高一数学必修2平行与垂直的判定练习题
- 格式:doc
- 大小:318.50 KB
- 文档页数:16
3.1.2 两条直线平行与垂直的判定一、选择题(本大题共7小题,每小题5分,共35分) 1.已知下列说法:①若直线l 1与l 2的斜率相等,则l 1∥l 2; ②若直线l 1∥l 2,则两直线的斜率相等; ③若直线l 1,l 2的斜率均不存在,则l 1∥l 2; ④若两直线的斜率不相等,则两直线不平行;⑤如果直线l 1,l 2平行,且l 1的斜率不存在,那么l 2的斜率也不存在. 其中说法正确的个数是( ) A .1 B .2 C .3 D .42.已知直线l 1⊥l 2,若直线l 1的倾斜角为45°,则直线l 2的倾斜角为( ) A .45° B .135° C .-45° D .120°3.若直线l 经过点(a -2,-1)和(-a -2,1),且与经过点(-2,1),斜率为-23的直线垂直,则实数a 的值是( )A .-23B .-32C.23D.324.已知直线l 1过点A (-1,1),B (-2,-1),直线l 2过点C (1,0),D (0,a ).若l 1∥l 2,则a 的值为( )A .-2B .-58C .0 D.125.若过点A (2,-2),B (5,0)的直线与过点P (2m ,1),Q (-1,-m )的直线垂直,则实数m 的值为( )A.58B .-58 C .-14D.146.下列说法正确的个数有( )①若两条直线的斜率相等,则这两条直线平行; ②若l 1∥l 2,则k 1=k 2;③若两条直线中有一条直线的斜率不存在,另一条直线的斜率存在,则这两条直线垂直; ④若两条直线的斜率都不存在且两直线不重合,则这两条直线平行. A .1个 B .2个C .3个D .4个7.已知坐标平面内三点A (5,-1),B (1,1),C (2,3),则△ABC 是( ) A .直角三角形 B .钝角三角形 C .锐角三角形 D .不确定二、填空题(本大题共4小题,每小题5分,共20分)8.以点A (1,3),B (-5,1)为端点的线段的垂直平分线的斜率为________.9.已知直线l 1经过点A (0,-1)和点B ⎝ ⎛⎭⎪⎫4a,1,直线l 2经过点M (1,1)和点N (0,-2),若l 1与l 2没有公共点,则实数a 的值为________.10.已知坐标平面内A (1,-1),B (2,2),C (3,0)三点,若点D 使直线BC ∥AD ,直线AB ⊥CD ,则点D 的坐标是________.11.已知直线l 1经过点A (1,-2)和B (3,2),直线l 2经过点C (4,5)和D (a ,-7).若l 1∥l 2,则a =____________;若l 1⊥l 2,则a =____________.三、解答题(本大题共2题,共25分)12.(12分)判断下列各小题中的直线l 1与l 2的位置关系:(1)l 1经过点A (3,4),B (3,100),l 2经过点M (-10,40),N (10,40); (2)l 1经过点A (0,1),B (1,0),l 2经过点M (-1,3),N (2,0).13.(13分)已知直线l 1经过点A (3,a ),B (a -2,-3),直线l 2经过点C (2,3),D (-1,a -2),如果l 1⊥l 2,求a 的值.14.(5分)已知经过点A (-2,0)和点B (1,3a )的直线l 1与经过点P (0,-1)和点Q (a ,-2a )的直线l 2互相垂直,则实数a 的值为________.15.(15分)已知在▱ABCD 中,A (1,2),B (5,0),C (3,4). (1)求点D 的坐标;(2)试判定▱ABCD 是否为菱形.3.1.2 两条直线平行与垂直的判定1.B [解析] 易知④⑤正确,①②③错误.2.B [解析] 2°.3.A [解析] 由直线l 与经过点(-2,1),且斜率为-23的直线垂直,可知a -2≠-a-2.∴k l =1-(-1)-a -2-(a -2)=-1a ,∴-1a ·⎝ ⎛⎭⎪⎫-23=-1,∴a =-23.4.A [解析] 由已知得k 2=a -00-1=-a ,k 1=-1-1-2-(-1)=2,∵l 1∥l 2,∴k 1=k 2,解得a =-2.5.B [解析] 由题知AB 的斜率存在且不为0,则k AB ·k PQ =-1, 即0-(-2)5-2×-m -1-1-2m =-1,解得m =-58.6.A [解析] 若k 1=k 2,则两直线平行或重合,所以①不正确;当两条直线垂直于x 轴且不重合时,两直线平行,但斜率不存在,所以②不正确,④正确;若两条直线中有一条直线的斜率不存在,另一条直线的斜率为0,则这两条直线垂直,所以③不正确.7.A [解析] 由题意可知k AB =-1-15-1=-12,k BC =3-12-1=2,k AC =-1-35-2=-43.因为k AB ·k BC =-12×2=-1,所以AB ⊥BC ,所以△ABC 为直角三角形.8.-3 [解析] 因为k AB =1-3-5-1=13,所以线段AB 的垂直平分线的斜率为-3.9.6 [解析] 由题意得,l 1∥l 2,∴k 1=k 2,∵k 1=a 2,k 2=3,∴a2=3,∴a =6.10.(0,1) [解析] 设D 点坐标为(x ,y ),由BC ∥AD ,得2-02-3=y +1x -1①,由AB ⊥CD ,得2+12-1×yx -3=-1②,∴由①②解得x =0,y =1,故D 点坐标为(0,1).11.-2 28 [解析] l 1的斜率k 1=2+23-1=2.当l 1∥l 2时,l 2的斜率k 2=-7-5a -4=-12a -4=2,解得a =-2;当l 1⊥l 2时,k 1k 2=-1,即-12a -4×2=-1,解得a =28.12.解:(1)∵直线l 1的斜率不存在,l 2的斜率为0,∴l 1⊥l 2.(2)∵直线l 1的斜率k 1=0-11-0=-1,直线l 2的斜率k 2=0-32-(-1)=-1,∴k 1=k 2.又易知l 1,l 2经过x 轴上的不同两点,∴l 1∥l 2.13.解:∵直线l 2经过点C (2,3),D (-1,a -2),且2≠-1,∴l 2的斜率存在,设为k 2.当k 2=0时,l 1的斜率不存在,即a -2=3,则a =5; 当k 2≠0时,即a ≠5,此时l 1的斜率k 1≠0,由k 1·k 2=-1,得-3-a a -2-3·a -2-3-1-2=-1,解得a =-6.综上可知,a 的值为5或-6.14.1或0 [解析] 由题可知直线l 1的斜率k 1存在,且k 1=3a -01-(-2)=a .当a ≠0时,直线l 2的斜率k 2=-2a -(-1)a -0=1-2aa,∵l 1⊥l 2,∴k 1·k 2=-1,即a ×1-2aa=-1,解得a =1.当a =0时,因为P (0,-1),Q (0,0),所以这时直线l 2为y 轴,因为A (-2,0),B (1,0),所以这时直线l 1为x 轴,显然l 1⊥l 2.综上可知,实数a 的值为1或0.15.解:(1)设D 点坐标为(a ,b ),由▱ABCD ,得k AB =k CD ,k AD =k BC ,即⎩⎪⎨⎪⎧0-25-1=b -4a -3,b -2a -1=4-03-5,解得⎩⎪⎨⎪⎧a =-1,b =6,∴D 点坐标为(-1,6).(2)∵k AC =4-23-1=1,k BD =6-0-1-5=-1,∴k AC·k BD=-1,∴AC⊥BD,∴▱ABCD为菱形.。
3.1.2 两条直线平行与垂直的判定【选题明细表】1.(2018·贵州贵阳高一检测)若l1与l2为两条直线,它们的倾斜角分别为α1,α2,斜率分别为k1,k2,有下列说法:(1)若l1∥l2,则斜率k1=k2;(2)若斜率k1=k2,则l1∥l2;(3)若l1∥l2,则倾斜角α1=α2;(4)若倾斜角α1=α2,则l1∥l2.其中正确说法的个数是( B )(A)1 (B)2 (C)3 (D)4解析:需考虑两条直线重合的特殊情况,(2),(4)都可能是两条直线重合,(1),(3)正确.2.若过点A(2,-2),B(5,0)的直线与过点P(2m,1),Q(-1,m)的直线平行,则m的值为( B )(A)-1 (B)(C)2 (D)解析:由k AB=k PQ,得=,即m=.故选B.3.已知点A(2,3),B(-2,6),C(6,6),D(10,3),则以A,B,C,D为顶点的四边形是( B )(A)梯形(B)平行四边形(C)菱形(D)矩形解析:如图所示,易知k AB=-,k BC=0,k CD=-,k AD=0,k BD=-,k AC=,所以k AB=k CD,k BC=k AD,k AB·k AD=0,k AC·k BD=-,故AD∥BC,AB∥CD,AB与AD不垂直,BD与AC不垂直.所以四边形ABCD为平行四边形.4.若A(0,1),B(,4)在直线l1上,且直线l1⊥l2,则l2的倾斜角为( C )(A)-30° (B)30°(C)150° (D)120°解析:因为==,所以l1的倾斜角为60°.因为两直线垂直,所以l2的倾斜角为60°+90°=150°.故选C.5.已知直线l1的倾斜角为45°,直线l2∥l1,且l2过点A(-2,-1)和B(3,a),则a的值为.解析:因为l2∥l1,且l1的倾斜角为45°,所以==tan 45°=1,即=1,所以a=4.答案:46.直线l1的斜率为2,直线l2上有三点M(3,5),N(x,7),P(-1,y),若l1⊥l2,则x= ,y= .解析:因为l1⊥l2,且l1的斜率为2,则l2的斜率为-,所以==-,所以x=-1,y=7.答案:-1 77.(2018·南京检测)l1的倾斜角为60°,l2经过点M(1,), N(-2,-2),则两直线l1与l2的位置关系是.解析:由题意知,k1=tan 60°=,k2==,k1=k2,所以直线l1与直线l2平行或重合.答案:平行或重合8.已知A(1,-1),B(2,2),C(3,0)三点,求点D,使直线CD⊥AB,且CB∥AD.解:设D(x,y),则k CD=,k AB=3,k CB=-2,k AD=.因为k CD·k AB=-1,k AD=k CB,所以所以即D(0,1).9.(2018·湖南师大附中高一测试)已知直线l1的斜率为2,l2过点A(-1,-2),B(x,6),若l1∥l2,则lo x等于( D )(A)3 (B)(C)2 (D)-解析:由题意得=2,得x=3,所以lo3=-.10.已知点A(-2,-5),B(6,6),点P在y轴上,且∠APB=90°,则点P的坐标为( C )(A)(0,-6) (B)(0,7)(C)(0,-6)或(0,7) (D)(-6,0)或(7,0)解析:由题意可设点P的坐标为(0,y).因为∠APB=90°,所以AP⊥BP,且直线AP与直线BP的斜率都存在.又k AP=,k BP=,k AP·k BP=-1,即·(-)=-1,解得y=-6或y=7.所以点P的坐标为(0,-6)或(0,7),故选C.11.若A(-4,2),B(6,-4),C(12,6),D(2,12),则给出下面四个结论:①AB∥CD,②AB⊥CD,③AC∥BD,④AC⊥BD.其中正确结论的序号是 . 解析:因为k AB=-,k CD=-,k AC=,k BD=-4,所以k AB=k CD,k AC·k BD=-1,所以AB∥CD,AC⊥BD.答案:①④12.已知△ABC的顶点坐标为A(5,-1),B(1,1),C(2,m),若△ABC为直角三角形,试求m的值.解:k AB==-,k AC==-,k BC==m-1.若AB⊥AC,则有-·(-)=-1,所以m=-7;若AB⊥BC,则有-·(m-1)=-1,所以m=3;若AC⊥BC,则有-·(m-1)=-1,所以m=±2.综上可知,所求m的值为-7,±2,3.13.已知在平行四边形ABCD中,A(1,2),B(2,1),中心E(3,3).(1)判断平行四边形ABCD是否为正方形;(2)点P(x,y)在平行四边形ABCD的边界及内部运动,求的取值范围. 解:(1)因为平行四边形的对角线互相平分,所以由中点坐标公式得C(5,4),D(4,5).所以k AB=-1,k BC=1.所以k AB·k BC=-1,所以AB⊥BC,即平行四边形ABCD为矩形.又|AB|=,|BC|=3,所以|AB|≠|BC|,即平行四边形ABCD不是正方形.(2)因为点P在矩形ABCD的边界及内部运动,所以的几何意义为直线OP的斜率.作出大致图象,如图所示, 由图可知k OB≤k OP≤k OA,因为k OB=,k OA=2,所以≤k OP≤2,所以的取值范围为[,2].。
高中数学高考总复习立体几何平行与垂直的判断习题及详解一、选择题1.(文)(09·福建)设m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是()A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l2[答案] B[解析]如图(1),α∩β=l,m∥l,l1∥l,满足m∥β且l1∥α,故排除A;如图(2),α∩β=l,m∥n∥l,满足m∥β,n∥β,故排除C.在图(2)中,m∥n∥l∥l2满足m∥β,n∥l2,故排除D,故选B.[点评]∵l1与l2相交,m∥l1,n∥l2,∴m与n相交,由面面平行的判定定理可知α∥β;但当m、n⊂α,l1,l2⊂β,l1与l2相交,α∥β时,如图(3),得不出m∥l1且n∥l2.(理)设a,b是两条直线,α,β是两个平面,则a⊥b的一个充分条件是()A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β[答案] C[解析]对于A,如图正方体α、β分别为平面ABCD与平面ADD1A1,a、b分别为直线B1B和C1C.a与b也可能平行,对于B,∵a⊥α,α∥β,∴a⊥β,又b⊥β,∴a∥b,对于D,a与b也可能平行,故选C.2.(2010·郑州检测)已知α,β,γ是三个不同的平面,命题“α∥β,且α⊥γ⇒β⊥γ”是真命题.如果把α,β,γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有()A.0个B.1个C.2个D.3个[答案] C[解析]依题意得,命题“a∥b,且a⊥γ⇒b⊥γ”是真命题(由“若两条平行线中的一条与一个平面垂直,则另一条也与这个平面垂直”可知);命题“a∥β,且a⊥c⇒β⊥c”是假命题(直线c可能位于平面β内,此时结论不成立);命题“α∥b,且α⊥c⇒b⊥c”是真命题(因为α∥b,因此在平面α内必存在直线b1∥b;又α⊥c,因此c∥b1,c⊥b).综上所述,其中真命题共有2个,选C.3.(2010·东北三校模拟)正方体ABCD -A 1B 1C 1D 1中,M ,N ,P 分别为A 1B 1,CD ,B 1C 1的中点,则下列命题正确的是( )A .AM 与PC 是异面直线B .AM ⊥PC C .AM ∥平面BC 1ND .四边形AMC 1N 为正方形 [答案] C[解析] 连接MP ,AC ,A 1C 1,AM ,C 1N ,由题易知MP ∥A 1C 1∥AC ,且MP =12AC ,所以AM 与PC 是相交直线,假设AM ⊥PC ,∵BC ⊥平面ABB 1A 1,∴BC ⊥AM ,∴AM ⊥平面BCC 1B 1,又AB ⊥平面BCC 1B 1矛盾,∴AM 与PC 不垂直.因为AM ∥C 1N ,C 1N ⊂平面BC 1N ,所以AM ∥平面BC 1N .又易得四边形AMC 1N 为菱形而不是正方形,故选C.4.(文)对两条不相交的空间直线a 与b ,必存在平面α,使得( ) A .a ⊂α,b ⊂α B .a ⊂α,b ∥α C .a ⊥α,b ⊥αD .a ⊂α,b ⊥α[答案] B[解析] a 、b 异面时,A 错,C 错;若D 正确,则必有a ⊥b ,故排除A 、C 、D ,选B.(理)设a 、b 为两条直线,α、β为两个平面.下列四个命题中,正确的命题是( ) A .若a 、b 与α所成的角相等,则a ∥b B .若a ∥α,b ∥β,α∥β,则a ∥b C .若a ⊂α,b ⊂β,a ∥b ,则α∥β D .若a ⊥α,b ⊥β,α⊥β,则a ⊥b [答案] D[解析] 若直线a 、b 与α成等角,则a 、b 平行、相交或异面;对选项B ,如a ∥α,b ∥β,α∥β,则a 、b 平行、相交或异面;对选项C ,若a ⊂α,b ⊂β,a ∥b ,则α、β平行或相交;对选项D ,由⎭⎪⎬⎪⎫a ⊥αβ⊥α⇒a ∥β或a ⊂β,无论哪种情形,由b ⊥β都有b ⊥a .,故选D. 5.一个正方体纸盒展开后如图,在原正方体纸盒中有下列结论:①AB ⊥EF ②AB 与CM 成60°③EF 与MN 是异面直线④MN ∥CD 其中正确的是( )A.①②B.③④C.②③D.①③[答案] D[解析]本题考查学生的空间想象能力,将其还原成正方体如图所示,AB⊥EF,EF与MN是异面直线,AB∥CM,MN⊥CD.只有①③正确,故选D.6.(文)(2010·山东潍坊)已知m、n是两条不同的直线,α、β、γ是三个不同的平面,则下列命题正确的是()A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m⊂α,n⊂β,则α∥βC.若m∥n,m∥α,则n∥αD.若m∥n,m⊥α,n⊥β,则α∥β[答案] D[解析]对于选项A,两平面β、γ同垂直于平面α,平面β与平面γ可能平行,也可能相交;对于选项B,平面α、β可能平行,也可能相交;对于选项C,直线n可能与平面α平行,也可能在平面α内;对于选项D,∵m∥n,m⊥α,∴n⊥α,又n⊥β,∴α∥β,故选D.(理)(2010·曲师大附中)已知两个不同的平面α,β和两条不重合的直线a,b,则下列四个命题中为真命题的是()A.若a∥b,b⊂α,则a∥αB.若α⊥β,α∩β=b,a⊥b,则a⊥βC.若a⊂α,b⊂α,a∥β,b∥β,则α∥βD.若α∥β,a⊄α,a⊄β,a∥α,则a∥β[答案] D[解析]选项A中,直线a可能在平面α内;选项B中,直线a可能在平面β内;选项C 中,直线a ,b 为相交直线时命题才成立.7.(2010·江苏南通)在正方体ABCD -A 1B 1C 1D 1中,P 、Q 分别是棱AA 1、CC 1的中点,则过点B 、P 、Q 的截面是( )A .邻边不等的平行四边形B .菱形但不是正方形C .邻边不等的矩形D .正方形 [答案] B[解析] 设正方体棱长为1,连结D 1P ,D 1Q ,则易得PB =PQ =D 1P =D 1Q =52,取D 1D 的中点M ,则D 1P 綊AM 綊BQ ,故截面为四边形PBQD 1,它是一个菱形,又PQ =AC =2,∴∠PBQ 不是直角,故选B.8.(文)(2010·山东日照、聊城模考)已知直线l 、m ,平面α、β,且l ⊥α,m ⊂β,给出下列四个命题:①若α∥β,则l ⊥m ;②若l ⊥m ,则α∥β;③若α⊥β,则l ∥m ;④若l ∥m ,则α⊥β; 其中真命题是( ) A .①② B .①③ C .①④D .②④[答案] C [解析][点评] 如图,α∩β=m ,则l ⊥m ,故(2)假;在上述图形中,当α⊥β时,知③假.(理)(2010·福建福州市)对于平面α和共面的直线m ,n ,下列命题是真命题的是( ) A .若m ,n 与α所成的角相等,则m ∥n B .若m ∥α,n ∥α,则m ∥nC.若m⊥α,m⊥n,则n∥αD.若m⊂α,n∥α,则m∥n[答案] D[解析]正三棱锥P-ABC的侧棱P A、PB与底面成角相等,但P A与PB相交应排除A;若m∥α,n∥α,则m与n平行、相交或异面,应排除B;若m⊥α,m⊥n,则n∥α或n⊂α,应排除C.∵m、n共面,设经过m、n的平面为β,∵m⊂α,∴α∩β=m,∵n∥α,∴n∥m,故D正确.9.(文)(2010·北京顺义一中月考)已知l是直线,α、β是两个不同平面,下列命题中的真命题是()A.若l∥α,l∥β,则α∥βB.若α⊥β,l∥α,则l⊥βC.若l⊥α,l∥β,则α⊥βD.若l∥α,α∥β,则l∥β[答案] C[解析]如图在正方体ABCD-A1B1C1D1中,取平面ABD1A1为α,平面ABCD为β,B1C1为l,则排除A、B;又取平面ADD1A1为α,平面BCC1B1为β,B1C1为l,排除D.(理)(2010·广东罗湖区调研)已知相异直线a,b和不重合平面α,β,则a∥b的一个充分条件是()A.a∥α,b∥αB.a∥α,b∥β,α∥βC.a⊥α,b⊥β,α∥βD.