................................................................. 专题八复数..................................................................................................................................................... 专题九导数及其应用................................................................................................................................... 专题十算法初步............................................................................................................................................ 专题十一常用逻辑用语 .............................................................................................................................. 专题十二推理与证明................................................................................................................................... 专题十三概率统计 ....................................................................................................................................... 专题十四空间向量、空间几何体、立体几何...................................................................................... 专题十五点、线、面的位置关系 ............................................................................................................ 专题十六平面几何初步 .............................................................................................................................. 专题十七圆锥曲线与方程.......................................................................................................................... 专题十八计数原理 ..................................................................................................................................... 专题十九几何证明选讲 ............................................................................................................................ 专题二十不等式选讲.................................................................................................................................

2017高考试题分类汇编-集合与简易逻辑

集合与简易逻辑专题 1.(2017北京)已知,集合,则 (A ) (B ) (C ) (D ) 2.(2017新课标Ⅱ理)设集合{}1,2,4A =,{}240B x x x m =-+=. 若{}1A B =I ,则B = A .{}1,3- B .{}1,0 C .{}1,3 D .{}1,5 3(2017天津理)设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C =U I (A ){2} (B ){1,2,4} (C ){1,2,4,6} (D ){|15}x x ∈-≤≤R 4(2017新课标Ⅲ理)已知集合A ={} 22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为 A .3 B .2 C .1 D .0 5(2017 山东理)设函数A ,函数y=ln(1-x)的定义域为B,则A B =I (A )(1,2) (B )??(1,2 (C ) (-2,1) (D )[-2,1) 6(2017新课标Ⅰ理)已知集合A ={x |x <1},B ={x |31x <},则 U =R {|22}A x x x =<->或U A =e(2,2)-(,2)(2,)-∞-+∞U [2,2]-(,2][2,)-∞-+∞U

A .{|0}A B x x =U D .A B =?I 7(2017江苏)已知集合,,若}1{=?B A ,则实数的 值为 . 8(2017天津)设集合{1,2,6},{2,4},{1,2,3,4}A B C ===,则()A B C =U I (A ){2} (B ){1,2,4} (C ){1,2,4,6} (D ){1,2,3,4,6} 9(2017新课标Ⅱ)设集合{1,2,3},{2,3,4}A B ==,则A B =U A .{}1 23,4,, B .{}123,, C .{}234,, D .{}134,, 10(2017北京理)若集合A ={x |–23},则A ∩B = (A ){x |–2,则 {1,2}A =2{,3}B a a =+a }11|{<<-=x x P }20{<<=x Q =Q P Y )2,1(-)1,0()0,1(-)2,1(

2020年高考数学试题分类汇编 应用题 精品

应用题 1.(四川理9)某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和 7辆载重量为6吨的乙型卡车.某天需运往A 地至少72吨的货物,派用的每辆车虚满载且只运送一次.派用的每辆甲型卡车虚配2名工人,运送一次可得利润450元;派用的每辆乙型卡车虚配1名工人,运送一次可得利润350元.该公司合理计划当天派用两类卡车的车辆数,可得最大利润z= A .4650元 B .4700元 C .4900元 D .5000元 【答案】C 【解析】由题意设派甲,乙,x y 辆,则利润450350z x y =+,得约束条件 08071210672219 x y x y x y x y ≤≤??≤≤?? +≤??+≥?+≤??画 出可行域在12219x y x y +≤??+≤?的点7 5x y =??=?代入目标函数4900z = 2.(湖北理10)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少, 这种现象称为衰变。假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克) 与时间t (单位:年)满足函数关系:30 0()2 t M t M - =,其中M 0为t=0时铯137的含量。已知t=30时,铯137含量的变化率是-10In2(太贝克/年),则M (60)= A .5太贝克 B .75In2太贝克 C .150In2太贝克 D .150太贝克 【答案】D 3.(北京理)。根据统计,一名工作组装第x 件某产品所用的时间(单位:分钟)为 ??? ??? ? ≥<=A x A c A x x c x f ,,,)((A ,C 为常数)。已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么C 和A 的值分别是 A .75,25 B .75,16 C .60,25 D .60,16 【答案】D 4.(陕西理)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距 10米。开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为 (米)。 【答案】2000 5.(湖北理)《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等 差数列,上面4节的容积共为3升,下面3节的容积共4升,则第5节的容积为 升。 【答案】67 66 6.(湖北理)提高过江大桥的车辆通行能力可改善整个城市的交通状况。在一般情况下,大 桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数。当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20 辆/千米时,车流速度为60千米/小时,研究表明;当20200x ≤≤时,车流速度v 是车流密度x 的一次函数.