α⊥β,a⊥α,b∥β[答案] C[解析]a∥α,b∥α时,a与b可相交可异面也可平行,故A错;a∥α,b∥β,α∥β时,a与b可异面,故B错;由α⊥β,a⊥α得,a∥β或a⊂β,又b∥β,此时a与b可平行也可异面,排除D.10.(2010·日照实验高中)如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,AB =1,M ,N 分别在AD 1,BC 上移动,且始终保持MN ∥平面DCC 1D 1,设BN =x ,MN =y ,则函数y =f (x )的图象大致是( )[答案] C[解析] 过M 作ME ⊥AD 于E ,连接EN ,则平面MEN ∥平面DCC 1D 1,所以BN =AE =x (0≤x <1),ME =2x ,MN 2=ME 2+EN 2,则y 2=4x 2+1,y 2-4x 2=1(0≤x <1,y >0),图象应是焦点在y 轴上的双曲线的一部分.故选C.二、填空题11.(文)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1、C 1D 1、D 1D 、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足条件________时,有MN ∥平面B 1BDD 1.[答案] M ∈线段FH[解析] 因为HN ∥BD ,HF ∥DD 1,所以平面NHF ∥平面B 1BDD 1,又平面NHF ∩平面EFGH =FH .故线段FH 上任意点M 与N 相连,有MN ∥平面B 1BDD 1,故填M ∈线段FH .(理)(2010·南充市模拟)已知两异面直线a ,b 所成的角为π3,直线l 分别与a ,b 所成的角都是θ,则θ的取值范围是________.[答案] [π6,π2]12.在四面体ABCD 中,M 、N 分别是△ACD 、△BCD 的重心,则四面体的四个面中与MN 平行的是________.[答案] 面ABC 和面ABD[解析] 连结AM 并延长交CD 于点E ,∵M 为△ACD 的重心,∴E 为CD 的中点, 又N 为△BCD 的重心,∴B 、N 、E 三点共线, 由EM MA =EN NB =12得MN ∥AB , 因此MN ∥平面ABC ,MN ∥平面ABD .13.如图是一正方体的表面展开图,B 、N 、Q 都是所在棱的中点,则在原正方体中, ①AB 与CD 相交;②MN ∥PQ ;③AB ∥PE ;④MN 与CD 异面;⑤MN ∥平面PQC . 其中真命题的序号是________.[答案] ①②④⑤[解析] 将正方体还原后如图,则N 与B 重合,A 与C 重合,E 与D 重合,∴①、②、④、⑤为真命题.14.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为a ,点P 是棱AD 上一点,且AP =a3,过B 1,D 1,P 的平面交底面ABCD 于PQ ,Q 在直线CD 上,则PQ =________.[答案]223a [解析] ∵B 1D 1∥平面ABCD ,平面B 1D 1P ∩平面ABCD =PQ ,∴B 1D 1∥PQ , 又B 1D 1∥BD ,∴BD ∥PQ ,设PQ ∩AB =M ,∵AB ∥CD ,∴△APM ∽△DPQ ,∴PQ PM =PDAP=2,即PQ =2PM , 又△APM ∽△ADP ,∴PM BD =AP AD =13,∴PM =13BD ,又BD =2a ,∴PQ =223a .三、解答题15.(文)(2010·南京调研)如图,在四棱锥E -ABCD 中,四边形ABCD 为平行四边形,BE =EC ,AE ⊥BE ,M 为CE 上一点,且BM ⊥平面ACE .(1)求证:AE ⊥BC ;(2)如果点N 为线段AB 的中点,求证:MN ∥平面ADE .[解析] (1)因为BM ⊥平面ACE ,AE ⊂平面ACE ,所以BM ⊥AE .因为AE ⊥BE ,且BE ∩BM =B ,BE 、BM ⊂平面EBC ,所以AE ⊥平面EBC . 因为BC ⊂平面EBC ,所以AE ⊥BC . (2)解法1:取DE 中点H ,连接MH 、AH .因为BM ⊥平面ACE ,EC ⊂平面ACE ,所以BM ⊥EC . 因为BE =BC ,所以M 为CE 的中点. 所以MH 为△EDC 的中位线,所以MH 綊12DC .因为四边形ABCD 为平行四边形,所以DC 綊AB . 故MH 綊12AB .因为N 为AB 的中点,所以MH 綊AN .所以四边形ANMH 为平行四边形,所以MN ∥AH . 因为MN ⊄平面ADE ,AH ⊂平面ADE , 所以MN ∥平面ADE .解法2:取EB 的中点F ,连接MF 、NF .因为BM ⊥平面ACE ,EC ⊂平面ACE ,所以BM ⊥EC . 因为BE =BC ,所以M 为CE 的中点,所以MF ∥BC .因为N 为AB 的中点,所以NF ∥AE , 因为四边形ABCD 为平行四边形, 所以AD ∥BC .所以MF ∥AD .因为NF 、MF ⊄平面ADE ,AD 、AE ⊂平面ADE , 所以NF ∥平面ADE ,MF ∥平面ADE . 因为MF ∩NF =F ,MF 、NF ⊂平面MNF , 所以平面MNF ∥平面ADE .因为MN ⊂平面MNF ,所以MN ∥平面ADE .(理)(2010·厦门市质检)如图所示的几何体中,△ABC 为正三角形,AE 和CD 都垂直于平面ABC ,且AE =AB =2,CD =1,F 为BE 的中点.(1)若点G 在AB 上,试确定G 点位置,使FG ∥平面ADE ,并加以证明;(2)在(1)的条件下,求三棱锥D -ABF 的体积. [解析] (1)当G 是AB 的中点时,GF ∥平面ADE . ∵G 是AB 的中点,F 是BE 的中点, ∴GF ∥AE ,又GF ⊄平面ADE ,AE ⊂平面ADE , ∴GF ∥平面ADE . (2)连接CG ,由(1)可知: GF ∥AE ,且GF =12AE .又AE ⊥平面ABC ,CD ⊥平面ABC ,∴CD ∥AE , 又CD =12AE ,∴GF ∥CD ,GF =CD ,∴四边形CDFG 为平行四边形, ∴DF ∥CG ,且DF =CG .又∵AE ⊥平面ABC ,CG ⊂平面ABC ,∴AE ⊥CG . ∵△ABC 为正三角形,G 为AB 的中点, ∴CG ⊥AB ,又AB ∩AE =A ,∴CG ⊥平面ABE . 又CG ∥DF ,且CG =DF ,∴DF 为三棱锥D -ABF 的高,且DF = 3. 又AE ⊥平面ABC ,AB ⊂平面ABC ,∴AE ⊥AB . ∵在Rt △ABE 中,AB =AE =2,F 为BE 的中点,∴S △ABF =12S △ABE =12×12×2×2=1.∴V D -ABF =13S △ABF ·DF =13×1×3=33,∴三棱锥D -ABF 的体积为33. 16.(文)(2010·安徽合肥质检)如图,PO ⊥平面ABCD ,点O 在AB 上,EA ∥PO ,四边形ABCD 为直角梯形,BC ⊥AB ,BC =CD =BO =PO ,EA =AO =12CD .(1)求证:BC ⊥平面ABPE ;(2)直线PE 上是否存在点M ,使DM ∥平面PBC ,若存在,求出点M ;若不存在,说明理由.[解析] (1)∵PO ⊥平面ABCD , BC ⊂平面ABCD ,∴BC ⊥PO ,又BC ⊥AB ,AB ∩PO =O ,AB ⊂平面ABP ,PO ⊂平面ABP ,∴BC ⊥平面ABP , 又EA ∥PO ,AO ⊂平面ABP , ∴EA ⊂平面ABP ,∴BC ⊥平面ABPE . (2)点E 即为所求的点,即点M 与点E 重合. 取PO 的中点N ,连结EN 并延长交PB 于F , ∵EA =1,PO =2,∴NO =1,又EA 与PO 都与平面ABCD 垂直,∴EF ∥AB , ∴F 为PB 的中点,∴NF =12OB =1,∴EF =2,又CD =2,EF ∥AB ∥CD ,∴四边形DCFE 为平行四边形,∴DE ∥CF , ∵CF ⊂平面PBC ,DE ⊄平面PBC , ∴DE ∥平面PBC .∴当M 与E 重合时即可.(理)在长方体ABCD -A 1B 1C 1D 1中,O 为底面正方形的中心,过A 1、C 1、B 三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD -A 1C 1D 1及其三视图.(1)求证:D1O∥平面A1BC1;(2)是否存在过点A1与直线DC1垂直的平面A1PQ,与线段BC1交于点P,与线段CC1交于点Q?若存在,求出线段PQ的长;若不存在,请说明理由.[分析]要证D1O∥平面A1BC1,∵O为DB的中点,∴取A1C1中点E,只须证D1E綊OB,或利用长方体为正四棱柱的特性,证明平面ACD1∥平面A1C1B,假设存在平面A1PQ ⊥DC1,利用正四棱柱中,BC⊥平面DCC1D1,故有BC⊥DC1,从而平面A1PQ与平面BCC1的交线PQ⊥DC1,故只须在面DCC1D1的边CC1上寻找点Q,使D1Q⊥DC1即可.[解析](1)连接AC,AD1,D1C,易知点O在AC上.D1、四边形A1D1CB均为平行四边根据长方体的性质得四边形ABC Array 1形,∴AD1∥BC1,A1B∥D1C,又∵AD1⊄平面A1C1B,BC1⊂平面A1C1B,∴AD1∥平面A1C1B,同理D1C∥平面A1BC1,又∵D1C∩AD1=D1,∴根据面面平行的判定定理知平面ACD1∥平面A1BC1.∵D1O⊂平面ACD1,∴D1O∥平面A1BC1.(2)假设存在过点A1与直线DC1垂直的平面A1PQ,与线段BC1交于点P,与线段CC1交于点Q.D,过点D1作C1D的垂线交C1C于点Q,过点Q作PQ连接C Array 1∥BC交BC1于点P,连接A1P,A1Q.∵C1D⊥D1Q,C1D⊥A1D1,D1Q∩A1D1=D1,∴C1D⊥平面A1D1Q.∵A1Q⊂平面A1D1Q,∴C1D⊥A1Q.∵PQ∥BC∥A1D1,∴C1D⊥PQ,∵A1Q∩PQ=Q,∴C1D⊥平面A1PQ.∴存在过点A1与直线DC1垂直的平面A1PQ,与线段BC1交于点P,与线段CC1交于点Q.在矩形CDD 1C 1中,∵Rt △D 1C 1Q ∽Rt △C 1CD ,∴C 1Q CD =D 1C 1C 1C ,结合三视图得C 1Q 2=24,∴C 1Q =1. ∵PQ ∥BC ,∴PQ BC =C 1Q CC 1=14,∴PQ =14BC =12. 17.(文)(2010·东北师大附中)如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为DD 1、DB 的中点.(1)求证:EF ∥平面ABC 1D 1;(2)求证:EF ⊥B 1C ;(3)求三棱锥B 1-EFC 的体积.[解析] (1)证明:连结BD 1,在△DD 1B 中,E 、F 分别为D 1D ,DB 的中点,则EF ∥D 1B ,又EF ⊄平面ABC 1D 1,D 1B ⊂平面ABC 1D 1,∴EF ∥平面ABC 1D 1.(2)证明:∵B 1C ⊥AB ,B 1C ⊥BC 1,AB ∩BC 1=B ,∴B 1C ⊥平面ABC 1D 1,又BD 1⊂平面ABC 1D 1,∴B 1C ⊥BD 1,又EF ∥BD 1,∴EF ⊥B 1C .(3)解:∵CF ⊥BD ,CF ⊥BB 1,∴CF ⊥平面BDD 1B 1,即CF ⊥平面EFB 1,且CF =BF = 2∵EF =12BD 1=3,B 1F =BF 2+BB 12=(2)2+22=6,B 1E =B 1D 12+D 1E 2=12+(22)2=3,∴EF 2+B 1F 2=B 1E 2,即∠EFB 1=90°,∴VB 1-EFC =VC -B 1EF =13·S △B 1EF ·CF =13×12·EF ·B 1F ·CF =13×12×3×6×2=1. (理)(2010·河北唐山)如图,在四棱锥V -ABCD 中,底面ABCD 是矩形,侧棱VA ⊥底面ABCD ,E 、F 、G 分别为VA 、VB 、BC 的中点.(1)求证:平面EFG ∥平面VCD ;(2)当二面角V -BC -A 、V -DC -A 依次为45°、30°时,求直线VB 与平面EFG 所成的角.[解析] (1)∵E 、F 、G 分别为VA 、VB 、BC 的中点,∴EF ∥AB ,FG ∥VC ,又ABCD 是矩形,∴AB ∥CD ,∴EF ∥CD ,又∵EF ⊄平面VCD ,FG ⊄平面VCD ,∴EF ∥平面VCD ,FG ∥平面VCD ,又EF ∩FG =F ,∴平面EFG ∥平面VCD .(2)∵VA ⊥平面ABCD ,CD ⊥AD ,∴CD ⊥VD .则∠VDA 为二面角V -DC -A 的平面角,∴∠VDA =30°.同理∠VBA =45°.作AH ⊥VD ,垂足为H ,由上可知CD ⊥平面VAD ,则AH ⊥平面VCD .∵AB ∥平面VCD ,∴AH 即为B 到平面VCD 的距离.由(1)知,平面EFG ∥平面VCD ,则直线VB 与平面EFG 所成的角等于直线VB 与平面VCD 所成的角,记这个角为θ.∵AH =VA sin60°=32VA ,VB =2VA ,∴sin θ=AH VB =64, 故直线VB 与平面EFG 所成的角是arcsin64.。
第三章 3.1 3.1.2一、选择题1.(·临沧高一检测)直线l 1、l 2的斜率是方程x 2-3x -1=0的两根,则l 1与l 2的位置关系是导学号 09024675( D )A .平行B .重合C .相交但不垂直D .垂直[解析] 设方程x 2-3x -1=0的两根为x 1、x 2,则x 1x 2=-1.∴直线l 1、l 2的斜率k 1k 2=-1,故l 1与l 2垂直.2.(2019·盐城高一检测)已知直线l 的倾斜角为20°,直线l 1∥l ,直线l 2⊥l ,则直线l 1与l 2的倾斜角分别是导学号 09024676( C )A .20°,20°B .70°,70°C .20°,110°D .110°,20°[解析] ∵l 1∥l ,∴直线l 1与l 的倾斜角相等,∴直线l 1的倾斜角为20°,又∵l 2⊥l ,∴直线l 2的倾斜角为110°.3.满足下列条件的直线l 1与l 2,其中l 1∥l 2的是导学号 09024677( B )①l 1的斜率为2,l 2过点A (1,2)、B (4,8);②l 1经过点P (3,3)、Q (-5,3),l 2平行于x 轴,但不经过P 点;③l 1经过点M (-1,0)、N (-5,-2),l 2经过点R (-4,3)、S (0,5).A .①②B .②③C .①③D .①②③[解析] k AB =8-24-1=2, ∴l 1与l 2平行或重合,故①不正确,排除A 、C 、D ,故选B .4.若过点A (2,-2)、B (5,0)的直线与过点P (2m,1)、Q (-1,m )的直线平行,则m 的值为导学号 09024678( B )A .-1B .17C .2D .12[解析] k AB =0-(-2)5-2=23, ∴k PQ =m -1-1-2m =23,解得m =17. 5.已知,过A (1,1)、B (1,-3)两点的直线与过C (-3,m )、D (n,2)两点的直线互相垂直,则点(m ,n )有导学号 09024679( D )A .1个B .2个C .3个D .无数个[解析] ∵由条件知过A (1,1),B (1,-3)两点的直线的斜率不存在,而AB ⊥CD ,∴k CD=0,即2-m n +3=0,得m =2,n ≠-3,∴点(m ,n )有无数个. 6.以A (-1,1)、B (2,-1)、C (1,4)为顶点的三角形是导学号 09024680( C )A .锐角三角形B .钝角三角形C .以A 点为直角顶点的直角三角形D .以B 点为直角顶点的直角三角形[解析] k AB =-1-12-(-1)=-23, k AC =4-11-(-1)=32. ∴k AB ·k AC =-23×32=-1, ∴AB ⊥AC ,故选C .7.已知直线l 1经过两点(-1,-2),(-1,4),直线l 2经过两点(2,1)、(6,y ),且l 1⊥l 2,则y =导学号 09024681( D )A .2B .-2C .4D .1[解析] ∵l 1⊥l 2且k 1不存在,∴k 2=0,∴y =1.故选D .8.已知两点A (2,0)、B (3,4),直线l 过点B ,且交y 轴于点C (0,y ),O 是坐标原点,且O 、A 、B 、C 四点共圆,那么y 的值是导学号 09024682( B )A .19B .194C .5D .4[解析] 由于A 、B 、C 、O 四点共圆,所以AB ⊥BC ,∴4-03-2·4-y 3-0=-1,∴y =194. 故选B .二、填空题9.直线l 1、l 2的斜率k 1、k 2是关于k 的方程2k 2-3k -b =0的两根,若l 1⊥l 2,则b =__2__;若l 1∥l 2,则b =__-98__.导学号 09024683 [解析] 当l 1⊥l 2时,k 1k 2=-1,∴-b 2=-1.∴b =2. 当l 1∥l 2时,k 1=k 2,∴Δ=(-3)2+4×2b =0.∴b =-98. 10.经过点P (-2,-1)和点Q (3,a )的直线与倾斜角是45°的直线平行,则a =__4__.导学号 09024684[解析] 由题意,得tan45°=a +13+2,解得a =4. 三、解答题11.已知在▱ABCD 中,A (1,2)、B (5,0)、C (3,4).导学号 09024685(1)求点D 的坐标;(2)试判定▱ABCD 是否为菱形?[解析] (1)设D (a ,b ),∵四边形ABCD 为平行四边形,∴k AB =k CD ,k AD =k BC ,∴⎩⎪⎨⎪⎧ 0-25-1=b -4a -3b -2a -1=4-03-5,解得⎩⎪⎨⎪⎧a =-1b =6. ∴D (-1,6).(2)∵k AC =4-23-1=1,k BD =6-0-1-5=-1, ∴k AC ·k BD =-1.∴AC ⊥BD .∴▱ABCD 为菱形.12.△ABC 的顶点A (5,-1)、B (1,1)、C (2,m ),若△ABC 为直角三角形,求m 的值.导学号 09024686[解析] (1)若∠A =90°,则AB ⊥AC ,k AB ·k AC =-1,k AB =1+11-5=-12,k AC =m +12-5=-m +13. ∴-12×(-m +13)=-1,∴m =-7.(2)若∠B =90°,则BA ⊥BC ,k BA ·k BC =-1,k BC =m -12-1=m -1,k BA =-12, ∴(m -1)×(-12)=1,∴m =3.(3)若∠C =90°,则CA ⊥CB ,k CA ·k CB =-1,k CA =m +12-5=-m +13,k CB =m -12-1=m -1, k CA ·k CB =-1,∴(-m +13)×(m -1)=-1, ∴m 2=4,∴m =±2.综上所述,m =-2,2,-7,3.13.已知四边形ABCD 的顶点A (m ,n )、B (5,-1)、C (4,2)、D (2,2),求m 和n 的值,使四边形ABCD 为直角梯形.导学号 09024687[解析] (1)如图,当∠A =∠D =90°时,∵四边形ABCD 为直角梯形,∴AB ∥DC 且AD ⊥AB .∵k DC =0,∴m =2,n =-1.(2)如图,当∠A =∠B =90°时,∵四边形ABCD 为直角梯形,∴AD ∥BC ,且AB ⊥BC ,∴k AD =k BC ,k AB k BC =-1.∴⎩⎪⎨⎪⎧ n -2m -2=2-(-1)4-5,n +1m -5·2-(-1)4-5=-1,解得m =165、n =-85. 综上所述,m =2、n =-1或m =165、n =-85.。