历年高考数学试题分类汇编

2008年高考数学试题分类汇编 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距 离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. ( 4 1 ,-1) B. (4 1 ,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和 22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④11c a <22 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22 221x y a b -=(a >0,b >0)上横坐标为32a 的点到右焦点 的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞)

2017年高考化学真题分类汇编(13个专题)及5套高考试卷烃

专题9 有机化合物 Ⅰ—生活中常见的有机物 1.(2017?北京-7)古丝绸之路贸易中的下列商品,主要成分属于无机物的是 A.瓷器B.丝绸C.茶叶D.中草药 A.A B.B C.C D.D 【答案】A 【解析】含有碳元素的化合物为有机物,有机物大多数能够燃烧,且多数难溶于水;无机 物指的是不含碳元素的化合物,无机物多数不能燃烧,据此分析。 A、瓷器是硅酸盐产品,不含碳元素,不是有机物,是无机物,故A正确; B、丝绸的主要成分是蛋白质,是有机物,故B错误; C、茶叶的主要成分是纤维素,是有机物,故C错误; D、中草药的主要成分是纤维素,是有机物,故D错误。 【考点】无机化合物与有机化合物的概念、硅及其化合物菁优网版权所有 【专题】物质的分类专题 【点评】本题依托有机物和无机物的概念考查了化学知识与生活中物质的联系,难度不大,应注意有机物中一定含碳元素,但含碳元素的却不一定是有机物。 Ⅱ—有机结构认识 2.(2017?北京-10)我国在CO2催化加氢制取汽油方面取得突破性进展,CO2转化过程示意图如下。下列说法不正确的是 A.反应①的产物中含有水 B.反应②中只有碳碳键形式

C.汽油主要是C5~C11的烃类混合物 D.图中a的名称是2﹣甲基丁烷 【答案】B 【解析】A.从质量守恒的角度判断,二氧化碳和氢气反应,反应为CO2+H2=CO+H2O,则产物中含有水,故A正确; B.反应②生成烃类物质,含有C﹣C键、C﹣H键,故B错误; C.汽油所含烃类物质常温下为液态,易挥发,主要是C5~C11的烃类混合物,故C正确;D.图中a烃含有5个C,且有一个甲基,应为2﹣甲基丁烷,故D正确。 【考点】碳族元素简介;有机物的结构;汽油的成分;有机物的系统命名法菁优网版权【专题】碳族元素;观察能力、自学能力。 【点评】本题综合考查碳循环知识,为高频考点,侧重考查学生的分析能力,注意把握化 学反应的特点,把握物质的组成以及有机物的结构和命名,难度不大。 C H, 3.(2017?新课标Ⅰ-9)化合物(b)、(d)、(p)的分子式均为66 下列说法正确的是 A. b的同分异构体只有d和p两种 B. b、d、p的二氯代物均只有三种 C. b、d、p均可与酸性高锰酸钾溶液反应 D. b、d、p中只有b的所有原子处于同一平面 【答案】D 【解析】A.(b)的同分异构体不止两种,如,故A错误 B.(d)的二氯化物有、、、、、, 故B错误 KMnO溶液反应,故C错误 C.(b)与(p)不与酸性4 D.(d)2与5号碳为饱和碳,故1,2,3不在同一平面,4,5,6亦不在同 一平面,(p)为立体结构,故D正确。 【考点】有机化学基础:健线式;同分异构体;稀烃的性质;原子共面。 【专题】有机化学基础;同分异构体的类型及其判定。 【点评】本题考查有机物的结构和性质,为高频考点,侧重考查学生的分析能力,注意把 握有机物同分异构体的判断以及空间构型的判断,难度不大。 Ⅲ—脂肪烃

高考数学试题分类汇编(导数)