课后导练基础达标1直线l 1的倾斜角为30°,直线l 2⊥l 1,则直线l 2的斜率为( ) A.3 B.3- C.33 D.33- 解析:设l 1的斜率为k 1,则k 1=tan30°=33,设l 2的斜率为k 2,∵l 1⊥l 2,∴k 1k 2=-1.∴k 2=3-. 答案:B2若l 1与l 2为两条不重合的直线,它们的倾斜角分别是α1,α2,斜率分别为k 1,k 2,则下列命题,其中正确命题的个数是( )①若l 1∥l 2,则斜率k 1=k 2 ②若k 1=k 2,则l 1∥l 2 ③若l 1∥l 2,则倾斜角α1=α2 ④若α1=α2,则l 1∥l 2A.1B.2C.3D.4解析:由两线平行的判定方法可知,①②③④都正确.答案:D3已知过点A(-2,m)和B(m,4)的直线与斜率为-2的直线平行,则m 的值( )A.-8B.0C.2D.10解析:k AB =24+-m m ,由24+-m m =-2,得m=-8. 答案:A4直线l 过点(a,b)和(b,a),其中a≠b ,则( )A.l 与x 轴垂直B.l 与y 轴垂直C.l 过一、二、三象限D.l 的倾角为135°解析:设直线l 的斜率为k,倾斜角为α.则k=tanα=ab b a --=-1,∴α=135°. 答案:D5若直线l 1∥l 2,且l 1的倾斜角为45°,l 2过点(4,6),则l 2还过下列各点中的( )A.(1,8)B.(-2,0)C.(9,2)D.(0,-8)解析:∵k 1=tan45°,又l 1∥l 2.∴k 2=1.设过点(x,y),则46--x y =1. 即y=x+2,代入检验可知选B.答案:B6原点在直线l 上的射影是P(-2,1),则l 的斜率为_______.解析:设l 的斜率为k,由条件知k OP =21-,又知l ⊥OP, ∴21-k=-1.∴k=2. 答案:27已知点P(3,m)在过M(2,-1)和N(-3,4)的直线上,则m 的值是____________.解析:因为P,M,N 三点共线,所以k PM =k MN .即3241231+--=-+m .得m=-2. 答案:-28顺次连结A(-4,3),B(2,5),C(6,3),D(-3,0),所组成的图形ABCD 是什么图形?解析:如图.∵k AB =314235=+-k BC =216235-=--, k CD =313603=+-, k DA =3403+--=-3. 则k AB =k CD .∴AB ∥CD.k AB ·k DA =-1.∴AD ⊥AB,同理AD ⊥DC.又k BC ≠k AD .∴AD 与BC 不平行.故四边形ABCD 是直角梯形.综合运用9过点(6,3),(0,3)的直线与过点(2,6),(2,0)的直线的位置关系为( )A.相交不垂直B.垂直C.平行D.重合解析:由条件知k 1=320336-=--, k 2=2312602-=--. ∴k 1·k 2=-1.答案:B10已知直线l 1的斜率为3,直线l 2经过点A(1,2),B(2,a),若l 1∥l 2,则a 的值为________;若l 1⊥l 2,则a 的值为____________.解析:k 1=3.k 2=a-2,若l 1∥l 2,则k 1=k 2.即a-2=3.∴a=5,若l 1⊥l 2,则k 1·k 2=-1.即3(a-2)=-1.得a=35. 答案:5 5/311已知△ABC 的顶点B(2,1),C(-6,3),其垂心为H(-3,2),求顶点A 的坐标.解:设A(a,b),∵H 为△ABC 的垂心,∴AH ⊥BC,BH ⊥AC.又知k AH =32+-a b ,k BC =41-,k BH =51-,k AC =63+-a b , 由⎩⎨⎧-=-⎪⎪⎩⎪⎪⎨⎧-=-∙+--=-∙+-.62,19.1)51(63,1)41(32b a a b a b 解得 ∴A 的坐标为(-19,-62).拓展探究12已知A(0,3),B(-1,0),C(3,0),求点D 的坐标,使四边形ABCD 为直角梯形(A 、B 、C 、D 按逆时针方向排列).解:如图,设D(a,b),(1)当AB ∥CD,且∠BAD=90°时,∵k AD =a b 3-,k AB =3,k CD =3-a b .由于AD ⊥AB.且AB ∥CD. ∴⎪⎪⎩⎪⎪⎨⎧==⎪⎪⎩⎪⎪⎨⎧=--=∙-.59,518,33,133b a a b a b 解得 此时AD 与BC 不平行.(2)当AD ∥BC 且∠ACD=90°时,此时D(3,3),此时AB 与CD 不平行.故点D 的坐标为(3,3)和(59,518).。
心尺引州丑巴孔市中潭学校富阳第二高中数学 两条直线平行与垂直的判定练习题〔〕教A 必修21.直线x =1的倾斜角和斜率分别是( )A.45°,1B.135°,-1C.90°,不存在D.180°,不存在2.以下说法中正确的选项是〔 〕.A. 平行的两条直线的斜率一定存在且相等B. 平行的两条直线的倾斜角一定相等C. 垂直的两直线的斜率之积为-1D. 只有斜率相等的两条直线才一定平行3.给定三点A 〔1,0〕、B 〔-1,0〕、C 〔1,2〕,那么过A 点且与直线BC 垂直的直线经过点〔 〕A 、〔0,1〕B 、〔0,0〕C 、〔-1,0〕D 、〔0,-1〕4.顺次连结A(-4,3),B(2,5),C(6,3),D(-3,0)四点所组成的图形是( )A.平行四边形B.直角梯形C.等腰梯形D.以上都不对5.点A 〔-1,0〕,B 〔1,3〕,M 〔0,1〕,N 〔2,4〕,那么直线AB 与MN 〔 〕A .垂直 B. 平行 C. 重合 D. 相交但不垂直6. 将直线沿轴负方向平移3个单位, 再沿轴正方向平移2个单位,与原直线重合,那么直线的斜率为( )7.直线12,l l 的斜率是方程2310x x --=的两根,那么12l l 与的位置关系是 .8.假设过点(2,2),(5,0)A B -的直线与过点(2,1),(1,)P m Q m --的直线平行,那么m = . 9.过点A(0,37)与B(7,0)的直线l 1与过(2,1),(3,k+1)的直线l 2和两坐标轴围成的四边形内接于一个圆,那么实数k=___________.10. ABC ∆的顶点(2,1),(6,3)B C -,其垂心为(3,2)H -,求顶点A 的坐标.11. 设a ,b ,c 是互不相等的三个实数,如果A 〔a ,a 3〕、B 〔b ,b 3〕、C 〔c ,c 3〕在同一直线上,求证:a+b+c=0. 12.三点A (m-1,2)、B (1,1)、C (3,m 2-m-1),假设AB ⊥BC ,求m 的值. 13. ABC ∆的顶点(5,1),(1,1),(2,)A B C m -,假设ABC ∆为直角三角形,求m 的值.14.实数x,y 满足y=x 2-2x+2 (-1≤x≤1). 试求:23++x y 的最大值与最小值.。
第三章直线与方程3.1 直线的倾斜角与斜率3.1.2 两条直线平行与垂直的判定A级基础巩固一、选择题1.下列说法正确的是()A.若直线l1与l2倾斜角相等,则l1∥l2B.若直线l1⊥l2,则k1k2=-1C.若直线的斜率不存在,则这条直线一定平行于y轴D.若两条直线的斜率不相等,则两直线不平行2.已知过点P(3,2m)和点Q(m,2)的直线与过点M(2,-1)和点N(-3,4)的直线平行,则m的值是()A.1B.-1C.2D.-23.若不同的两点P,Q的坐标分别为(a,b),(3-b,3-a),则线段PQ的垂直平分线l的斜率为()A.1 B.-1 C.12D.-124.以A(-1,1),B(2,-1),C(1,4)为顶点的三角形是() A.锐角三角形B.以B为直角顶点的直角三角形C.以A为直角顶点的直角三角形D.钝角三角形5.已知三角形三个顶点的坐标为A(4,2),B(1,-2),C(-2,4),则BC边上的高的斜率为()A.2 B.-2 C.12D.-12二、填空题6.已知直线l1∶y=x,若直线l2⊥l1,则直线l2的倾斜角为________.7.已知直线l1的倾斜角为45°,直线l2∥l1,且l2过点A(-2,-1)和B(3,a),则a的值为________.8.已知A(2,3),B(1,-1),C(-1,-2),点D在x轴上,则当点D坐标为________时,AB⊥CD.三、解答题9.当m为何值时,过两点A(1,1),B(2m2+1,m-2)的直线:(1)倾斜角为135°?(2)与过两点(3,2),(0,-7)的直线垂直?(3)与过两点(2,-3),(-4,9)的直线平行?10.已知A(1,-1),B(2,2),C(3,0)三点,求点D,使直线CD⊥AB,且CB∥AD.B级能力提升1.下列各对直线互相平行的是()A.直线l1经过A(0,1),B(1,0),直线l2经过M(-1,3),N(2,0)B.直线l1经过A(-1,-2),B(1,2),直线l2经过M(-2,-1),N(0,-2)C.直线l1经过A(1,2),B(1,3),直线l2经过C(1,-1),D(1,4)D.直线l1经过A(3,2),B(3,-1),直线l2经过M(1,-1),N(3,2)2.已知点A(-2,-5),B(6,6),点P在y轴上,且∠APB=90°,则点P的坐标为____________.3.直线l的倾斜角为30°,点P(2,1)在直线l上,直线l绕点P(2,1)按逆时针方向旋转30°后到达直线l1的位置,且直线l1与l2平行,l2是线段AB的垂直平分线,其中A(1,m-1),B(m,2),试求m的值.参考答案第三章 直线与方程3.1 直线的倾斜角与斜率3.1.2 两条直线平行与垂直的判定A 级 基础巩固一、选择题1.下列说法正确的是( )A .若直线l 1与l 2倾斜角相等,则l 1∥l 2B .若直线l 1⊥l 2,则k 1k 2=-1C .若直线的斜率不存在,则这条直线一定平行于y 轴D .若两条直线的斜率不相等,则两直线不平行解析:若l 1与l 2倾斜角相等,则l 1∥l 2或l 1与l 2重合,故A 错误;只有当直线l 1,l 2的斜率均存在时,l 1⊥l 2⇒k 1k 2=-1,故B 错误;斜率不存在的直线可能平行于y 轴,也可能与y 轴重合,故C 错误;D 是正确的.答案:D2.已知过点P (3,2m )和点Q (m ,2)的直线与过点M (2,-1)和点N (-3,4)的直线平行,则m 的值是( )A .1B .-1C .2D .-2解析:因为k MN =4-(-1)-3-2=-1,所以若直线PQ 与直线MN 平行,则2m -23-m=-1,解得m =-1. 答案:B3.若不同的两点P ,Q 的坐标分别为(a ,b ),(3-b ,3-a ),则线段PQ 的垂直平分线l 的斜率为( )A .1B .-1 C.12 D .-12解析:由直线斜率的坐标公式,得k PQ =3-a -b 3-b -a=1,所以线段PQ 的垂直平分线的斜率为-1.答案:B4.以A (-1,1),B (2,-1),C (1,4)为顶点的三角形是( )A .锐角三角形B .以B 为直角顶点的直角三角形C .以A 为直角顶点的直角三角形D .钝角三角形解析:因为k AB =-1-12-(-1)=-23, k AC =4-11-(-1)=32, 所以k AB ·k AC =-1,即AB ⊥AC ,所以选C.答案:C5.已知三角形三个顶点的坐标为A (4,2),B (1,-2),C (-2,4),则BC 边上的高的斜率为( )A .2B .-2 C.12 D .-12解析:k BC =4-(-2)-2-1=-2, 所以BC 边上的高的斜率k =12. 答案:C二、填空题6.已知直线l 1∶y =x ,若直线l 2⊥l 1,则直线l 2的倾斜角为________.解析:因为直线y =x 的斜率k 1=1,所以若直线l 2⊥l 1,则直线l 2的斜率k =-1.所以直线l 2的倾斜角为135°.答案:135°7.已知直线l 1的倾斜角为45°,直线l 2∥l 1,且l 2过点A (-2,-1)和B (3,a ),则a 的值为________.解析:因为l 2∥l 1,且l 1的倾斜角为45°,所以kl 2=kl 1=tan 45°=1,即a -(-1)3-(-2)=1,所以a =4. 答案:48.已知A (2,3),B (1,-1),C (-1,-2),点D 在x 轴上,则当点D 坐标为________时,AB ⊥CD .解析:设点D (x ,0),因为k AB =-1-31-2=4≠0,所以直线CD 的斜率存在.则由AB ⊥CD 知,k AB ·k CD =-1,所以4·-2-0-1-x=-1,解得x=-9.答案:(-9,0)三、解答题9.当m 为何值时,过两点A (1,1),B (2m 2+1,m -2)的直线:(1)倾斜角为135°?(2)与过两点(3,2),(0,-7)的直线垂直?(3)与过两点(2,-3),(-4,9)的直线平行?解:(1)由k AB =m -32m 2=tan 135°=-1,解得m =-32或m =1. (2)由k AB =m -32m 2,且-7-20-3=3. 则m -32m 2=-13,解得m =32或m =-3. (3)令m -32m 2=9+3-4-2=-2, 解得m =34或m =-1. 10.已知A (1,-1),B (2,2),C (3,0)三点,求点D ,使直线CD ⊥AB ,且CB ∥AD .解:设D (x ,y ),则k CD =y x -3,k AB =3,k CB =-2,k AD =y +1x -1, 因为k CD ·k AB =-1,k AD =k CB ,所以y x -3×3=-1,y +1x -1=-2,所以x =0,y =1,即D (0,1).B 级 能力提升1.下列各对直线互相平行的是( )A .直线l 1经过A (0,1),B (1,0),直线l 2经过M (-1,3),N (2,0)B .直线l 1经过A (-1,-2),B (1,2),直线l 2经过M (-2,-1),N (0,-2)C .直线l 1经过A (1,2),B (1,3),直线l 2经过C (1,-1),D (1,4)D .直线l 1经过A (3,2),B (3,-1),直线l 2经过M (1,-1),N (3,2)解析:对于A ,k 1=1-00-1=-1, k 2=3-0-1-2=-1,k 1=k 2. 结合图形知l 1∥l 2;对于B ,k 1=2-(-2)1-(-1)=2, k 2=-1-(-2)(-2)-0=-12,k 1≠k 2, 所以l 1与l 2不平行;对于C ,因为l 1过(1,2),(1,3),l 2过C (1,-1),D (1,4),结合图形可知,l 1与l 2重合,所以l 1与l 2不平行;对于D ,由于l 1的斜率不存在,k 2=2-(-1)3-1=32, 所以两条直线不平行,故答案为A.答案:A2.已知点A (-2,-5),B (6,6),点P 在y 轴上,且∠APB =90°,则点P 的坐标为____________.解析:由题意可设点P 的坐标为(0,y ).因为∠APB =90°,所以AP ⊥BP ,且直线AP 与直线BP 的斜率都存在.又k AP =y +52,k BP =y -6-6,k AP ·k BP =-1, 即y +52·⎝⎛⎭⎪⎪⎫-y -66=-1, 解得y =-6或y =7.所以点P 的坐标为(0,-6)或(0,7) 答案:(0,-6)或(0,7)3.直线l 的倾斜角为30°,点P (2,1)在直线l 上,直线l 绕点P (2,1)按逆时针方向旋转30°后到达直线l 1的位置,且直线l 1与l 2平行,l 2是线段AB 的垂直平分线,其中A (1,m -1),B (m ,2),试求m 的值.解:如图所示,直线l 1的倾斜角为30°+30°=60°,所以直线l 1的斜率k 1=tan 60°= 3.又直线AB 的斜率k AB =m -1-21-m =m -31-m ,所以线段AB 的垂直平分线l 2的斜率为 k 2=m -1m -3.因为l 1与l 2平行.所以k 1=k 2,即3=m -1m -3,解得m =4+ 3.。
【课堂新坐标】高中数学人教版必修二练习:3.1.2两条直线平行与垂直的判定(含答案解析)学业分层测评(十六)(建议用时:45分钟)[达标必做]一、选择题1.若l1与l2为两条直线,它们的倾斜角分别为α1,α2,斜率分别为k1,k2,有下列说法:①若l1∥l2,则斜率k1=k2;②若斜率k1=k2,则l1∥l2;③若l1∥l2,则倾斜角α1=α2;④若倾斜角α1=α2,则l1∥l2.其中正确说法的个数是()A.1B.2C.3 D.4【解析】需考虑两条直线重合的情况,②④都可能是两条直线重合,所以①③正确.【答案】 B2.已知过(-2,m)和(m,4)两点的直线与斜率为-2的直线平行,则m的值是() A.-8 B.0C.2 D.10【解析】由题意知m≠-2,m-4-2-m=-2,得m=-8.【答案】 A3.若点A(0,1),B(3,4)在直线l1上,l1⊥l2,则直线l2的倾斜角为() A.-30°B.30°C.150°D.120°【解析】k AB=4-13-0=3,故l1的倾斜角为60°,l1⊥l2,所以l2的倾斜角为150°,故选C.【答案】 C4.以A(-1,1),B(2,-1),C(1,4)为顶点的三角形是() A.锐角三角形B.钝角三角形C.以A点为直角顶点的直角三角形D .以B 点为直角顶点的直角三角形【解析】∵k AB =-1-12+1=-23,k AC =4-11+1=32,∴k AB ·k AC =-1,∴AB ⊥AC ,∠A 为直角.【答案】 C5.设点P (-4,2),Q (6,-4),R (12,6),S (2,12),则下面四个结论:①PQ ∥SR ;②PQ ⊥PS ;③PS ∥QS ;④RP ⊥QS .正确的个数是( )A .1B .2C .3D .4 【解析】∵k PQ =-4-26+4=-35,k SR =12-62-12=-35, k PS =12-22+4=53,k QS =12+42-6=-4,k PR =6-212+4=14 . 又P 、Q 、S 、R 四点不共线,∴PQ ∥SR ,PS ⊥PQ ,RP ⊥QS .故①②④正确.【答案】 C二、填空题6.已知直线l 1过点A (-2,3),B (4,m ),直线l 2过点M (1,0),N (0,m -4),若l 1⊥l 2,则常数m 的值是______.【导学号:09960101】【解析】由l 1⊥l 2,得k AB ·k MN =-1,所以m -34--·m -40-1=-1,解得m =1或6. 【答案】 1或67.已知长方形ABCD 的三个顶点的坐标分别为A (0,1),B (1,0),C (3,2),则第四个顶点D 的坐标为________.【解析】设D 点坐标为(x ,y ),∵四边形ABCD 为长方形,∴AB ∥CD ,AD ∥BC ,即y -2x -3=-1,① y -1x =1,②联立①②解方程组得x =2,y =3,所以顶点D 的坐标为(2,3).【答案】 (2,3)三、解答题8.(2016·泰安高一检测)已知A ?1,-a +13,B 0,-13,C (2-2a,1),D (-a,0)四点,当a 为何值时,直线AB 和直线CD 垂直?【解】 k AB =-13+a +130-1=-a 3,k CD =0-1-a -2+2a =12-a(a ≠2).由-a 3×12-a =-1,解得a =32. 当a =2时,k AB =-23,直线CD 的斜率不存在.∴直线AB 与CD 不垂直.∴当a =32时,直线AB 与CD 垂直. 9.已知在?ABCD 中,A (1,2),B (5,0),C (3,4).(1)求点D 的坐标;(2)试判断?ABCD 是否为菱形.【解】(1)设D (a ,b ),由四边形为平行四边形,得k AB =k CD ,k AD =k BC ,即 0-25-1=b -4a -3,b -2a -1=4-03-5,解得a =-1,b =6,所以D (-1,6).(2)因为k AC =4-23-1=1,k BD =6-0-1-5=-1,所以k AC ·k BD =-1,所以AC ⊥BD ,故?ABCD 为菱形.[自我挑战]10.已知两点A (2,0),B (3,4),直线l 过点B ,且交y 轴于点C (0,y ),O 是坐标原点,有O ,A ,B ,C 四点共圆,那么y 的值是( )A .19 B.194C .5D .4【解析】由题意知AB ⊥BC ,∴k AB ·k BC =-1,即4-03-2×4-y 3-0=-1,解得y =194,故选B. 【答案】 B。
[A 基础达标]1.下列说法中正确的是( )A .平行的两条直线的斜率一定存在且相等B .平行的两条直线的倾斜角一定相等C .垂直的两直线的斜率之积为-1D .只有斜率相等的两条直线才一定平行答案:B2.直线l 过(m ,n )、(n ,m )两点,其中m ≠n ,mn ≠0,则( )A .l 与x 轴垂直B .l 与y 轴垂直C .l 过原点和第一、三象限D .l 的倾斜角为135°解析:选D.直线的斜率k =m -n n -m=-1,所以直线l 的倾斜角为135°. 3.若过点A (2,-2),B (5,0)的直线与过点P (2m ,1),Q (-1,-m )的直线平行,则m 的值为( )A .-1B .1C .2D .12解析:选B.由0-(-2)5-2=-m -1-1-2m,得m =1.故选B. 4.已知直线l 1经过点A (0,-1)和点B ⎝⎛⎭⎫-4a ,1,直线l 2经过点M (1,1)和点N (0,-2),若l 1与l 2没有公共点,则实数a 的值为( )A.23 B .-23C .6D .-6解析:选D.由题意得l 1∥l 2,则1+1-4a-0=-2-10-1,解得a =-6. 5.设点P (-4,2),Q (6,-4),R (12,6),S (2,12),则下面四个结论:①PQ ∥SR ;②PQ ⊥PS ;③PS ∥QS ;④RP ⊥QS .正确的个数是( )A .1B .2C .3D .4解析:选C.因为k PQ =-4-26+4=-35,k SR =12-62-12=-35, k PS =12-22+4=53,k QS =12+42-6=-4,k PR =6-212+4=14. 又P 、Q 、S 、R 四点不共线,所以PQ ∥SR ,PS ⊥PQ ,RP ⊥QS .故①②④正确.6.已知定点A (1,3),B (4,-2),在y 轴上求一点C ,使得AC ⊥BC ,那么C 点坐标是________.答案:(0,2)或(0,-1)7.已知△ABC 的三个顶点分别是A (2,2),B (0,1),C (4,3),点D (m ,1)在边BC 的高所在的直线上,则实数m =________.解析:设直线AD ,BC 的斜率分别为k AD ,k BC ,由AD ⊥BC 得k AD ·k BC =-1,所以1-2m -2×3-14-0=-1⇒m =52. 答案:528.已知▱ABCD 的三个顶点的坐标分别是A (0,1),B (1,0),C (4,3),则顶点D 的坐标为__________.解析:设D (m ,n ),由题意得AB ∥DC ,AD ∥BC ,则有k AB =k DC ,k AD =k BC ,所以⎩⎪⎨⎪⎧0-11-0=3-n 4-m ,n -1m -0=3-04-1,解得⎩⎪⎨⎪⎧m =3,n =4, 所以点D 的坐标为(3,4).答案:(3,4)9.当m 为何值时,过两点A (1,1),B (2m 2+1,m -2)的直线:(1)倾斜角为135°;(2)与过两点(3,2),(0,-7)的直线垂直;(3)与过两点(2,-3),(-4,9)的直线平行.解:(1)由k AB =m -32m 2=-1,得2m 2+m -3=0,解得m =-32或1. (2)由-7-20-3=3及垂直关系,得m -32m 2=-13,解得m =32或-3. (3)由m -32m 2=9+3-4-2=-2,解得m =34或-1. 10.直线l 的倾斜角为30°,点P (2,1)在直线l 上,直线l 绕点P (2,1)按逆时针方向旋转30°后到达直线l 1的位置,直线l 2与l 1平行,且l 2是线段AB 的垂直平分线,A (1,m -1),B (m ,2),试求m 的值.解:如图,因为直线l 1的倾斜角为30°+30°=60°,所以l 1的斜率k 1=tan 60°= 3.由题意知直线AB 的斜率为m -1-21-m =m -31-m, 所以线段AB 的垂直平分线l 2的斜率为k 2=-1-m m -3=m -1m -3. 因为l 1与l 2平行,所以k 1=k 2,即3=m -1m -3, 解得m =4+ 3.[B 能力提升]1.已知直线l 1经过A (-3,4),B (-8,-1)两点,直线l 2倾斜角为135°,那么l 1与l 2( )A .垂直B .平行C .重合D .相交但不垂直 解析:选A.因为直线l 1经过A (-3,4),B (-8,-1)两点,所以直线l 1的斜率k 1=4-(-1)-3-(-8)=1;因为直线l 2倾斜角为135°,所以直线l 2的斜率为k 2=tan 135°=-1,所以k 1·k 2=-1,所以l 1⊥l 2,故选A.2.已知点A (0,1),O (0,0),点B 的横坐标与纵坐标满足x +y =0.若AB ⊥OB ,则点B 的坐标是( )A.⎝⎛⎭⎫-12,12 B .⎝⎛⎭⎫12,-12 C .(-1,1)D .(1,-1)解析:选A.设B 的坐标为(x ,-x ),因为AB ⊥OB ,所以-x -1x ×-x x=-1且x ≠0, 所以x =-12, 所以点B 的坐标为⎝⎛⎭⎫-12,12. 3.已知l 1的斜率是2,l 2过点A (-1,-2),B (x ,6)且l 1∥l 2,则log 19x =__________.解析:因为l 1∥l 2,所以6+2x +1=2, 所以x =3.故log 193=-12. 答案:-124.(选做题)在平面直角坐标系中,四边形OPQR 的顶点按逆时针顺序依次是O (0,0),P (1,t ),Q (1-2t ,2+t ),R (-2t ,2),其中t ∈(0,+∞),试判断四边形OPQR 的形状,并给出证明.解:四边形OPQR 是矩形.OP 边所在直线的斜率k OP =t ,QR 边所在直线的斜率k QR =(t +2)-2(1-2t )-(-2t )=t , OR 边所在直线的斜率k OR =-1t, PQ 边所在直线的斜率k PQ =(2+t )-t(1-2t )-1=-1t .所以k OP =k QR ,k OR =k PQ , 所以OP ∥QR ,OR ∥PQ ,所以四边形OPQR 是平行四边形. 又k QR ·k OR =t ×⎝⎛⎭⎫-1t =-1,所以QR ⊥OR ,所以四边形OPQR 是矩形. 又因为k OQ =2+t 1-2t ,k PR =t -21+2t ,令k OQ ·k PR =-1,得t 不存在, 所以OQ 与PR 不垂直.所以四边形OPQR 不为正方形, 故四边形OPQR 是矩形.。
最新人教版高中数学必修二第二章《直线与平面垂直的判定》精选习题(含答案解析)一、选择题(每小题5分,共40分)1.m,n是空间两条不同直线,α,β是空间两个不同平面,下面有四种说法:①m⊥α,n∥β,α∥β⇒m⊥n;②m⊥n,α∥β,m⊥α⇒n∥β;③m⊥n,α∥β,m∥α⇒n⊥β;④m⊥α,m∥n,α∥β⇒n⊥β.其中正确说法的个数为( )A.1B.2C.3D.42.如图所示,如果MC⊥菱形ABCD所在的平面,那么MA与BD的位置关系是( )A.平行B.垂直相交C.垂直但不相交D.相交但不垂直3.(2021·南昌高二检测)如图所示,在斜三棱柱ABC-A1B1C1的底面△ABC中,∠BAC=90°,且BC1⊥AC,过点C1作C1H⊥底面ABC,垂足为点H,则点H在( )A.直线AC上B.直线AB上C.直线BC上D.△ABC内部4.如图所示,定点A和B都在平面α内,定点P∉α,PB⊥α,C是平面α内异于A和B的动点,且PC⊥AC,则△ABC为( )A.锐角三角形B.直角三角形C.钝角三角形D.无法确定5.已知四棱柱ABCD-A1B1C1D1中,侧棱AA1⊥平面ABCD,且底面ABCD为正方形,AA1=2AB,则CD与平面BDC1所成角的正弦值等于( )A. B. C. D.6.如图,在三棱锥V-ABC中,VO⊥平面ABC,O∈CD,VA=VB,AD=BD,则下列结论中不一定成立的是( )A.AC=BCB.VC⊥VDC.AB⊥VCD.S△VCD·AB=S△ABC·VO7.如图,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是( )A.AC⊥SBB.AB∥平面SCDC.AB与SC所成的角等于DC与SA所成的角D.SA与平面SBD所成的角等于SC与平面SBD所成的角8.(2021·温州高二检测)如图,在三棱柱ABC-A1B1C1中,侧棱AA1垂直底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是( )1与B1E是异面直线B.AC⊥平面ABB1A1C.AE与B1C1为异面直线,且AE⊥B1C1D.A1C1∥平面AB1E二、填空题(每小题5分,共10分)9.在直三棱柱ABC-A1B1C1中,BC=CC1,当底面A1B1C1满足条件________时,有AB1⊥BC1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况)10.(2021·青岛高一检测)在正方体ABCD-A1B1C1D1中,面对角线A1B与对角面BB1D1D 所成的角为________.三、解答题(每小题10分,共20分)11在如图所示的几何体中,D是AC的中点,EF∥DB.(1)已知AB=BC,AE=EC.求证:AC⊥FB.(2)已知G,H分别是EC和FB的中点.求证:GH∥平面ABC.12.如图,在正方体ABCD-A1B1C1D1中,E,F,P,Q,M,N分别是棱AB,AD,DD1,BB1,A1B1,A1D1的中点.求证:(1)直线BC1∥平面EFPQ.(2)直线AC1⊥平面PQMN.参考答案与解析1【解析】选B.①正确,因为n∥β,α∥β,所以在α内有与n平行的直线,又m⊥α,则m⊥n;②错误,α∥β,m⊥α⇒m⊥β,因为m⊥n,则可能n⊂β;③错误,因为m⊥n,α∥β,m∥α,则可能n⊂β且m⊂β;④正确,m⊥α,α∥β,得m⊥β,因为m∥n,则n⊥β.2【解析】选C.因为ABCD为菱形,所以DB⊥AC,又MC⊥平面ABCD,所以MC⊥BD.又AC∩MC=C,所以BD⊥平面ACM.又AM⊂平面AMC,所以BD⊥AM,又BD与AM不共面,所以MA与BD垂直但不相交.3【解析】选B.作C1H⊥AB,因为∠BAC=90°,且BC1⊥AC,所以AC⊥平面ABC1,所以AC⊥C1H,因为AB∩AC=A,所以C1H⊥平面ABC,即点H在底面的垂足在AB边上. 4【解析】选B.因为PB⊥α,AC⊂α,所以PB⊥AC,又AC⊥PC,PB∩PC=P,所以AC⊥平面PBC,又BC⊂平面PBC,所以AC⊥BC.故△ABC为直角三角形.5【解析】选A.如图,设AB=a,则AA1=2a,三棱锥C-BDC1的高为h,CD与平面BDC1所成的角为α.因为=,即××a×ah=×a2×2a,解得h=a.所以sinα==.6【解析】选B.因为VA=VB,AD=BD,所以VD⊥AB.因为VO⊥平面ABC,AB⊂平面ABC,所以VO⊥AB.又VO∩VD=V,VO⊂平面VCD,VD⊂平面VCD,所以AB ⊥平面VCD ,又CD ⊂平面VCD ,VC ⊂平面VCD , 所以AB ⊥VC ,AB ⊥CD.又AD=BD ,所以AC=BC(线段垂直平分线的性质),因为VO ⊥平面ABC , 所以V V-ABC =S △ABC ·VO. 因为AB ⊥平面VCD , 所以V V-ABC =V B-VCD +V A-VCD =S △VCD ·BD+S △VCD ·AD =S △VCD ·(BD+AD) =S △VCD ·AB ,所以S △ABC ·VO=S △VCD ·AB ,即S △VCD ·AB=S △ABC ·VO.综上知,A ,C ,D 正确.7【解析】选C.因为SD ⊥底面ABCD ,底面ABCD 为正方形,所以连接BD ,则BD ⊥AC ,又AC ⊥SD ,可得AC ⊥SB ,故A 正确;因为AB ∥CD ,AB ⊄平面SCD ,CD ⊂平面SCD ,所以AB ∥平面SCD ,故B 正确;因为AB ∥CD ,所以∠SCD 为AB 与SC 所成角,∠SAB 为SA 与DC 所成角,显然∠SCD ≠∠SAB ,故C 不正确.由AC ⊥平面SBD ,记AC 与BD 交于O ,连接SO ,则∠ASO 为SA 与平面SBD 所成角,∠CSO 为SC 与平面SBD 所成角,显然∠ASO=∠CSO.8【解析】选C.A 选项,ABC-A 1B 1C 1是三棱柱,则CE ∥B 1C 1,所以,CEB 1C 1是一个平面,CC 1与B 1E 共面;B 选项,因为AC 与AB 的夹角是60°,所以AC 和平面ABB 1A 1不垂直;C 选项,E 是BC 的中点,则AE ⊥BC ,又因为BB 1⊥平面ABC ,所以AE ⊥BB 1,又BC ∩BB 1=B ,所以AE ⊥平面BCC 1B 1,所以AE ⊥B 1C 1;D 选项,A 1C 1∥AC ,AC 和平面AB 1E 相交,所以A 1C 1与平面AB 1E 不平行. 9【解析】如图所示,连接B 1C ,由BC=CC 1,可得BC 1⊥B 1C ,因此,要证AB 1⊥BC 1,则只要证明BC 1⊥平面AB 1C ,即只要证AC ⊥BC 1即可,由直三棱柱可知,只要证AC ⊥BC 即可.因为A 1C 1∥AC ,B 1C 1∥BC ,故只要证A 1C 1⊥B 1C 1即可.(或者能推出A 1C 1⊥B 1C 1的条件,如∠A 1C 1B 1=90°等) 答案:∠A 1C 1B 1=90°(答案不唯一)10【解析】连接A 1C 1交B 1D 1于点O ,连接BO , 因为A 1C 1⊥B 1D 1, A 1C 1⊥BB 1,故A1C1⊥平面BB1D1D,所以A1B在平面BB1D1D内射影为OB,所以∠A1BO即为A1B与平面BB1D1D所成角.设正方体棱长为a,则A1B=a,A 1O=A1C1=a,所以sin∠A1BO===,所以∠A1BO=30°.答案:30°11【解析】(1)连接ED,因为AB=BC,AE=EC,D为AC中点,所以AC⊥DE,AC⊥DB,DE∩DB=D,又EF∥DB,所以E,F,B,D四点共面,所以AC⊥平面EFBD, 所以AC⊥FB.(2)取FC中点I,连接GI,HI,则有GI∥EF,HI∥BC,又EF∥DB,所以GI∥BD,又GI∩HI=I,BD∩BC=B,所以,平面GHI∥平面ABC,因为GH⊂平面GHI,所以GH∥平面ABC.12【证明】(1)连接AD1,由ABCD-A1B1C1D1是正方体,知AD1∥BC1,因为F,P分别是AD,DD1的中点,所以FP∥AD1.从而BC1∥FP.而FP⊂平面EFPQ,且BC1⊄平面EFPQ,故直线BC1∥平面EFPQ.(2)连接AC,BD,则AC⊥BD.由CC1⊥平面ABCD,BD⊂平面ABCD,可得CC1⊥BD.又AC∩CC1=C,所以BD⊥平面ACC1.而AC1⊂平面ACC1,所以BD⊥AC1.因为M,N分别是A1B1,A1D1的中点,所以MN∥BD,从而MN⊥AC1.同理可证PN⊥AC1.又PN∩MN=N,所以直线AC1⊥平面PQMN.。
人教版高中数学必修第二册8.6.2直线与平面垂直第1课时直线与平面垂直的判定同步练习一、选择题(本大题共8小题,每小题5分,共40分)1.直线a与平面α所成的角为50°,直线b∥a,则直线b与平面α所成的角为()A.40°B.50°C.90°D.150°2.已知α,β是不同的平面,m,n是不同的直线,给出下列命题:①m⊥n,m∥α,α∥β⇒n⊥β;②m⊥n,m⊥α,α∥β⇒n⊥β;③m⊥α,n∥β,α∥β⇒m⊥n;④m⊥α,m∥n,α∥β⇒n⊥β.其中正确的是()A.①②B.②③C.①④D.③④3.若三条直线OA,OB,OC两两垂直,则直线OA垂直于()A.平面OABB.平面OACC.平面OBCD.平面ABC4.若一条直线与一个平面成72°角,则这条直线与这个平面内经过斜足的直线所成角中最大角为()A.72°B.90°C.108°D.180°5.如图L8-6-10所示,若斜线段AB的长度是它在平面α上的射影BO的长度的2倍,则AB与平面α所成的角是()图L8-6-10A.60°B.45°C.30°D.120°6.如图L8-6-11,在正方形ABCD中,E,F分别是BC,CD的中点,沿AE,AF,EF把正方形折成一个四面体,使B,C,D三点重合,重合后的点记为P,点P在△AEF内的射影为O,则下列说法中正确的是()图L8-6-11A.O是△AEF的垂心B.O是△AEF的内心C.O是△AEF的外心D.O是△AEF的重心7.如图L8-6-12所示,△ABC是等腰三角形,BA=BC,DC⊥平面ABC,AE∥DC,若AC=2,且BE⊥AD,则()图L8-6-12A.AB·BC=1B.AB·BC=2C.AE·CD=1D.AE·CD=28.在长方体ABCD-A1B1C1D1中,AB=2AD,E为CD的中点,则()A.A1E⊥DD1B.A1E⊥DBC.A1E⊥D1C1D.A1E⊥DB1二、填空题(本大题共4小题,每小题5分,共20分)9.如图L8-6-13所示,在直四棱柱ABCD-A1B1C1D1中,当底面四边形ABCD满足条件时,有A1C⊥B1D1.(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况)图L8-6-1310.平行四边形ABCD对角线的交点为O,点P在平行四边形ABCD所在平面之外,且PA=PC,PD=PB,则PO与平面ABCD的位置关系是.11.底面边长为a的正四棱锥的体积与棱长为a的正方体体积相等,则正四棱锥的侧棱与底面所成角的正切值为.12.在正方体ABCD-A1B1C1D1中,BB1与平面ACD1所成角的正弦值为.三、解答题(本大题共2小题,共20分)13.(10分)如图L8-6-14,在四棱锥P-ABCD中,AB⊥BC,AD∥BC,AD=AB=12BC=1,PA=5,△PBC是正三角形.(1)求证:AB⊥平面PBC;(2)求点P到平面ABC的距离.图L8-6-1414.(10分)如图L8-6-15所示,在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为DD1,BD的中点.(1)求证:AF⊥平面BB1D1D;(2)求异面直线EF与BC所成的角的正切值.图L8-6-15=3 ,点P在棱AB 15.(5分)如图L8-6-16,已知三棱锥A-BCD的所有棱长均相等,点E满足上运动.设EP与平面BCD所成的角为θ,则sinθ的最大值为.图L8-6-1616.(15分)已知AB是圆O的直径,点C是圆O上异于A,B的动点,过动点C的直线VC垂直于圆O所在的平面,D,E分别是VA,VC的中点.(1)判断直线DE与平面VBC的位置关系,并说明理由;(2)当△VAB是边长为22的正三角形时,求四面体V-DEB的体积.参考答案与解析1.B[解析]若两条直线平行,则它们与同一平面所成的角相等.因为直线a与平面α所成的角为50°,直线b∥a,所以直线b与平面α所成的角为50°.故选B.2.D[解析]若m⊥n,m∥α,α∥β,则n∥β或n与β相交,故①错误;若m⊥n,m⊥α,α∥β,则n∥β或n⊂β,故②错误;若m⊥α,n∥β,α∥β,则m⊥n,故③正确;若m⊥α,m∥n,α∥β,则n⊥β,故④正确.故选D.3.C[解析]∵OA⊥OB,OA⊥OC,且OB∩OC=O,∴OA⊥平面OBC.4.B[解析]当这个平面内经过斜足的直线l与这条直线在这个平面内的射影垂直时,直线l与这条直线垂直,所成的角为直角.又因为两直线所成角的取值范围为[0°,90°],所以直线l与这条直线所成角的最大值为90°.故选B.5.A[解析]∠ABO即是AB与平面α所成的角.在Rt△AOB中,AB=2BO,所以cos∠ABO=12,即∠ABO=60°.故选A.6.A[解析]由题意可知PA,PE,PF两两垂直,则PA⊥平面PEF,则PA⊥EF.由题意知PO⊥平面AEF,则PO⊥EF,又PA∩PO=P,所以EF⊥平面PAO,所以EF⊥AO.同理可得AE⊥FO,AF⊥EO,所以O为△AEF的垂心.故选A.7.D[解析]取AC的中点O,连接OB,OE,记OE与AD的交点为F,则OB⊥AC.∵DC⊥平面ABC,OB⊂平面ABC,∴DC⊥OB,∵DC∩AC=C,∴OB⊥平面ADC,∴OB⊥AD.∵BE⊥AD,OB∩BE=B,∴AD⊥平面BOE,∴AD⊥OE.∵AE∥DC,∴∠DAE=∠ADC,又∠AFE=∠ACD=90°,∴∠AEO=∠CAD,∴tan∠AEO=tan∠CAD,∴ = ,即1 = 2,∴AE·CD=2.故选D.8.B[解析]连接AE.因为AB=2AD,E为CD的中点,所以 = =2,所以△ABD∽△DAE,所以∠DAE=∠ABD,所以∠EAB+∠ABD=90°,即AE⊥BD.因为A1A⊥平面ABCD,BD⊂平面ABCD,所以A1A⊥BD.又A1A∩AE=A,所以BD⊥平面A1AE,所以A1E⊥DB.9.AC⊥BD(或四边形ABCD为菱形)10.垂直[解析]∵PA=PC,O是AC的中点,∴PO⊥AC.同理可得PO⊥BD.又∵AC∩BD=O,∴PO ⊥平面ABCD.11.32[解析]记该正四棱锥为S-ABCD,设其高SO=h,则13a2·h=a3,可得h=3a.因为该正四棱锥的侧棱与底面所成的角为∠SCO,且tan∠SCO=3 =32.12[解析]如图所示,连接BD,与AC交于点O,连接D1O,过点D作DE⊥D1O.易知BB1与平面ACD1所成的角等于DD1与平面ACD1所成的角.由题意知AC⊥DB,AC⊥DD1,又DB∩DD1=D,所以AC⊥平面DD1O,可得AC⊥DE,又DE⊥D1O,AC∩D1O=O,所以DE⊥平面ACD1,所以DD1与平面ACD1所成的角为∠DD1O.设正方体的棱长为1,则在Rt△DD1O中,sin∠DD1O= 1 =13.解:(1)证明:∵AB=12BC=1,且△PBC是正三角形,∴PB=2.∵PA=5,∴AB2+PB2=PA2,∴AB⊥PB.又∵AB⊥BC,PB∩BC=B,PB⊂平面PBC,BC⊂平面PBC,∴AB⊥平面PBC.(2)设点P到平面ABC的距离为h.由(1)知AB⊥平面PBC,由V P-ABC=V A-PBC,得13S△ABC·h=13S△PBC·AB,即13×12×1×2×h=13×12×2×21,解得h=3,则点P到平面ABC的距离为3.14.解:(1)证明:在正方体ABCD-A1B1C1D1中,AB=AD,因为F为BD的中点,所以AF⊥BD.因为DD1⊥平面ABCD,AF⊂平面ABCD,所以AF⊥DD1.又DB∩DD1=D,DB⊂平面BB1D1D,DD1⊂平面BB1D1D,所以AF⊥平面BB1D1D.(2)连接D1B,D1C,如图所示.因为E,F分别为DD1,BD的中点,所以EF∥D1B,故异面直线EF与BC所成的角即为∠D1BC.又BC⊥平面D1DCC1,D1C⊂平面D1DCC1,所以BC⊥D1C,所以tan∠D1BC= 1 =2.15[解析]依题意可知,该几何体为正四面体.设顶点A在底面上的射影是O,则O是底面的中心,连接OB,过P作PH∥AO,交OB于H,连接HE.设正四面体的棱长为4a,PB=x(0<x ≤4a).在三角形PBE中,∠PBE=π3,由余弦定理得PE= 2+ 2- .因为AO⊥平面BCD,PH∥AO,所以PH⊥平面BCD,所以PH⊥HE,所以∠PEH是直线EP与平面BCD所成的角θ.在三角形AOB,又 = 4 ,所以所以sinθ= =中,x=2a时,sinθ16.解:(1)DE⊥平面VBC,证明如下:∵AB是圆O的直径,点C是圆O上异于A,B的动点,∴AC⊥BC.∵过动点C的直线VC垂直于圆O所在的平面,AC⊂平面ABC,∴AC⊥VC,∵BC∩VC=C,∴AC⊥平面VBC.∵D,E分别是VA,VC的中点,∴DE∥AC,∴DE⊥平面VBC.(2)∵△VAB是边长为22的正三角形,∴VB=VA,又∠VCB=∠VCA=90°,VC=VC,∴△VBC≌△VAC,∴BC=AC.∵BC2+AC2=AB2=8,∴AC=BC=2,∴VC=(22)2-22=2.∵D,E分别是VA,VC的中点,∴DE=12AC=1,∴四面体V-DEB的体积V V-DEB=V D-VBE=13×S△BEV×DE=13×12×S△VBC×DE=13×12×12×2×2×1=13.。