2007年高考数学试题分类汇编(导数) (福建理11文) 已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时,()0()0f x g x ''>>,,则0x <时( B ) A .()0()0f x g x ''>>, B .()0()0f x g x ''><, C .()0()0f x g x ''<>, D .()0()0f x g x ''<<, (海南理10) 曲线12 e x y =在点2(4e ),处的切线与坐标轴所围三角形的面积为( D ) A.29 e 2 B.24e C.22e D.2e (海南文10) 曲线x y e =在点2(2)e ,处的切线与坐标轴所围三角形的面积为( D ) A.294e B.2 2e C.2 e D.2 2 e (江苏9) 已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥, 则(1)'(0) f f 的最小值为( C ) A .3 B .52 C .2 D .3 2 (江西理9) 12.设2:()e ln 21x p f x x x mx =++++在(0)+∞,内单调递增,:5q m -≥,则p 是q 的( B ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 (江西理5) 5.若π 02 x <<,则下列命题中正确的是( D ) A.3sin πx x < B.3sin πx x > C.2 24sin π x x < D.2 24sin π x x >

(江西文8) 若π 02x << ,则下列命题正确的是( B ) A.2sin πx x < B.2sin πx x > C.3sin πx x < D.3 sin π x x > (辽宁理12) 已知()f x 与()g x 是定义在R 上的连续函数,如果()f x 与()g x 仅当0x =时的函数值为0,且()()f x g x ≥,那么下列情形不可能... 出现的是( ) A .0是()f x 的极大值,也是()g x 的极大值 B .0是()f x 的极小值,也是()g x 的极小值 C .0是()f x 的极大值,但不是()g x 的极值 D .0是()f x 的极小值,但不是()g x 的极值 (全国一文11) 曲线313y x x =+在点413?? ???,处的切线与坐标轴围成的三角形面积为( A ) A.19 B.29 C.13 D.23 (全国二文8) 已知曲线2 4 x y =的一条切线的斜率为12,则切点的横坐标为( A ) A .1 B .2 C .3 D .4 (浙江理8) 设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( D ) (北京文9) ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是____.3 (广东文12)

三年高考试题分类汇编:名著阅读(2017-2019年)

三年高考试题分类汇编:名著阅读(2017-2019年) 【2019年高考】 一、【2019年高考江苏卷】下列有关名著的说明,不正确的两项是(5分)(选择两项且全答对得5分, 选择两项只答对一项得2分,其余情况得0分) A.《三国演义》中,张飞在长板桥上睁圆环眼厉声大喝,吓退曹兵,然后迅速拆断桥梁,以阻追兵,可见张飞十分勇猛,又很有智谋。 B.《家》中,许倩如倡导女子剪发,带头剪掉自己的辫子,还以梅的遭遇来激发琴拒绝包办婚姻,鼓励琴做一个跟着时代走的新女性。 C.《狂人日记》中,狂人说将来的社会“容不得吃人的人”,最后喊出“救救孩子”,作者借此表达了对社会变革的强烈渴望。 D.《欧也妮·葛朗台》中,夏尔在父亲破产自杀后,不愿拖累心上人安奈特而写了分手信给她,这一良善之举让偷看信件的欧也妮发誓要永远爱他。 E.《老人与海》中,圣地亚哥经过生死搏斗最终将大马林鱼残骸拖回港口,有游客把它当成了鲨鱼骨,这一误会让小说结尾更意味深长。 【答案】AD 【解析】本题考查识记和理解名著的能力。解答本题,平时一定要熟读名著,识记其中的人物和情节。对于大纲要求的篇目,有时间时就要反复读,只有熟到一定的程度,类似题目才能应对自如。A项,“迅速拆断桥梁”“有智谋”错误。如果不拆断桥,曹军害怕其中有埋伏不敢进兵。现在拆断了桥,曹军会料定张飞心虚,必定前来追赶。故A项错误。D项,“这一良善之举让偷看信件的欧也妮发誓要永远爱他”表述错误。欧也妮发誓要永远爱夏尔的原因不止是这一点,还有信中夏尔表达的对欧也妮的好感和赞美。故D项错误。B、C、E项正确。故选AD。 二、【2019年高考江苏卷】简答题(10分) (1)《红楼梦》“寿怡红群芳开夜宴,死金丹独艳理亲丧”一回中,群芳行令,宝钗摇得牡丹签,上云“任是无情也动人”。请结合小说概括宝钗的“动人”之处。(6分) (2)《茶馆》第三幕,在得知来到茶馆的“老得不像样子了”的人是秦仲义时,王利发对他说:“正想去告诉您一声,这儿要大改良!”这里的“大改良”指的是什么?这句话表达了王利发什么样的情感?(4分)