1.证明方法(1)证明平行关系的方法:①证明线线平行的常用方法a.利用平行公理,即证明两直线同时和第三条直线平行;b.利用平行四边形进行转换;c.利用三角形中位线定理证明;d.利用线面平行、面面平行的性质定理证明.②证明线面平行的常用方法a.利用线面平行的判定定理,把证明线面平行转化为证线线平行;b.利用面面平行的性质定理,把证明线面平行转化为证面面平行.③证明面面平行的方法证明面面平行,依据判定定理,只要找到一个面内两条相交直线与另一个平面平行即可,从而将证面面平行转化为证线面平行,再转化为证线线平行.(2)证明空间中垂直关系的方法:①证明线线垂直的常用方法a.利用特殊平面图形的性质,如利用直角三角形、矩形、菱形、等腰三角形等得到线线垂直;b.利用勾股定理逆定理;c.利用线面垂直的性质,即要证线线垂直,只需证明一线垂直于另一线所在平面即可.②证明线面垂直的常用方法a.利用线面垂直的判定定理,把线面垂直的判定转化为证明线线垂直;b.利用面面垂直的性质定理,把证明线面垂直转化为证面面垂直;c.利用常见结论,如两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.③证明面面垂直的方法证明面面垂直常用面面垂直的判定定理,即证明一个面过另一个面的一条垂线,将证明面面垂直转化为证明线面垂直,一般先从现有直线中寻找,若图中不存在这样的直线,则借助中点、高线或添加辅助线解决. 2.应特别注意的几个易错点定理图形语言易错点等角定理⎭⎪⎬⎪⎫∠AOB 和∠A ′O ′B ′中OA ∥O ′A ′,OB ∥O ′B ′且方向相同⇒∠AOB=∠A ′O ′B ′易忽略“方向相同” 线面平行的判定定理 ⎭⎪⎬⎪⎫a ⊄α,b ⊂αa ∥b ⇒a ∥α易丢掉“a ⊄α”或“b⊂α” 线面平行的性质定理⎭⎪⎬⎪⎫a ∥α,a ⊂βα∩β=b ⇒a ∥b易忽略“α∩β=b ”直线和平面垂直的判定定理 ⎭⎪⎬⎪⎫l ⊥a ,l ⊥b a ⊂α,b ⊂αa ∩b =O⇒l ⊥α易忽略“a ∩b =O ”两个平面垂直的性质定理 ⎭⎪⎬⎪⎫α⊥βα∩β=c a ⊂α,a ⊥c ⇒a ⊥β易忽略“a ⊂α”面面平行的判定定理⎭⎪⎬⎪⎫a ∥α,b ∥αa ⊂β,b ⊂βa ∩b =O ⇒α∥β易忽略“a ∩b =O ”面面平行的判定定理的推论 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⊂α,b ⊂αa ∩b =Oc ⊂β,d ⊂βc ∩d =O ′a ∥c ,b ∥d ⇒α∥β易忽略“a ∩b =O ”或“c ∩d =O ′”【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若平面外一条直线上有两个点到平面的距离相等,则直线与平面平行.( × )(2)若直线a∥α,P∈α,则过点P且平行于a的直线有无数条.(×)(3)若a⊥b,b⊥c,则a∥c.(×)(4)α,β,γ为三个不同平面,α∥β,β∥γ⇒α∥γ.(√)(5)若α⊥γ,β⊥γ,且α∩β=l,则l⊥γ.(√)(6)α⊥β,a⊥β,b⊥α⇒a∥b.(×)1.(教材改编)如图,已知平面α,β,且α∩β=AB,PC⊥α,垂足为C,PD⊥β,垂足为D,则直线AB与CD的位置关系是________.答案AB⊥CD解析∵PC⊥α,∴PC⊥AB,又∵PD⊥β,∴PD⊥AB,∴AB⊥平面PCD,∴AB⊥CD.2.已知正方体ABCD—A1B1C1D1中,E,F,G分别为B1C1,A1D1,A1B1的中点,则平面EBD 与平面FGA的位置关系为________.答案平行3.如图所示,边长为a的正△ABC的中线AF与中位线DE相交于G,已知△A′ED是△AED 绕DE旋转过程中的一个图形,下列命题中错误的是________.①动点A′在平面ABC上的射影在线段AF上;②恒有平面A′GF⊥平面BCED;③三棱锥A′—FED的体积有最大值;④异面直线A′E与BD不可能互相垂直.答案④解析由题意知,DE⊥平面A′FG,又DE⊂平面ABC,所以平面A′FG⊥平面ABC,且它们的交线是AF ,过A ′作A ′H ⊥AF ,则A ′H ⊥平面ABC ,所以A ′在平面ABC 上的射影一定在线段AF 上,且平面A ′GF ⊥平面BCED ,故①②均正确;三棱锥A ′—EFD 的体积可以表示为V =13S △EFD ·A ′H ,当平面A ′DE ⊥平面ABC 时,A ′H 最大,故三棱锥A ′—EFD 的体积有最大值,故③正确;连结CD ,EH ,当CD ∥EH 时,BD ⊥EH ,又知EH 是A ′E 在平面ABC 内的射影,所以BD ⊥A ′E ,因此异面直线A ′E 与BD 可能垂直,故④错误.4.已知点P 是等腰三角形ABC 所在平面外一点,且P A ⊥平面ABC ,P A =8,在△ABC 中,底边BC =6,AB =5,则P 到BC 的距离为________. 答案 4 5解析 取BC 的中点D ,连结AD ,PD .∵AD ⊥BC ,P A ⊥BC ,且AD ∩P A =A ,∴BC ⊥平面P AD ,∴BC ⊥PD , ∴在Rt △P AD 中,PD =82+42=4 5.5.(教材改编)如图,在三棱锥V —ABC 中,∠VAB =∠VAC =∠ABC =90°,则平面VBA 与平面VBC 的位置关系为_____________________________________________________.答案 垂直解析 ∵∠VAB =∠VAC =∠ABC =90°, ∴BC ⊥AB ,VA ⊥AC ,VA ⊥AB , 由⎭⎪⎬⎪⎫VA ⊥AB VA ⊥AC ⇒VA ⊥平面ABC , ∴VA ⊥BC ,由⎭⎪⎬⎪⎫VA ⊥BC AB ⊥BC ⇒BC ⊥平面VAB ∴BC ⊥AB ,又BC ⊂平面VBC , ∴平面VBC ⊥平面VBA.题型一 线、面平行垂直关系的判定例1 (1)如图所示,在直棱柱ABC —A 1B 1C 1中,若D 是AB 的中点,则AC 1与平面CDB 1的关系为________.①AC 1∥平面CDB 1; ②AC 1在平面CDB 1中; ③AC 1与平面CDB 1相交; ④无法判断关系.(2)已知m ,n 为直线,α,β为平面,给出下列命题:①⎩⎪⎨⎪⎧ m ⊥α,m ⊥n ⇒n ∥α;②⎩⎪⎨⎪⎧m ⊥β,n ⊥β⇒m ∥n ; ③⎩⎪⎨⎪⎧m ⊥α,m ⊥β⇒α∥β;④⎩⎪⎨⎪⎧m ⊂α,n ⊂β,α∥β⇒m ∥n .其中正确的命题是________. 答案 (1)① (2)②③解析 (1)连结BC 1,BC 1与CB 1交于E 点,(如图)连结DE ,则DE ∥AC 1,又DE ⊂平面CDB 1,AC 1⊄平面CDB 1, ∴AC 1∥平面CDB 1.(2)对于①,n 可能在α内;对于④,m 与n 可能异面.易知②,③是真命题. 思维升华 对线面平行、垂直关系的判定:(1)易忽视判定定理与性质定理的条件,如易忽视线面平行的判定定理中直线在平面外这一条件;(2)结合题意构造或绘制图形,结合图形作出判断;(3)可举反例否定结论或用反证法判断结论是否正确.(1)在正方形SG1G2G3中,E,F分别为G1G2,G2G3的中点.现在沿SE,SF及EF 把这个正方形折成一个四面体,使点G1,G2,G3重合,记为点G,则SG与平面EFG的位置关系为________.答案垂直解析翻折后SG⊥EG,SG⊥FG,从而SG⊥平面EFG.(2)已知三个平面α,β,γ.若α∥β,α∩γ=a,β∩γ=b,且直线c⊂β,c∥b.①判断c与α的位置关系,并说明理由;②判断c与a的位置关系,并说明理由.解①c∥α,∵α∥β,∴α与β没有公共点.又∵c⊂β,∴c与α无公共点,故c∥α.②c∥a.∵α∥β,∴α与β没有公共点.又α∩γ=a,β∩γ=b,∴a⊂α,b⊂β,且a,b⊂γ,∴a∥b.又c∥b,∴a∥c.题型二平行与垂直关系的证明命题点1线面平行的证明例2在正方体ABCD—A1B1C1D1中,E,F分别为棱BC,C1D1的中点.求证:EF∥平面BB1D1D. 证明如图所示,连结AC交BD于点O,连结OE,则OE∥DC,OE=12DC.∵DC∥D1C1,DC=D1C1,F为D1C1的中点,∴OE∥D1F,OE=D1F,∴四边形D1FEO为平行四边形,∴EF∥D1O.又∵EF ⊄平面BB1D1D,D1O⊂平面BB1D1D,∴EF∥平面BB1D1D.命题点2面面平行的证明例3如图所示,已知正方体ABCD—A1B1C1D1.(1)求证:平面A1BD∥平面B1D1C.(2)若E,F分别是AA1,CC1的中点,求证:平面EB1D1∥平面FBD.证明(1)∵B1B∥DD1,B1B=D1D,∴四边形BB1D1D是平行四边形,∴B1D1∥BD,又BD⊂平面A1BD,B1D1⊂平面B1D1C,∴BD∥平面B1D1C.同理A1D∥平面B1D1C,又∵A1D∩BD=D,A1D,BD⊂平面A1BD,∴平面A1BD∥平面B1D1C.(2)由BD∥B1D1,得BD∥平面EB1D1.如图所示,取BB1的中点G,连结AG,GF,易得AE∥B1G,又∵AE=B1G,∴四边形AEB1G是平行四边形,∴B1E∥AG.同理GF ∥AD .又∵GF =AD , ∴四边形ADFG 是平行四边形,∴AG ∥DF ,∴B 1E ∥DF ,∴DF ∥平面EB 1D 1. 又∵BD ∩DF =D , ∴平面EB 1D 1∥平面FBD . 命题点3 直线与平面垂直的证明例4 如图,在多面体ABCDEF 中,四边形ABCD 是菱形,AC 、BD 相交于点O ,EF ∥AB ,AB =2EF ,平面BCF ⊥平面ABCD ,BF =CF ,点G 为BC 的中点.(1)求证:OG ∥平面EFCD ; (2)求证:AC ⊥平面ODE .证明 (1)∵四边形ABCD 是菱形,AC ∩BD =O , ∴点O 是BD 的中点,∵点G 为BC 的中点,∴OG ∥CD , 又∵OG ⊄平面EFCD ,CD ⊂平面EFCD , ∴OG ∥平面EFCD .(2)∵BF =CF ,点G 为BC 的中点,∴FG ⊥BC . ∵平面BCF ⊥平面ABCD , 平面BCF ∩平面ABCD =BC , FG ⊂平面BCF ,FG ⊥BC , ∴FG ⊥平面ABCD .∵AC ⊂平面ABCD ,∴FG ⊥AC ,∵OG ∥AB ,OG =12AB ,EF ∥AB ,EF =12AB ,∴OG ∥EF ,OG =EF ,∴四边形EFGO为平行四边形,∴FG∥EO.∵FG⊥AC,FG∥EO,∴AC⊥EO.∵四边形ABCD是菱形,∴AC⊥DO,∵EO∩DO=O,EO、DO在平面ODE内,∴AC⊥平面ODE.命题点4面面垂直的证明例5如图所示,在正三棱柱ABC—A1B1C1中,E为BB1的中点,求证:截面A1CE⊥侧面ACC1A1.证明如图所示,取A1C的中点F,AC的中点G,连结FG,EF,BG,则FG∥AA1,且GF=12AA1.因为BE=EB1,A1B1=CB,∠A1B1E=∠CBE=90°,所以△A1B1E≌△CBE,所以A1E=CE.因为F为A1C的中点,所以EF⊥A1C.又FG∥AA1∥BE,GF=12AA1=BE,且BE⊥BG,所以四边形BEFG是矩形,所以EF⊥FG.因为A1C∩FG=F,所以EF ⊥侧面ACC 1A 1. 又因为EF ⊂平面A 1CE , 所以截面A 1CE ⊥侧面ACC 1A 1. 命题点5 平行、垂直的综合证明例6 如图,四边形ABCD 是正方形,DE ⊥平面ABCD .(1)求证:AC ⊥平面BDE ;(2)若AF ∥DE ,DE =3AF ,点M 在线段BD 上,且BM =13BD ,求证:AM ∥平面BEF .证明 (1)因为DE ⊥平面ABCD ,所以DE ⊥AC .因为四边形ABCD 是正方形,所以AC ⊥BD .又BD ∩DE =D ,从而AC ⊥平面BDE .(2)如图,延长EF ,DA 交于点G .因为AF ∥DE ,DE =3AF ,所以GA GD =AF DE =13.因为BM =13BD ,所以BM BD =13,所以BM BD =GA GD =13,所以AM ∥GB .又AM ⊄平面BEF ,GB ⊂平面BEF , 所以AM ∥平面BEF .思维升华 (1)空间线面的位置关系的判定方法①证明直线与平面平行,设法在平面内找到一条直线与已知直线平行,解答时合理利用中位线性质、线面平行的性质,或构造平行四边形,寻求比例关系确定两直线平行.②证明直线与平面垂直,主要途径是找到一条直线与平面内的两条相交直线垂直.解题时注意分析观察几何图形,寻求隐含条件.(2)空间面面的位置关系的判定方法①证明面面平行,需要证明线面平行,要证明线面平行需证明线线平行,将“面面平行”问题转化为“线线平行”问题.②证明面面垂直,将“面面垂直”问题转化为“线面垂直”问题,再将“线面垂直”问题转化为“线线垂直”问题.如图,四边形AA1C1C为矩形,四边形CC1B1B为菱形,且平面CC1B1B⊥平面AA1C1C,D,E分别为边A1B1,C1C的中点.求证:(1)BC1⊥平面AB1C;(2)DE∥平面AB1C.证明(1)∵四边形AA1C1C为矩形,∴AC⊥C1C.又平面CC1B1B⊥平面AA1C1C,平面CC1B1B∩平面AA1C1C=CC1,∴AC⊥平面CC1B1B.∵BC1⊂平面CC1B1B,∴AC⊥BC1.又四边形CC1B1B为菱形,∴B1C⊥BC1.∵B1C∩AC=C,∴BC1⊥平面AB1C.(2)取AA1的中点F,连结DF,EF.∵四边形AA1C1C为矩形,E,F分别为C1C,AA1的中点,∴EF∥AC.∵EF⊄平面AB1C,AC⊂平面AB1C,∴EF ∥平面AB 1C .∵D ,F 分别为边A 1B 1,AA 1的中点,∴DF ∥AB 1. ∵DF ⊄平面AB 1C ,AB 1⊂平面AB 1C , ∴DF ∥平面AB 1C .∵EF ∩DF =F ,EF ⊂平面DEF ,DF ⊂平面DEF , ∴平面DEF ∥平面AB 1C .∵DE ⊂平面DEF ,∴DE ∥平面AB 1C .题型三 平行与垂直的应用例7 (2015·安徽)如图,三棱锥P -ABC 中,P A ⊥平面ABC ,P A =1,AB =1,AC =2,∠BAC =60°.(1)求三棱锥P -ABC 的体积;(2)证明:在线段PC 上存在点M ,使得AC ⊥BM ,并求PMMC的值.(1)解 由题设AB =1,AC =2,∠BAC =60°, 可得S △ABC =12·AB ·AC ·sin 60°=32.由P A ⊥平面ABC ,可知P A 是三棱锥P -ABC 的高,又P A =1. 所以三棱锥P -ABC 的体积V =13·S △ABC ·P A =36.(2)证明 在平面ABC 内,过点B 作BN ⊥AC ,垂足为N ,在平面P AC 内,过点N 作MN ∥P A 交PC 于点M ,连结BM .由P A ⊥平面ABC 知P A ⊥AC ,所以MN ⊥AC .由于BN ∩MN =N ,故AC ⊥平面MBN ,又BM ⊂平面MBN ,所以AC ⊥BM .在Rt △BAN 中,AN =AB ·cos ∠BAC =12,从而NC =AC -AN =32,由MN ∥P A ,得PM MC =ANNC=13.思维升华(1)利用平行关系可以转移点到面的距离,从而求几何体体积或解决关于距离的最值问题.(2)对于存在性问题的证明与探索有三种途径:途径一:先猜后证,即先观察与尝试给出条件再证明;途径二:先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.途径三:将几何问题转化为代数问题,探索出命题成立的条件.如图,在四棱锥P—ABCD中,底面ABCD是矩形,P A⊥平面ABCD,P A=AD =1,AB=3,点F是PD的中点,点E是边DC上的任意一点.(1)当点E为DC边的中点时,判断EF与平面P AC的位置关系,并加以证明;(2)证明:无论点E在边DC的何处,都有AF⊥EF;(3)求三棱锥B—AFE的体积.(1)解当点E为DC边的中点时,EF与平面P AC平行.证明如下:在△PDC中,E,F分别为DC,PD的中点,∴EF∥PC,又EF⊄平面P AC,而PC⊂平面P AC,∴EF∥平面P AC.(2)证明∵P A⊥平面ABCD,CD⊂平面ABCD,∴P A⊥CD.∵四边形ABCD是矩形,∴CD⊥AD.∵AD∩AP=A,∴CD⊥平面P AD.又AF⊂平面P AD,∴AF⊥CD.∵P A=AD,点F是PD的中点,∴AF⊥PD.又CD∩PD=D,∴AF⊥平面PCD.∵EF⊂平面PCD,∴AF⊥EF.即无论点E 在边DC 的何处,都有AF ⊥EF .(3)解 作FG ∥P A 交AD 于G ,则FG ⊥平面ABCD ,且FG =12,又S △ABE =32,∴V B —AEF =V F —AEB =13S △ABE ·FG =312.∴三棱锥B —AFE 的体积为312.6.立体几何平行、垂直的证明问题典例 (14分)(2014·北京)如图,在三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,AA 1=AC =2,BC =1,E ,F 分别是A 1C 1,BC 的中点.(1)求证:平面ABE ⊥平面B 1BCC 1; (2)求证:C 1F ∥平面ABE ; (3)求三棱锥E -ABC 的体积. 规范解答(1)证明 在三棱柱ABC -A 1B 1C 1中,BB 1⊥底面ABC , 所以BB 1⊥AB .[1分] 又因为AB ⊥BC ,所以AB ⊥平面B 1BCC 1,[2分] 又AB ⊂平面ABE ,所以平面ABE ⊥平面B 1BCC 1.[3分](2)证明 取AB 的中点G ,连结EG ,FG .[4分]因为E ,F 分别是A 1C 1,BC 的中点, 所以FG ∥AC ,且FG =12AC .[6分]因为AC ∥A 1C 1,且AC =A 1C 1, 所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形. 所以C 1F ∥EG .[8分]又因为EG ⊂平面ABE ,C 1F ⊄平面ABE , 所以C 1F ∥平面ABE .[10分](3)解 因为AA 1=AC =2,BC =1,AB ⊥BC , 所以AB =AC 2-BC 2= 3.[12分]所以三棱锥E -ABC 的体积 V =13S △ABC ·AA 1=13×12×3×1×2=33.[14分]证明线面平行问题(一)第一步:作(找)出所证线面平行中的平面内的一条直线. 第二步:证明线线平行.第三步:根据线面平行的判定定理证明线面平行. 第四步:反思回顾.检测关键点及答题规范. 证明线面平行问题(二)第一步:在多面体中作出要证线面平行中的线所在的平面.第二步:利用线面平行的判定定理证明所作平面内的两条相交直线分别与所证平面平行; 第三步:证明所作平面与所证平面平行. 第四步:转化为线面平行. 第五步:反思回顾,检查答题规范. 证明面面垂直问题第一步:根据已知条件确定一个平面内的一条直线垂直于另一个平面内的一条直线. 第二步:结合已知条件证明确定的这条直线垂直于另一平面内的两条相交直线.第三步:得出确定的这条直线垂直于另一平面.第四步:转化为面面垂直.第五步:反思回顾,检查答题规范.温馨提醒(1)证线面平行的方法:①利用判定定理,关键是找平面内与已知直线平行的直线.可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.②若要借助于面面平行来证明线面平行,则先要确定一个平面经过该直线且与已知平面平行,此目标平面的寻找方法是经过线段的端点作该平面的平行线.(2)证明两个平面垂直,通常是通过证明线线垂直→线面垂直→面面垂直来实现,因此,在关于垂直问题的论证中要注意线线垂直、线面垂直、面面垂直的相互转化.[方法与技巧]1.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,其转化关系为在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.2.空间中直线与直线垂直、直线与平面垂直、平面与平面垂直三者之间可以相互转化,每一种垂直的判定都是从某种垂直开始转向另一种垂直最终达到目的,其转化关系为在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.[失误与防范]1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.2.线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.3.在用线面垂直的判定定理证明线面垂直时,考生易忽视说明平面内的两条直线相交,而导致被扣分,这一点在证明中要注意.口诀:线不在多,重在相交.4.面面垂直的性质定理在立体几何中是一个极为关键的定理,这个定理的主要作用是作一个平面的垂线,在一些垂直关系的证明中,很多情况都要借助这个定理作出平面的垂线.注意定理使用的条件,在推理论证时要把定理所需要的条件列举完整,同时要注意推理论证的层次性,确定先证明什么、后证明什么.A组专项基础训练(时间:45分钟)1.设α,β为两个不重合的平面,l,m,n为两两不重合的直线,给出下列四个命题:①若α∥β,l⊂α,则l∥β;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③若l∥α,l⊥β,则α⊥β;④若m,n是异面直线,m∥α,n∥α,且l⊥m,l⊥n,则l⊥α.其中真命题的序号是________.答案①③④解析①由α∥β,l⊂α知,l与β无公共点,故l∥β.②当m⊂α,n⊂α,m与n相交,m∥β,n∥β时,α∥β.③由l∥α知,α内存在l′,使得l′∥l.因为l⊥β,所以l′⊥β,故α⊥β.④易知α内存在m′,n′,使得m′∥m,n′∥n,且m′,n′相交,由l⊥m,l⊥n知,l⊥m′且l⊥n′,故l⊥α.2.已知平面α,β,直线m,n,给出下列命题:①若m∥α,n∥β,m∥n,则α∥β;②若α∥β,m∥α,n∥β,则m∥n;③若m⊥α,n⊥β,m⊥n,则α⊥β;④若α⊥β,m⊥α,n⊥β,则m⊥n.其中是真命题的是________.(填写所有真命题的序号)答案③④解析对于①,平面α与β可能相交,故①错;对于②,若α∥β,m∥α,n∥β,则直线m 与n可能平行,可能相交,也可能异面,故②错;对于③,由面面垂直的判定可知③正确;对于④,由面面垂直的性质可知m⊥n,故④正确.因此真命题的序号为③④.3.在四棱锥P—ABCD中,P A⊥底面ABCD,底面各边都相等,M是PC上一动点,当M满足是________时,平面MBD⊥平面ABCD.答案PC的中点解析 当M 是PC 中点时,连结AC ,BD 交于O ,由题意知,O 是AC 的中点,连结MO ,则MO ∥P A .∵P A ⊥平面ABCD ,∴MO ⊥平面ABCD ,MO ⊂平面MBD ,∴平面MBD ⊥平面ABCD . 4.如图,ABCD 是空间四边形,E ,F ,G ,H 分别是四边上的点,且它们共面,并且AC ∥平面EFGH ,BD ∥平面EFGH ,AC =m ,BD =n ,当EFGH 是菱形时,AE ∶EB =________.答案m n解析 设AE =a ,EB =b ,由题意知,EF ∥AC , 得EF =bm a +b ,同理EH =ana +b.因为EF =EH ,所以bm a +b =an a +b,所以a b =mn .5.如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,底面是以∠ABC 为直角的等腰直角三角形,AC =2a ,BB 1=3a ,D 是A 1C 1的中点,点F 在线段AA 1上,当AF =________时,CF ⊥平面B 1DF .答案 a 或2a解析 由题意易知,B 1D ⊥平面ACC 1A 1, 所以B 1D ⊥CF .要使CF ⊥平面B 1DF ,只需CF ⊥DF 即可. 令CF ⊥DF ,设AF =x ,则A 1F =3a -x . 易知Rt △CAF ∽Rt △F A 1D ,得AC AF =A 1F A 1D ,即2a x =3a -x a , 整理得x 2-3ax +2a 2=0, 解得x =a 或x =2a .6.如图,四棱锥P —ABCD 的底面ABCD 是平行四边形,平面PBD ⊥平面ABCD ,PB =PD ,P A ⊥PC ,CD ⊥PC ,O ,M 分别是BD ,PC 的中点,连结OM .求证:(1)OM ∥平面P AD ; (2)OM ⊥平面PCD .证明 (1)连结AC .因为四边形ABCD 是平行四边形,所以O 为AC 的中点.在△P AC 中,因为O ,M 分别是AC ,PC 的中点,所以OM ∥P A . 因为OM ⊄平面P AD ,P A ⊂平面P AD , 所以OM ∥平面P AD .(2)连结PO .因为O 是BD 的中点,PB =PD , 所以PO ⊥BD .因为平面PBD ⊥平面ABCD ,平面PBD ∩平面ABCD =BD ,PO ⊂平面PBD ,所以PO ⊥平面ABCD ,从而PO ⊥CD . 因为CD ⊥PC ,PC ∩PO =P , PC ⊂平面P AC ,PO ⊂平面P AC , 所以CD ⊥平面P AC .因为OM ⊂平面P AC ,所以CD ⊥OM .因为P A⊥PC,OM∥P A,所以OM⊥PC.因为CD⊂平面PCD,PC⊂平面PCD,CD∩PC=C,所以OM⊥平面PCD.7.如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.(1)证明:平面ADC1B1⊥平面A1BE;(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.(1)证明如图,因为ABCD-A1B1C1D1为正方体,所以B1C1⊥面ABB1A1.因为A1B⊂面ABB1A1,所以B1C1⊥A1B.又因为A1B⊥AB1,B1C1∩AB1=B1,所以A1B⊥面ADC1B1.因为A1B⊂面A1BE,所以平面ADC1B1⊥平面A1BE.(2)解当点F为C1D1中点时,可使B1F∥平面A1BE.证明如下:易知:EF∥C1D,且EF=12C1D.设AB1∩A1B=O,则B1O∥C1D且B1O=12C1D,所以EF∥B1O且EF=B1O,所以四边形B1OEF为平行四边形.所以B1F∥OE.又因为B1F⊄面A1BE,OE⊂面A1BE.8.如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是棱DD1,C1D1的中点.(1)证明:平面ADC1B1⊥平面A1BE;(2)证明:B1F∥平面A1BE;(3)若正方体棱长为1,求四面体A1—B1BE的体积.(1)证明如图,连结AB1.因为ABCD—A1B1C1D1为正方体,所以B1C1⊥平面ABB1A1.因为A1B ⊂平面ABB1A1,所以B1C1⊥A1B.因为A1B⊥AB1,B1C1∩AB1=B1,所以A1B⊥平面ADC1B1.因为A1B⊂平面A1BE,所以平面ADC1B1⊥平面A1BE.(2)证明如图,连结EF,DC1,OE,B1F.由已知条件得EF∥C1D,且EF=12C1D.设AB1∩A1B=O,则B1O∥C1D且B1O=12C1D,所以EF∥B1O且EF=B1O,所以四边形B1OEF为平行四边形,所以B1F∥OE.因为B1F⊄平面A1BE,OE⊂平面A1BE,(3)解 VA 1—B 1BE =VE —A 1B 1B =13S △A 1B 1B ·B 1C 1=16. B 组 专项能力提升(时间:25分钟)9.在正四面体P —ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,给出下面三个结论: ①BC ∥平面PDF ;②DF ⊥平面P AE ;③平面PDF ⊥平面ABC .其中不成立...的结论是________.(填写所有不成立的结论的序号) 答案 ③解析如图,由题知BC ∥DF ,∴BC ∥平面PDF .∵四面体P —ABC 为正四面体,∴BC ⊥P A ,AE ⊥BC ,BC ⊥平面P AE ,∴DF ⊥平面P AE ,∴平面P AE ⊥平面ABC ,∴①和②成立.设此正四面体的棱长为1,则P A =1,AM =34,PM 2=PD 2-DM 2=⎝⎛⎭⎫322-⎝⎛⎭⎫142=1116,∴P A 2≠AM 2+PM 2,故③不成立.10.如图,过四棱柱ABCD —A 1B 1C 1D 1的木块上底面内的一点P 和下底面的对角线BD 将木块锯开,得到截面BDEF .(1)请在木块的上表面作出过点P 的锯线EF ,并说明理由;(2)若该四棱柱的底面为菱形,四边形BB1D1D是矩形,试证明:平面BDEF⊥平面ACC1A1.(1)解在上底面内过点P作B1D1的平行线分别交A1D1,A1B1于E,F两点,则EF为所作的锯线.在四棱柱ABCD—A1B1C1D1中,侧棱B1B∥D1D,B1B=D1D,所以四边形BB1D1D是平行四边形,B1D1∥BD.又EF∥B1D1,所以EF∥BD,故EF为截面BDEF与平面A1B1C1D1的交线,故EF为所作锯线.如图所示.(2)证明由于四边形BB1D1D是矩形,所以BD⊥B1B.又A1A∥B1B,所以BD⊥A1A.又四棱柱的底面为菱形,所以BD⊥AC.因为AC∩A1A=A,所以BD⊥平面A1C1CA.因为BD⊂平面BDEF,所以平面BDEF⊥平面A1C1CA.11.如图,P A垂直于矩形ABCD所在的平面,AD=P A=2,CD=22,E,F分别是AB,PD 的中点.(1)求证:AF∥平面PCE;(2)求证:平面PCE⊥平面PCD;(3)求四面体PECF的体积.(1)证明设G为PC的中点,连结FG,EG.∵F 为PD 的中点,E 为AB 的中点,∴FG 綊12CD ,AE 綊12CD ,∴FG 綊AE , ∴四边形AEGF 为平行四边形,∴AF ∥GE . ∵GE ⊂平面PEC ,AF ⊄平面PEC , ∴AF ∥平面PCE .(2)证明 ∵P A =AD =2,∴AF ⊥PD .又∵P A ⊥平面ABCD ,CD ⊂平面ABCD , ∴P A ⊥CD .∵AD ⊥CD ,P A ∩AD =A ,∴CD ⊥平面P AD .∵AF ⊂平面P AD ,∴AF ⊥CD .∵PD ∩CD =D ,∴AF ⊥平面PCD ,∴GE ⊥平面PCD .∵GE ⊂平面PEC ,∴平面PCE ⊥平面PCD .(3)解 由(2)知GE ⊥平面PCD , 所以EG 为四面体PEFC 的高,又EG =AF =2,CD =22,S △PCF =12PF ·CD =2, 所以四面体PEFC 的体积V =13S △PCF ·EG =223.。
2.3 两条直线的位置关系2.3.1 两条直线平行与垂直的判定A级必备知识基础练1.下列各组直线中,互相垂直的一组是()A.2x-3y-5=0与4x-6y-5=0B.2x-3y-5=0与4x+6y+5=0C.2x+3y-6=0与3x-2y+6=0D.2x+3y-6=0与2x-3y-6=02.(多选题)下列各直线中,与直线2x-y-3=0平行的是()A.2ax-ay+6=0(a≠0,a≠-2)B.y=2xC.2x-y+5=0D.2x+y-3=03.(多选题)(2022山东五莲高二期中)已知直线l:x-2y-2=0,()A.直线x-2y-1=0与直线l平行B.直线x-2y+1=0与直线l平行C.直线x+2y-1=0与直线l垂直D.直线2x+y-2=0与直线l垂直4.(2022四川成都七中高二入学测试)已知A(3,1),B(1,-2),C(1,1),则过点C且与线段AB平行的直线方程为()A.3x+2y-5=0B.3x-2y-1=0C.2x-3y+1=0D.2x+3y-5=05.如果直线l1的斜率为a,l1⊥l2,则直线l2的斜率为()A. B.aC.-D.-或不存在6.(2022河北唐山五十九中高二月考)已知△ABC三个顶点坐标分别为A(-2,-4),B(6,6),C(0,6),则AB边上的高所在直线的斜率为.7.若直线l1,l2的斜率是一元二次方程x2-7x+t=0的两根,若直线l1,l2垂直,则t= .8.在平面直角坐标系中,已知△ABC的三个顶点的坐标分别是A(1,2),B(n-1,3),C(-1,3-n).(1)若∠A是直角,求实数n的值;(2)求过坐标原点,且与△ABC的高AD垂直的直线l的方程.B级关键能力提升练9.已知点M(1,-2),N(m,2),若线段MN的垂直平分线的方程是+y=1,则实数m的值是()A.-2B.-7C.3D.110.(2022广州大学附属中学高二月考)已知直线l1过点A(-2,m)和点B(m,4),直线l2为2x+y-1=0,直线l3为x+ny+1=0.若l1∥l2,l2⊥l3,则实数m+n的值为()A.-10B.-2C.0D.811.(多选题)(2022山东济南山师附中高二期中)已知直线l1:x+my-1=0,l2:(m-2)x+3y+1=0,则下列说法正确的是()A.若l1∥l2,则m=-1或m=3B.若l1∥l2,则m=-1C.若l1⊥l2,则m=-D.若l1⊥l2,则m=12.(多选题)(2022湖北荆州高二期末)已知直线l1:3x+y-3=0,直线l2:6x+my+1=0,则下列表述正确的有()A.直线l2的斜率为-B.若直线l1垂直于直线l2,则实数m=-18C.直线l1倾斜角的正切值为3D.若直线l1平行于直线l2,则实数m=213.点M(1,2)在直线l上的射影是H(-1,4),则直线l的方程为,线段MH的垂直平分线的方程为.14.已知A(1,0),B(3,2),C(0,4),点D满足AB⊥CD,且AD∥BC,试求点D的坐标.15.若△ABC的顶点A的坐标为(2,3),三角形其中两条高所在的直线方程为x-2y+3=0和x+y-4=0,试求此三角形的边AB,AC所在直线的方程.C级学科素养创新练16.已知直线l1:x cos2α+y+2=0,若l1⊥l2,则直线l2的倾斜角的取值范围是()A. B.C. D.17.(多选题)(2022河北高二学情监测)已知直线l1:x sin α+y=0与直线l2:x+3y+c=0,则下列结论中正确的是()A.直线l1与直线l2可能相交B.直线l1与直线l2可能重合C.直线l1与直线l2可能垂直D.直线l1与直线l2可能平行参考答案2.3两条直线的位置关系2.3.1两条直线平行与垂直的判定1.C对于A,k1k2=≠-1,因此l1与l2不垂直;对于B,k1k2==-≠-1,因此l1与l2不垂直;对于C,k1k2==-1,因此l1⊥l2;对于D,k1k2==-≠-1,因此l1与l2不垂直.故选C.2.ABC与直线2x-y-3=0平行的直线都可以化为2x-y+m=0(m≠-3)的形式,因此选项A,B,C符合,故选ABC.3.ABD直线l:x-2y-2=0的斜率k=,在y轴上截距为-1.对于A,直线x-2y-1=0的斜率为,在y轴上截距为-,∴直线x-2y-1=0与直线l平行,故A正确;对于B,直线x-2y+1=0的斜率为,在y轴上截距为,∴直线x-2y+1=0与直线l平行,故B正确;对于C,直线x+2y-1=0的斜率为-,∴直线x+2y-1=0与直线l不垂直,故C错误;对于D,直线2x+y-2=0的斜率为-2,∴直线2x+y-2=0与直线l垂直,故D正确.故选ABD.4.B由题可知,k AB=,则过点C且与线段AB平行的直线的斜率为.又该直线过点(1,1),则该直线方程为y-1=(x-1),整理得3x-2y-1=0.5.D当a≠0时,由l1⊥l2得k1·k2=a·k2=-1,解得k2=-;当a=0时,l1与x轴平行或重合,则l2与y 轴平行或重合,故直线l2的斜率不存在.故直线l2的斜率为-或不存在.6.-由题可得k AB=.设AB边上高线的斜率为k,则k·k AB=-1,即k·=-1,解得k=-.所以AB边上的高所在直线的斜率为-.7.-1设直线l1,l2的斜率分别是k1,k2.因为k1,k2是一元二次方程x2-7x+t=0的两根,则k1·k2=t.又直线l1,l2垂直,所以k1·k2=-1.故可得t=-1.8.解(1)当n=2时,∠A不是直角,不合题意;当n≠2时,∵∠A是直角,∴k AB·k AC=-1,即=-1,解得n=.综上所述,实数n的值为.(2)∵直线l与△ABC的高AD垂直,∴直线l与直线BC平行或重合.∵B,C不重合,∴n≠0,∴直线l的斜率k=k BC==1,又直线l过坐标原点,∴直线l的方程为x-y=0.9.C由题知直线+y=1的斜率为-,则直线MN的斜率为2,即k MN==2,解得m=3.10.A由题意可得直线l1,l2,l3的斜率存在,分别设为k1,k2,k3.因为l1∥l2,所以k1=k2,即=-2,解得m=-8.因为l2⊥l3,所以k2·k3=-1,即(-2)×-=-1,解得n=-2.所以m+n=-8+(-2)=-10.故选A.11.AD若l1∥l2,则1×3-m(m-2)=0,解得m=3或m=-1,故A正确,B不正确;若l1⊥l2,则1×(m-2)+m×3=0,解得m=,故C不正确,D正确.故选AD.12.BD当m=0时,直线l2的斜率不存在,故A错误;当直线l1垂直于直线l2,则有3×6+1×m=0,解得m=-18,故B正确;由题知,直线l1的斜率为-3,故倾斜角的正切值为-3,故C错误;当直线l1平行于直线l2,则-3=-,且3≠-,解得m=2,故D正确.故选BD.13.x-y+5=0x-y+3=0由题得,k MH==-1.又点M在直线l上的射影是点H,则直线l与直线MH垂直,所以直线l的斜率为k=1.故直线l的方程为y-4=x+1,整理得x-y+5=0.由于线段MH的垂直平分线过MH的中点.由题知,线段MH的中点为(0,3),且垂直平分线的斜率等于直线l的斜率,所以垂直平分线的方程为y-3=x,整理得x-y+3=0.14.解设D(x,y),则k AB==1,k BC==-,k CD=,k DA=.因为AB⊥CD,AD∥BC,所以k AB·k CD=-1,k DA=k BC,即解得故点D的坐标为(10,-6).15.解因为点A的坐标不满足所给的两条高所在直线的方程,所以所给的两条直线方程是过顶点B,C的高所在直线的方程.又所给两条直线的斜率分别为,-1,若k AB=-2,则k AC=1,则直线AB的方程为y-3=-2(x-2),整理得2x+y-7=0,直线AC的方程为y-3=x-2,整理得x-y+1=0.同理,若k AC=-2,则k AB=1,则直线AC的方程为2x+y-7=0,直线AB的方程为x-y+1=0.16.C当cos2α≠0时,k1=-.∵l1⊥l2,∴k1·k2=-1,∴k2=.∵0<cos2α≤1,∴k2=.设l2的倾斜角为θ,θ∈[0,π),则tanθ≥,∴≤θ<;当cos2α=0时,直线l1的斜率为0,倾斜角为0.∵l1⊥l2,∴l2的倾斜角θ=.综上,直线l2的倾斜角的取值范围为.故选C.17.ABD由题知,直线l1:x sinα+y=0的斜率为k1=-sinα,过定点(0,0),直线l2:x+3y+c=0斜率为k2=-,过点(-c,0).若直线l1与直线l2相交,则sinα≠,而-1≤sinα≤1,即sinα≠成立,故选项A正确;若直线l1与直线l2重合,则c=0,且sinα=,而-1≤sinα≤1,故选项B正确;若直线l1与直线l2垂直,则k1k2=sinα=-1,则sinα=-3,与-1≤sinα≤1矛盾,则直线l1与直线l2不可能垂直,故选项C错误;若直线l1与直线l2平行,则sinα=且c≠0,而-1≤sinα≤1,可以有sinα=,故选项D正确.故选ABD.。