2019-2020高考数学试题分类汇编

2019---2020年真题分类汇编 一、 集合(2019) 1,(全国1理1)已知集合}242{60{}M x x N x x x =-<<=--<,,则M N = A .}{43x x -<< B .}42{x x -<<- C .}{22x x -<< D .}{23x x << 2,(全国1文2)已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A = A .{}1,6 B .{}1,7 C .{}6,7 D .{}1,6,7 3,(全国2理1)设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B = A .(–∞,1) B .(–2,1) C .(–3,–1) D .(3,+∞) 4,(全国2文1)已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(-1,+∞) B .(-∞,2) C .(-1,2) D .? 5,(全国3文、理1)已知集合2{1,0,1,2}{|1}A B x x =-=≤,,则A B = A .{}1,0,1- B .{}0,1 C .{}1,1- D .{}0,1,2 6,(北京文,1)已知集合A ={x |–11},则A ∪B = (A )(–1,1) (B )(1,2) (C )(–1,+∞) (D )(1,+∞) 7,(天津文、理,1)设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤∈R ,则A B = . 10,(上海1)已知集合{1A =,2,3,4,5},{3B =,5,6},则A B = . 一、 集合(2020) 1.(2020?北京卷)已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B =( ). A. {1,0,1}- B. {0,1} C. {1,1,2}- D. {1,2} 2.(2020?全国1卷)设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则 a =( ) A. –4 B. –2 C. 2 D. 4 3.(2020?全国2卷)已知集合U ={?2,?1,0,1,2,3},A ={?1,0,1},B ={1,2},则()U A B ?=( ) A. {?2,3} B. {?2,2,3} C. {?2,?1,0,3} D. {?2,?1,0,2,3} 4.(2020?全国3卷)已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( ) A. 2 B. 3 C. 4 D. 6 5.(2020?江苏卷)已知集合{1,0,1,2},{0,2,3}A B =-=,则A B =_____.

中考数学试题分类汇编

中考数学试题分类汇编 一、选择题 1、(2007湖北宜宾)实数a 、b 在数轴上的位置如图所示,则化简代数式||a +b –a 的结果是( )D A .2a +b B .2a C .a D .b 2、(2007重庆)运算)3(623m m -÷的结果是( )B (A )m 3- (B )m 2- (C )m 2 (D )m 3 3、(2007广州)下列运算中,正确的是( )C A .33x x x =? B .3x x x -= C .32x x x ÷= D .336x x x += 4、(2007四川成都)下列运算正确的是( )D A.321x x -= B.22122x x --=- C.236()a a a -=· D.23 6()a a -=- 4、(2007浙江嘉兴)化简:(a +1)2-(a -1)2=( )C (A )2 (B )4 (C )4a (D )2a 2+2 5、(2007哈尔滨)下列运算中,正确的是( )D A .325a b ab += B .44a a a =? C .623a a a ÷= D .3262()a b a b = 6.(2007福建晋江)关于非零实数m ,下列式子运算正确的是( )D A .9 23)(m m =;B .623m m m =?;C .532m m m =+;D .426m m m =÷。 7.(2007福建晋江)下列因式分解正确的是( )C A .x x x x x 3)2)(2(342++-=+-; B .)1)(4(432-+-=++-x x x x ; C .22)21(41x x x -=+-; D .)(232y x y xy x y x xy y x +-=+-。 8、(2007湖北恩施)下列运算正确的是( )D A 、623a a a =? B 、4442b b b =? C 、1055x x x =+ D 、87y y y =? 9、(2007山东淮坊)代数式2346x x -+的值为9,则2463x x - +的值为( )A A .7 B .18 C .12 D .9 10、(2007江西南昌)下列各式中,与2(1)a -相等的是( )B A .21a - B .221a a -+ C .221a a -- D .2 1a + 二、填空题 b 0a