高中数学学习材料马鸣风萧萧*整理制作3.1.2 两条直线平行与垂直的判定一、选择题1、下列说法正确的有( )(注:两直线可以重合)①若两直线斜率相等,则两直线平行;②若l 1∥l 2,则k 1=k 2;③若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,则两直线相交; ④若两直线斜率都不存在,则两直线平行。
A 、1个B 、2个C 、3个D 、4个2、直线l 1、l 2的斜率是方程x 2-3x -1=0的两根,则l 1与l 2的位置关系是( )A 、平行B 、重合C 、相交但不垂直D 、垂直3、给定三点A (1,0)、B (-1,0)、C (1,2),则过A 点且与直线BC 垂直的直线经过点( )A 、(0,1)B 、(0,0)C 、(-1,0)D 、(0,-1)4、已知直线x+my +6=0和(m -2)x+3y +2 m =0互相平行,则实数m 的取值为( )A .—1或3B .—1C .—3D .1或—35、两条直线mx+y -n =0和x+my +1=0互相平行的条件是( )A m=1B m=±1C ⎩⎨⎧-≠=11n mD ⎩⎨⎧≠-=⎩⎨⎧-≠=1111n m n m 或 6、直线l 1:ax+y=3;l 2:x+by -c=0,则ab=1是l 1||l 2的( )A 充要条件B 充分不必要条件C 必要不充分条件D 既不充分也不必要条件7、与直线2x +3y -6=0关于点)1,1(-对称的直线方程是( )A .2x +3y +8=0B .2x +3y +7=0C .3x -2y -12=0D .3x -2y +2=08、已知P(a,b )与Q(b -1,a +1)(a≠b -1)是轴对称的两点,那么对称轴方程是( )A x+y =0B x -y =0C x +y -1=0D x -y +1=09、如果直线(2a +5)x +(a -2)y +4=0与直线(2-a )x +(a +3)y -1=0互相垂直,则a 的值等于( )A . 2B .-2C .2,-2D .2,0,-210、两条直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0垂直的充要条件是A.A 1A 2+B 1B 2=0B.A 1A 2-B 1B 2=0C.2121B B A A =-1D.2121A A B B =-1 11、点A (4,0)关于直线l :5x +4y +21=0的对称点是( )A (-6,8)B (-8,-6)C (6,8)D (―6,―8)12、直线xsinα+ycosα+1=0与xcosα-ysinα+2=0直线的位置关系是( )A 平行B 相交但不垂直C 相交垂直D 视α的取值而定二、填空题13、直线ax +3y +1=0与直线2x +(a +1)y +1=0平行,则a 的值是 .14、若直线x+ay +2=0和2x +3y +1=0互相垂直,则a 等于15、已知点A (1,2)、B (3,1),则线段AB 的垂直平分线的方程是 .16、点P (2,5)关于直线x +y =1的对称点的坐标是 .17、已知点M (0,-1),点N 在直线x -y+1=0上,若直线MN 垂直于直线x+2y -3=0,则点N 的坐标是 .18、直线02052:1=+-y x l 和0102:2=--y mx l 与两坐标轴围成的四边形有外接圆,则实数m 的值为__________.三、解答题19、已知直线l 1: x +(1+m)y +m -2=0 , l 2: 2m x +4y +16=0 当且仅当m 为何值时直线l 1与l 2分别有下列关系?(1) l1⊥l2 (2). l1∥l220.直线x+m2y+6=0与直线(m-2)x+3my+2m=0没有公共点,求实数m的值.21、已知A(1,-1),B(2,2),C(3,0)三点,求点D,使直线CD⊥AB,且CB∥AD。
§2.2直线、平面平行的判定及其性质2.2.1直线与平面平行的判定一、基础过关1.直线m∥平面α,直线n∥m,则() A.n∥αB.n与α相交C.n⊂αD.n∥α或n⊂α2.棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在的平面的位置关系是() A.平行B.相交C.平行或相交D.不相交3.已知a,b是两条相交直线,a∥α,则b与α的位置关系是() A.b∥αB.b与α相交C.b⊂αD.b∥α或b与α相交4.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是() A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或l⊂α5. 如图,在长方体ABCD-A1B1C1D1的面中:(1)与直线AB平行的平面是______;(2)与直线AA1平行的平面是______;(3)与直线AD平行的平面是______.6.已知不重合的直线a,b和平面α.①若a∥α,b⊂α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b⊂α,则a∥α;④若a∥b,a∥α,则b∥α或b⊂α,其中正确命题的个数是________.7.在正方体ABCD-A1B1C1D1中,E为DD1的中点,求证:BD1∥平面AEC.8. 如图,四棱锥A—DBCE中,O为底面正方形DBCE对角线的交点,F为AE的中点.求证:AB∥平面DCF.二、能力提升9.在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=EF∶FB=1∶3,则对角线AC和平面DEF的位置关系是()A.平行B.相交C.在内D.不能确定10.过直线l外两点,作与l平行的平面,则这样的平面() A.不存在B.只能作出一个C.能作出无数个D.以上都有可能11.过平行六面体ABCD-A1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有________条.12.如图,在平行四边形ABCD中,E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,F为线段A′C的中点.求证:BF∥平面A′DE.三、探究与拓展13. 正方形ABCD与正方形ABEF所在平面相交于AB,在AE,BD上各有一点P,Q,且AP=DQ.求证:PQ∥平面BCE.(用两种方法证明)答案1.D 2.B 3.D 4.D5.(1)平面A1C1和平面DC1(2)平面BC1和平面DC1(3)平面B1C和平面A1C1 6.17.证明如图,连接BD交AC于F,连接EF.因为F为正方形ABCD对角线的交点,所以F为AC、BD的中点.在三角形DD1B中,E、F分别为DD1、DB的中点,所以EF∥D1B.又EF⊂平面AEC,BD1⊄平面AEC,所以BD1∥平面AEC.8.证明连接OF,∵O为正方形DBCE对角线的交点,∴BO=OE,又AF=FE,∴AB∥OF,⎭⎬⎫AB⊄平面DCFOF⊂平面DCFAB∥OF⇒AB∥平面DCF.9.A10.D11.1212.证明取A′D的中点G,连接GF,GE,由条件易知FG∥CD,FG=12CD,BE∥CD,BE=12CD,所以FG∥BE,FG=BE,故四边形BEGF为平行四边形,所以BF∥EG.因为EG⊂平面A′DE,BF⊄平面A′DE,所以BF∥平面A′DE.13.证明如图所示,连接AQ并延长交BC于K,连接EK.∵KB∥AD,∴DQBQ=AQQK.∵AP=DQ,AE=BD,∴BQ=PE.∴DQBQ=APPE.∴AQQK=APPE.∴PQ∥EK.又PQ⊄平面BCE,EK⊂平面BCE,∴PQ∥平面BCE.2.1.2 空间中直线与直线之间的位置关系一、基础过关1.分别在两个平面内的两条直线间的位置关系是( )A .异面B .平行C .相交D .以上都有可能2.若AB ∥A ′B ′,AC ∥A ′C ′,则有( )A .∠BAC =∠B ′A ′C ′ B .∠BAC +∠B ′A ′C ′=180°C .∠BAC =∠B ′A ′C ′或∠BAC +∠B ′A ′C ′=180°D .∠BAC >∠B ′A ′C ′3.空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是 ( )A .空间四边形B .矩形C .菱形D .正方形4.“a 、b 为异面直线”是指:①a ∩b =∅,且aD \∥b ;②a ⊂面α,b ⊂面β,且a ∩b =∅;③a ⊂面α,b ⊂面β,且α∩β=∅;④a ⊂面α,b ⊄面α;⑤不存在面α,使a ⊂面α,b ⊂面α成立. 上述结论中,正确的是( )A .①④⑤B .①③④C .②④D .①⑤5.如果两条直线a 和b 没有公共点,那么a 与b 的位置关系是________. 6.已知正方体ABCD —A ′B ′C ′D ′中: (1)BC ′与CD ′所成的角为________; (2)AD 与BC ′所成的角为________.7.如图所示,四边形ABEF 和ABCD 都是直角梯形,∠BAD =∠F AB=90°,BC 綊12AD ,BE 綊12F A ,G 、H 分别为F A 、FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么?8.如图,正方体ABCD -EFGH 中,O 为侧面ADHE 的中心,求:(1)BE 与CG 所成的角; (2)FO 与BD 所成的角. 二、能力提升9.如图所示,已知三棱锥A -BCD 中,M 、N 分别为AB 、CD 的中点,则下列结论正确的是( )A .MN ≥12(AC +BD )B .MN ≤12(AC +BD )C .MN =12(AC +BD )D .MN <12(AC +BD )10.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线( )A .12对B .24对C .36对D .48对11.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB ⊥EF ;②AB 与CM 所成的角为60°; ③EF 与MN 是异面直线; ④MN ∥CD .以上结论中正确的序号为________.12.已知A 是△BCD 平面外的一点,E ,F 分别是BC ,AD 的中点,(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角. 三、探究与拓展13.已知三棱锥A —BCD 中,AB =CD ,且直线AB 与CD 成60°角,点M 、N 分别是BC 、AD 的中点,求直线AB 和MN 所成的角.答案1.D 2.C 3.B 4.D 5.平行或异面 6.(1)60° (2)45°7.(1)证明 由已知FG =GA ,FH =HD ,可得GH 綊12AD .又BC 綊12AD ,∴GH 綊BC ,∴四边形BCHG 为平行四边形.(2)解 由BE 綊12AF ,G 为F A 中点知,BE 綊FG ,∴四边形BEFG 为平行四边形,∴EF ∥BG . 由(1)知BG 綊CH ,∴EF ∥CH , ∴EF 与CH 共面.又D ∈FH ,∴C 、D 、F 、E 四点共面.8.解 (1)如图,∵CG ∥BF ,∴∠EBF (或其补角)为异面直线BE 与CG 所成的角,又△BEF 中,∠EBF =45°,所以BE 与CG 所成的角为45°.(2)连接FH ,BD ,FO ,∵HD 綊EA ,EA 綊FB , ∴HD 綊FB ,∴四边形HFBD 为平行四边形, ∴HF ∥BD ,∴∠HFO (或其补角)为异面直线FO 与BD 所成的角. 连接HA 、AF ,易得FH =HA =AF , ∴△AFH 为等边三角形,又依题意知O 为AH 中点,∴∠HFO =30°,即FO 与BD 所成的角是30°.9.D 10.B 11.①③12.(1)证明 假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A 、B 、C 、D 在同一平面内,这与A 是△BCD 平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)解 取CD 的中点G ,连接EG 、FG ,则EG ∥BD ,所以相交直线EF 与EG 所成的角,即为异面直线EF 与BD 所成的角.在Rt △EGF 中,由EG =FG =12AC ,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.13.解 如图,取AC 的中点P .连接PM 、PN ,则PM ∥AB ,且PM =12AB ,PN ∥CD ,且PN =12CD ,所以∠MPN 为直线AB 与CD 所成的角(或所成角的补角). 则∠MPN =60°或∠MPN =120°, 若∠MPN =60°,因为PM ∥AB ,所以∠PMN 是AB 与MN 所成的角(或所成角的补角). 又因AB =CD ,所以PM =PN ,则△PMN 是等边三角形, 所以∠PMN =60°,即AB 与MN 所成的角为60°.若∠MPN =120°,则易知△PMN 是等腰三角形.所以∠PMN =30°, 即AB 与MN 所成的角为30°.故直线AB 和MN 所成的角为60°或30°.2.1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系一、基础过关1.已知直线a∥平面α,直线b⊂α,则a与b的位置关系是() A.相交B.平行C.异面D.平行或异面2.直线l与平面α不平行,则() A.l与α相交B.l⊂αC.l与α相交或l⊂αD.以上结论都不对3.如果直线a∥平面α,那么直线a与平面α内的() A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交4.如果平面α外有两点A、B,它们到平面α的距离都是a,则直线AB和平面α的位置关系一定是() A.平行B.相交C.平行或相交D.AB⊂α5.直线a⊂平面α,直线b⊄平面α,则a,b的位置关系是________.6.若a、b是两条异面直线,且a∥平面α,则b与α的位置关系是________.7.平面α内有无数条直线与平面β平行,那么α∥β是否正确?说明理由.8. 如图,直线a∥平面α,a⊂β,α∩β=b,求证:a∥b.二、能力提升9.下列命题正确的是() A.若直线a在平面α外,则直线a∥αB.若直线a与平面α有公共点,则a与α相交C.若平面α内存在直线与平面β无交点,则α∥βD.若平面α内的任意直线与平面β均无交点,则α∥β10.教室内有一根直尺,无论怎样放置,在地面上总有这样的直线与直尺所在的直线() A.异面B.相交C.平行D.垂直11.若不在同一条直线上的三点A、B、C到平面α的距离相等,且A、B、CD/∈α,则面ABC 与面α的位置关系为________.12. 如图,平面α、β、γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b、a与β的关系并证明你的结论.三、探究与拓展13.正方体ABCD—A1B1C1D1中,点Q是棱DD1上的动点,判断过A、Q、B1三点的截面图形的形状.答案1.D2.C3.D4.C5.平行、相交或异面6.b⊂α,b∥α或b与α相交7.解不正确.如图,设α∩β=l,则在α内与l平行的直线可以有无数条,如a1,a2,…,a n,它们是一组平行线,这时a1,a2,…,a n与平面β平行,但此时α与β不平行,α∩β=l.8.证明∵直线a∥平面α,∴直线a与平面α无公共点.∵α∩β=b,∴b⊂α,b⊂β.∴直线a与b无公共点.∵a⊂β,∴a∥b.9.D10.D11.平行或相交12.解由α∩γ=a知a⊂α且a⊂γ,由β∩γ=b知b⊂β且b⊂γ,∵α∥β,a⊂α,b⊂β,∴a、b无公共点.又∵a⊂γ且b⊂γ,∴a∥b.∵α∥β,∴α与β无公共点,又a⊂α,∴a与β无公共点,∴a∥β.13.解由点Q在线段DD1上移动,当点Q与点D1重合时,截面图形为等边三角形AB1D1,如图(1)所示;当点Q与点D重合时,截面图形为矩形AB1C1D,如图(2)所示;图(1)图(2)当点Q不与点D,D1重合时,截面图形为等腰梯形AQRB1,如图(3)所示.图(3)2.2.2平面与平面平行的判定一、基础过关1.直线l∥平面α,直线m∥平面α,直线l与m相交于点P,且l与m确定的平面为β,则α与β的位置关系是() A.相交B.平行C.异面D.不确定2.平面α与平面β平行的条件可以是() A.α内的一条直线与β平行B.α内的两条直线与β平行C.α内的无数条直线与β平行D.α内的两条相交直线分别与β平行3.给出下列结论,正确的有()①平行于同一条直线的两个平面平行;②平行于同一平面的两个平面平行;③过平面外两点,不能作一个平面与已知平面平行;④若a,b为异面直线,则过a与b平行的平面只有一个.A.1个B.2个C.3个D.4个4.若正n边形的两条对角线分别与面α平行,则这个正n边形所在的平面一定平行于平面α,那么n的取值可能是() A.12 B.8 C.6 D.55.已知平面α、β和直线a、b、c,且a∥b∥c,a⊂α,b、c⊂β,则α与β的关系是________.6.有下列几个命题:①平面α内有无数个点到平面β的距离相等,则α∥β;②α∩γ=a,α∩β=b,且a∥b(α,β,γ分别表示平面,a,b表示直线),则γ∥β;③平面α内一个三角形三边分别平行于平面β内的一个三角形的三条边,则α∥β;④平面α内的一个平行四边形的两边与平面β内的一个平行四边形的两边对应平行,则α∥β.其中正确的有________.(填序号)7.如图所示,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF,求证:AE∥平面DCF.8. 在长方体ABCD—A1B1C1D1中,E、F、E1、F1分别是AB、CD、A1B1、C1D1的中点.求证:平面A1EFD1∥平面BCF1E1.二、能力提升9.α、β是两个不重合的平面,a、b是两条不同的直线,在下列条件下,可判定α∥β的是() A.α,β都平行于直线a、bB.α内有三个不共线的点到β的距离相等C.a,b是α内两条直线,且a∥β,b∥βD.a、b是两条异面直线,且a∥α,b∥α,a∥β,b∥β10. 正方体EFGH—E1F1G1H1中,下列四对截面中,彼此平行的一对截面是()A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G11. 如图所示,在正方体ABCD—A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足________时,有MN∥平面B1BDD1.12.已知在正方体ABCD—A1B1C1D1中,M、E、F、N分别是A1B1、B1C1、C1D1、D1A1的中点.