全国百套高考数学模拟试题分类汇编001

组距 分数 0.0350.0250.0150005 100 9080 70605040全国百套高考数学模拟试题分类汇编 10概率与统计 二、填空题 1、(启东中学高三综合测试一)6位身高不同的同学拍照,要求分成两排,每排3人,则后排每人均比其前排的同学身材要高的概率是_________。 答案:18 2、(皖南八校高三第一次联考)假设要考查某企业生产的袋装牛奶质量是否达标,现以500袋牛奶中抽取60袋进行检验,利用随机数表抽样本时,先将500袋牛奶按000,001,┉,499进行编号,如果从随机数表第8行第4列的数开始按三位数连续向右读取,请你依次写出最先检测的5袋牛奶的编号____________________________________________;答案:163,199,175,128,395; 3、(蚌埠二中高三8月月考)设随机变量ξ的概率分布规律为*,)1()(N k k k c k p ∈+==ξ,则 ) 2 5 21(<<ξp 的值为___________答案:2 3 4、(巢湖市高三第二次教学质量检测)从分别写有0,1,2,3,4的五张卡片中第一次取出一张卡片,记下数字后放回,再从中取出一张卡片.两次取出的卡片上的数字和恰好等于4的概率是. 答案:15 5、(北京市东城区高三综合练习二)从某区一次期末考试中随机抽取了100 个学生的数学成绩,用这100个数据来估计该区的总体数学成绩,各分数段的人数统计如图所示. 从该区随机抽取一名学生,则这名学生的数学成绩及格(60≥的概率为;若同一组数据用该组区间的中点 (例如,区间[60,80)的中点值为70)表示,则该区学生的数学成绩 的期望值为. 答案:0.65,67 6、(北京市宣武区高三综合练习二)某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2:3:4, 现用分层抽样的方法抽出一个容量为n 的样本,样本中A 型号的产品有16件,那么此样本容量n= 答案:72 7、(东北三校高三第一次联考)用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生从1—— 160编号。按编号顺序平均分成20组(1—8号,9—16号,……153—160号),若第16组应抽出的号码为126,则第一组中用抽签方法确定的号码是________。 答案:6 8、(揭阳市高中毕业班高考调研测试)统计某校1000名学生的数学会考成绩,得到样本频率分布直方图如右图示,规定不低于60分为及格,不 低于80分为优秀,则及格人数是;优秀率为。 答案:由率分布直方图知,及格率=10(0.0250.03520.01)0.8?++?==80%, 及格人数=80%×1000=800,优秀率=100.020.220?==%.

2017年高考试题分类汇编(集合)

2017年高考试题分类汇编(集合) 考点1 数集 考法1 交集 1.(2017·北京卷·理科1)若集合{}21A x x =-<<,{}13B x x x =<->或,则 A B = A. {}21x x -<<- B. {}23x x -<< C. {}11x x -<< D. {}13x x << 2.(2017·全国卷Ⅱ·理科2)设集合{}1,2,4A =,{}240B x x x m =-+=.若 {}1A B =,则B = A .{}1,3- B .{}1,0 C .{}1,3 D .{}1,5 3.(2017·全国卷Ⅲ·理科2)已知集合{}1,2,3,4A =,{}2,4,6,8B =,则A B 中元素的个数为 A.1 B.2 C.3 D.4 4.(2017·山东卷·理科1)设函数y =A ,函数ln(1)y x =-的定义域为B ,则A B = A .(1,2) B .(1,2] C .(2,1)- D .[2,1)- 5.(2017·山东卷·文科1)设集合{}11M x x =-<,{}2N x x =<,则M N = A.()1,1- B.()1,2- C.()0,2 D.()1,2 6.(2017·江苏卷)已知集合{}1,2A =,{}2,3B a a =+,若{}1A B =,则实数a 的值为______. 考法2 并集 1.(2017·全国卷Ⅱ·文科2)设集合{}{}123234A B ==,,, ,,, 则A B = A. {}123,4,, B. {}123,, C. {}234,, D. {}134,, 2.(2017·浙江卷1)已知集合{}11P x x =-<<,{}02Q x x =<<,那么P Q = A. (1,2)- B. (0,1) C.(1,0)- D. (1,2) 考法3 补集

高考数学试题分类汇编集合

2008年高考数学试题分类汇编:集合 【考点阐述】 集合.子集.补集.交集.并集. 【考试要求】 (1)理解集合、子集、补集、交集、并集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合. 【考题分类】 (一)选择题(共20题) 1、(安徽卷理2)集合{}|lg ,1A y R y x x =∈=>,}{2,1,1,2B =--则下列结论正确的是( ) A .}{2,1A B =-- B . ()(,0)R C A B =-∞ C .(0,)A B =+∞ D . }{()2,1R C A B =-- 解: }{0A y R y = ∈>,R (){|0}A y y =≤e,又{2,1,1,2}B =-- ∴ }{()2,1R A B =--e,选D 。 2、(安徽卷文1)若A 为全体正实数的集合,{}2,1,1,2B =--则下列结论正确的是( ) A .}{2,1A B =-- B . ()(,0)R C A B =-∞ C .(0,)A B =+∞ D . }{()2,1R C A B =-- 解:R A e是全体非正数的集合即负数和0,所以}{() 2,1R A B =--e 3、(北京卷理1)已知全集U =R ,集合{} |23A x x =-≤≤,{}|14B x x x =<->或,那么集合A ∩(C U B )等于( ) A .{}|24x x -<≤ B .{}|34x x x 或≤≥ C .{}|21x x -<-≤ D .{}|13x x -≤≤ 【标准答案】: D 【试题分析】: C U B=[-1, 4],()U A B e={}|13x x -≤≤

2017年全国高考英语试题分类汇编(共23份) (1)

2017年全国高考英语试题分类汇编(共23份) 目录 2017全国高考汇编之定语从句 (2) 2017全国高考汇编之动词+动词短语 (13) 2017全国高考汇编之动词时态与语态 (30) 2017全国高考汇编之非谓语动词 (47) 2017全国高考汇编改错 (68) 2017全国高考汇编之交际用语 (82) 2017全国高考汇编之介词+连词 (96) 2017全国高考汇编之名词性从句 (112) 2017全国高考汇编之完型填空 (187) 2017全国高考汇编之形容词+副词 (330) 2017全国高考汇编之虚拟语气+情态动词 (341) 2017全国高考汇编阅读之广告应用类 (355) 2017全国高考汇编阅读之广告应用类 (375) 2017全国高考汇编阅读之科普知识类 (409) 2017全国高考汇编阅读之人物传记类 (456) 2017全国高考汇编阅读之社会生活类 (471) 2017全国高考汇编阅读之文化教育类 (552) 2017全国高考汇编阅读新题型 (658) 2017全国高考汇编阅读之新闻报告类 (712) 2017全国高考汇编之代词+名词+冠词 (740) 2017全国高考汇编之状语从句 (761)

2017全国高考汇编之定语从句 The exact year Angela and her family spent together in China was 2008. A. When B. where C. why D. which 【考点】考察定语从句 【答案】D 【举一反三】Between the two parts of the concert is an interval, _______ the audience can buy ice-cream. A. when B. where C. that D. which 【答案】A 二I borrow the book Sherlock Holmes from the library last week, ______ my classmates recommended to me.. A.who B. which C. when D. Where 【考点】考察定语从句 【答案】B 【举一反三】The Science Museum, we visited during a recent trip to Britain, is one of London’s tourist attractions.

2020年高考数学试题分类汇编之立体几何

2018年高考数学试题分类汇编之立体几何 一、选择题 1.(北京卷文)(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )。 (A )1 (B )2 (C )3 (D )4 2.(北京卷理)(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为 (A )1 (B )2 (C )3 (D )4 3.(浙江)(3)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是 A .2 B .4 C .6 D .8 4.(全国卷一文)(5)已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122π B .12π C .82π D .10π 5.(全国卷一文)(9)某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3 D .2 6.(全国卷一文)(10)在长方体1111ABCD A B C D -中, 2AB BC ==,1AC 与平面11BB C C 所成的角为30?,则该长方体的体积为 A .8 B .62 C .82 D .83 7.(全国卷一理)(7)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .172 B .52 C .3 D .2 8.(全国卷一理)(12)已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方 体所得截面面积的最大值为 A . 33 B .23 C .324 D .3 9.(全国卷二文)(9)在正方体1111ABCD A B C D -中, E 为棱1CC 的中点,则异面直线AE 与CD 所成角

相关主题
相关文档 最新文档