求证:(1)E、F、D、B四点共面;(2)平面AMN∥平面EFDB.三、探究与拓展13.如图所示,B为△ACD所在平面外一点,M、N、G分别为△ABC、△ABD、△BCD的重心.(1)求证:平面MNG∥平面ACD;(2)求S△MNG∶S△ADC.答案1.B 2.D 3.B 4.D 5.相交或平行 6.③7.证明 由于AB ∥CD ,BE ∥CF ,故平面ABE ∥平面DCF .而直线AE 在平面ABE 内,根据线面平行的定义,知AE ∥平面DCF . 8.证明 ∵E 、E 1分别是AB 、A 1B 1的中点,∴A 1E 1∥BE 且A 1E 1=BE .∴四边形A 1EBE 1为平行四边形. ∴A 1E ∥BE 1.∵A 1E ⊄平面BCF 1E 1, BE 1⊂平面BCF 1E 1. ∴A 1E ∥平面BCF 1E 1. 同理A 1D 1∥平面BCF 1E 1, A 1E ∩A 1D 1=A 1,∴平面A 1EFD 1∥平面BCF 1E 1. 9.D 10.A 11.M ∈线段FH12.证明 (1)∵E 、F 分别是B 1C 1、C 1D 1的中点,∴EF 綊12B 1D 1,∵DD 1綊BB 1,∴四边形D 1B 1BD 是平行四边形, ∴D 1B 1∥BD . ∴EF ∥BD ,即EF 、BD 确定一个平面,故E 、F 、D 、B 四点共面. (2)∵M 、N 分别是A 1B 1、A 1D 1的中点, ∴MN ∥D 1B 1∥EF . 又MN ⊄平面EFDB , EF ⊂平面EFDB . ∴MN ∥平面EFDB .连接NE ,则NE 綊A 1B 1綊AB . ∴四边形NEBA 是平行四边形.∴AN ∥BE .又AN ⊄平面EFDB ,BE ⊂平面EFDB .∴AN ∥平面EFDB . ∵AN 、MN 都在平面AMN 内,且AN ∩MN =N , ∴平面AMN ∥平面EFDB .13.(1)证明 连接BM 、BN 、BG 并延长交AC 、AD 、CD 分别于P 、F 、H .∵M 、N 、G 分别为△ABC 、△ABD 、△BCD 的重心,则有BM MP =BN NF =BGGH =2.连接PF 、FH 、PH ,有MN ∥PF . 又PF ⊂平面ACD ,MN ⊄平面ACD , ∴MN ∥平面ACD .同理MG ∥平面ACD ,MG ∩MN =M , ∴平面MNG ∥平面ACD .(2)解 由(1)可知MG PH =BG BH =23,∴MG =23PH .又PH =12AD ,∴MG =13AD .同理NG =13AC ,MN =13CD .∴△MNG ∽△DCA ,其相似比为1∶3, ∴S △MNG ∶S △ADC =1∶9.2.2.3 直线与平面平行的性质一、基础过关1.a ,b 是两条异面直线,P 是空间一点,过P 作平面与a ,b 都平行,这样的平面( ) A .只有一个 B .至多有两个 C .不一定有D .有无数个2. 如图,在四面体ABCD 中,若截面PQMN 是正方形,则在下列命题中,错误的为( )A .AC ⊥BDB .AC ∥截面PQMNC .AC =BDD .异面直线PM 与BD 所成的角为45°3. 如图所示,长方体ABCD -A 1B 1C 1D 1中,E 、F 分别是棱AA 1和BB 1的中点,过EF 的平面EFGH 分别交BC 和AD 于G 、H ,则HG 与AB 的位置关系是( )A .平行B .相交C .异面D .平行和异面4.直线a ∥平面α,α内有n 条直线交于一点,则这n 条直线中与直线a 平行的直线( ) A .至少有一条 B .至多有一条 C .有且只有一条D .没有5.设m 、n 是平面α外的两条直线,给出三个论断:①m ∥n ;②m ∥α;③n ∥α.以其中的两个为条件,余下的一个为结论,构造三个命题,写出你认为正确的一个命题:______________.(用序号表示)6. 如图所示,ABCD —A 1B 1C 1D 1是棱长为a 的正方体,M 、N 分别是下底面的棱A 1B 1、B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a3,过P ,M ,N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________.7. ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH ,求证:AP ∥GH .8. 如图所示,三棱锥A —BCD 被一平面所截,截面为平行四边形EFGH .求证:CD∥平面EFGH.二、能力提升9.如图所示,平面α∩β=l1,α∩γ=l2,β∩γ=l3,l1∥l2,下列说法正确的是()A.l1平行于l3,且l2平行于l3B.l1平行于l3,且l2不平行于l3C.l1不平行于l3,且l2不平行于l3D.l1不平行于l3,但l2平行于l310.如图所示,已知A、B、C、D四点不共面,且AB∥平面α,CD∥α,AC∩α=E,AD∩α=F,BD∩α=H,BC∩α=G,则四边形EFHG的形状是________.10题图11题图11.如图所示,在空间四边形ABCD中,E、F、G、H分别是四边上的点,它们共面,并且AC∥平面EFGH,BD∥平面EFGH,AC=m,BD=n,当四边形EFGH是菱形时,AE∶EB =________.12. 如图所示,P为平行四边形ABCD所在平面外一点,M、N分别为AB、PC的中点,平面P AD∩平面PBC=l.(1)求证:BC∥l;(2)MN与平面P AD是否平行?试证明你的结论.三、探究与拓展13.如图所示,三棱柱ABC—A1B1C1,D是BC上一点,且A1B∥平面AC1D,D1是B1C1的中点,求证:平面A1BD1∥平面AC1D.答案1.C 2.C 3.A 4.B5.①②⇒③(或①③⇒②) 6.223a7.证明 如图所示,连接AC 交BD 于O ,连接MO ,∵ABCD 是平行四边形,ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH ,求证:AP ∥GH .∴O 是AC 中点,又M 是PC 的中点, ∴AP ∥OM .根据直线和平面平行的判定定理, 则有P A ∥平面BMD .∵平面P AHG ∩平面BMD =GH , 根据直线和平面平行的性质定理, 则有AP ∥GH .8.证明 ∵四边形EFGH 为平行四边形, ∴EF ∥GH .又GH ⊂平面BCD ,EF ⊄平面BCD . ∴EF ∥平面BCD .而平面ACD ∩平面BCD =CD ,EF ⊂平面ACD ,∴EF ∥CD . 而EF ⊂平面EFGH ,CD ⊄平面EFGH , ∴CD ∥平面EFGH . 9.A 10.平行四边形 11.m ∶n12.(1)证明 因为BC ∥AD ,AD ⊂平面P AD ,BC ⊄平面P AD ,所以BC ∥平面P AD .又平面P AD ∩平面PBC =l ,BC ⊂平面PBC ,所以BC ∥l . (2)解 MN ∥平面P AD . 证明如下:如图所示,取PD 中点E . 连接EN 、AE .又∵N 为PC 中点,∴EN 綊12AB∴EN綊AM,∴四边形ENMA为平行四边形,∴AE∥MN.又∵AE⊂平面P AD,MN⊄平面P AD,∴MN∥平面P AD.13.证明连接A 1C交AC1于点E,∵四边形A1ACC1是平行四边形,∴E是A1C的中点,连接ED,∵A1B∥平面AC1D,平面A1BC∩平面AC1D=ED,∴A1B∥ED,∵E是A1C的中点,∴D是BC的中点.又∵D1是B1C1的中点,∴BD1∥C1D,又∵C1D⊂平面AC1D,BD1⊄平面AC1D,∴BD1∥平面AC1D,又A1B∩BD1=B,∴平面A1BD1∥平面AC1D.2.2.4 平面与平面平行的性质一、基础过关1.已知平面α∥平面β,过平面α内的一条直线a 的平面γ,与平面β相交,交线为直线b ,则a 、b 的位置关系是( ) A .平行B .相交C .异面D .不确定2.已知a 、b 表示直线,α、β表示平面,下列推理正确的是( )A .α∩β=a ,b ⊂α⇒a ∥bB .α∩β=a ,a ∥b ⇒b ∥α且b ∥βC .a ∥β,b ∥β,a ⊂α,b ⊂α⇒α∥βD .α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b3. 如图所示,P 是三角形ABC 所在平面外一点,平面α∥平面ABC ,α分别交线段P A 、PB 、PC 于A ′、B ′、C ′,若P A ′∶AA ′=2∶3,则S △A ′B ′C ′∶S △ABC 等于( )A .2∶25B .4∶25C .2∶5D .4∶54.α,β,γ为三个不重合的平面,a ,b ,c 为三条不同的直线,则有下列命题,不正确的是( )①⎭⎪⎬⎪⎫a ∥c b ∥c ⇒a ∥b; ② ⎭⎪⎬⎪⎫a ∥γb ∥γ⇒a ∥b ; ③⎭⎪⎬⎪⎫α∥c β∥c ⇒α∥β; ④ ⎭⎪⎬⎪⎫α∥γβ∥γ⇒α∥β;⑤⎭⎪⎬⎪⎫α∥c a ∥c ⇒α∥a; ⑥⎭⎪⎬⎪⎫α∥γa ∥γ⇒a ∥α. A .④⑥ B .②③⑥ C .②③⑤⑥ D .②③5.分别在两个平行平面的两个三角形.(填“相似”“全等”) (1)若对应顶点的连线共点,那么这两个三角形具有______关系; (2)若对应顶点的连线互相平行,那么这两个三角形具有________关系.6.已知平面α∥β∥γ,两条直线l 、m 分别与平面α、β、γ相交于点A 、B 、C 与D 、E 、F .已知AB =6,DE DF =25,则AC =______.7.如图,在三棱柱ABC -A 1B 1C 1中,M 是A 1C 1的中点,平面AB 1M ∥平面BC 1N ,AC ∩平面BC 1N =N .求证:N 为AC 的中点.8. 如图所示,在底面是平行四边形的四棱锥P -ABCD 中,点E 在PD 上,且PE ∶ED =2∶1,在棱PC 上是否存在一点F ,使BF ∥平面AEC ?并证明你的结论.二、能力提升9.设α∥β,A ∈α,B ∈β,C 是AB 的中点,当A 、B 分别在平面α、β内运动时,得到无数个AB 的中点C ,那么所有的动点C( )A .不共面B .当且仅当A 、B 分别在两条直线上移动时才共面C .当且仅当A 、B 分别在两条给定的异面直线上移动时才共面D .不论A 、B 如何移动,都共面10.已知平面α∥平面β,P 是α,β外一点,过点P 的直线m 与α,β分别交于点A ,C ,过点P 的直线n 与α,β分别交于点B ,D ,且P A =6,AC =9,PD =8,则BD 的长为( )A .16B .24或245 C .14 D .2011.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l ,m ,使得l ∥α,l ∥β,m ∥α,m ∥β.其中可以判断两个平面α与β平行的条件有________个.12. 如图所示,平面α∥平面β,△ABC 、△A ′B ′C ′分别在α、β内,线段AA ′、BB ′、CC ′共点于O ,O 在α、β之间,若AB =2,AC =1,∠BAC =90°,OA ∶OA ′=3∶2. 求△A ′B ′C ′的面积.三、探究与拓展13.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作与截面PBC1平行的截面,能否确定截面的形状?如果能,求出截面的面积.§2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定一、基础过关1.已知直线a∥b,平面α∥β,a⊥α,则b与β的位置关系是() A.b⊥βB.b∥βC.b⊂βD.b⊂β或b∥β2.直线a⊥直线b,b⊥平面β,则a与β的关系是() A.a⊥βB.a∥βC.a⊂βD.a⊂β或a∥β3.空间四边形ABCD的四边相等,则它的两对角线AC、BD的关系是() A.垂直且相交B.相交但不一定垂直C.垂直但不相交D.不垂直也不相交4.如图所示,定点A和B都在平面α内,定点P∉α,PB⊥α,C是平面α内异于A和B的动点,且PC⊥AC,则△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定5. 在正方体ABCD-A 1B1C1D1中,(1)直线A1B与平面ABCD所成的角是________;(2)直线A1B与平面ABC1D1所成的角是________;(3)直线A1B与平面AB1C1D所成的角是______.6. 如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是棱AA1和AB上的点,若∠B1MN是直角,则∠C1MN=______.7.如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱B1C1、B1B的中点.求证:CF⊥平面EAB.8. 如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱P A垂直于底面,E、F分别是AB、PC的中点,P A=AD.求证:(1)CD⊥PD;(2)EF⊥平面PCD.二、能力提升9. 如图所示,P A⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数为()A.4 B.3 C.2 D.110.已知矩形ABCD,AB=1,BC=2,将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中() A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直11.在直三棱柱ABC—A1B1C1中,BC=CC1,当底面A1B1C1满足条件________时,有AB1⊥BC1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况).12. 如图所示,在正方体ABCD-A1B1C1D1中,P为DD1的中点,O为ABCD的中心,求证:B1O⊥平面P AC.三、探究与拓展13.已知平面α外两点A、B到平面α的距离分别为1和2,A、B两点在α内的射影之间距离为3,求直线AB和平面α所成的角.答案1.A 2.D 3.C 4.B 5.(1)45° (2)30° (3)90° 6.90°7.证明 在平面B 1BCC 1中, ∵E 、F 分别是B 1C 1、B 1B 的中点, ∴△BB 1E ≌△CBF , ∴∠B 1BE =∠BCF ,∴∠BCF +∠EBC =90°,∴CF ⊥BE , 又AB ⊥平面B 1BCC 1,CF ⊂平面B 1BCC 1, ∴AB ⊥CF ,又AB ∩BE =B , ∴CF ⊥平面EAB .8.证明 (1)∵P A ⊥底面ABCD , ∴CD ⊥P A .又矩形ABCD 中,CD ⊥AD ,且AD ∩P A =A ,∴CD ⊥平面P AD ,∴CD ⊥PD .(2)取PD 的中点G ,连接AG ,FG .又∵G 、F 分别是PD 、PC 的中点,∴GF 綊12CD ,∴GF 綊AE ,∴四边形AEFG 是平行四边形,∴AG ∥EF . ∵P A =AD ,G 是PD 的中点, ∴AG ⊥PD ,∴EF ⊥PD , ∵CD ⊥平面P AD ,AG ⊂平面P AD . ∴CD ⊥AG .∴EF ⊥CD .∵PD ∩CD =D ,∴EF ⊥平面PCD . 9.A 10.B 11.∠A 1C 1B 1=90°12.证明 连接AB 1,CB 1,设AB =1.∴AB 1=CB 1=2,∵AO =CO ,∴B 1O ⊥AC .连接PB1.∵OB21=OB2+BB21=32,PB21=PD21+B1D21=94,OP2=PD2+DO2=34,∴OB21+OP2=PB21.∴B1O⊥PO,又∵PO∩AC=O,∴B1O⊥平面P AC.13.解(1)如图①,当A、B位于平面α同侧时,由点A、B分别向平面α作垂线,垂足分别为A1、B1,则AA1=1,BB1=2,B1A1= 3.过点A作AH⊥BB1于H,则AB和α所成角即为∠HAB.而tan∠BAH=2-13=33.∴∠BAH=30°.(2)如图②,当A、B位于平面α异侧时,经A、B分别作AA1⊥α于A1,BB1⊥α于B1,AB∩α=C,则A1B1为AB在平面α上的射影,∠BCB1或∠ACA1为AB与平面α所成的角.∵△BCB1∽△ACA1,∴BB1AA1=B1CCA1=2,∴B1C=2CA1,而B1C+CA1=3,∴B1C=233.∴tan∠BCB1=BB1B1C=2233=3,∴∠BCB1=60°.综合(1)、(2)可知:AB与平面α所成的角为30°或60°.2.3.2平面与平面垂直的判定一、基础过关1.过两点与一个已知平面垂直的平面() A.有且只有一个B.有无数个C.一个或无数个D.可能不存在2.不能肯定两个平面一定垂直的情况是() A.两个平面相交,所成二面角是直二面角B.一个平面经过另一个平面的一条垂线C.一个平面垂直于另一个平面内的一条直线D.平面α内的直线a与平面β内的直线b是垂直的3.设有直线m、n和平面α、β,则下列结论中正确的是()①若m∥n,n⊥β,m⊂α,则α⊥β;②若m⊥n,α∩β=m,n⊂α,则α⊥β;③若m⊥α,n⊥β,m⊥n,则α⊥β.A.①②B.①③C.②③D.①②③4.设l是直线,α,β是两个不同的平面,下列结论中正确的是() A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β5.过正方形ABCD的顶点A作线段AP⊥平面ABCD,且AP=AB,则平面ABP与平面CDP 所成的二面角的度数是________.6.如图所示,已知P A⊥矩形ABCD所在的平面,图中互相垂直的平面有________对.7.在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.求证:平面EFG⊥平面PDC.8. 如图所示,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,P A⊥底面ABCD,P A= 3.(1)证明:平面PBE⊥平面P AB;(2)求二面角A—BE—P的大小.二、能力提升9.在边长为1的菱形ABCD 中,∠ABC =60°,把菱形沿对角线AC 折起,使折起后BD =32,则二面角B -AC -D 的余弦值为( )A.13B.12C.223D.32 10.在正四面体P -ABC 中,D 、E 、F 分别是AB 、BC 、CA 的中点,下面四个结论中不成立的是( )A .BC ∥面PDFB .DF ⊥面P AEC .面PDF ⊥面ABCD .面P AE ⊥面ABC11.如图,在直三棱柱ABC —A 1B 1C 1中,E 、F 分别是A 1B 、A 1C 的中点,点D 在B 1C 1上,A 1D ⊥B 1C . 求证:(1)EF ∥平面ABC ; (2)平面A 1FD ⊥平面BB 1C 1C .12.如图,在三棱锥P —ABC 中,P A ⊥底面ABC ,P A =AB ,∠ABC =60°,∠BCA =90°,点D 、E 分别在棱PB 、PC 上,且DE ∥BC .(1)求证:BC ⊥平面P AC .(2)是否存在点E 使得二面角A —DE —P 为直二面角?并说明理由. 三、探究与拓展13.如图所示,三棱锥P —ABC 中,D 是AC 的中点,P A =PB =PC =5,AC =22,AB =2,BC = 6.(1)求证:PD ⊥平面ABC ; (2)求二面角P —AB —C 的正切值.答案1.C 2.D 3.B 4.B5.45°6.57.证明因为MA⊥平面ABCD,PD∥MA,所以PD⊥平面ABCD.又BC⊂平面ABCD,所以PD⊥BC.因为四边形ABCD为正方形,所以BC⊥DC.又PD∩DC=D,所以BC⊥平面PDC.在△PBC中,因为G、F分别为PB、PC的中点,所以GF∥BC,所以GF⊥平面PDC.又GF⊂平面EFG,所以平面EFG⊥平面PDC.8.(1)证明如图所示,连接BD,由ABCD是菱形且∠BCD=60°知,△BCD是等边三角形.因为E是CD的中点,所以BE⊥CD.又AB∥CD,所以BE⊥AB.又因为P A⊥平面ABCD,BE⊂平面ABCD,所以P A⊥BE.而P A∩AB=A,因此BE⊥平面P AB.又BE⊂平面PBE,所以平面PBE⊥平面P AB.(2)解由(1)知,BE⊥平面P AB,PB⊂平面P AB,所以PB⊥BE.又AB⊥BE,所以∠PBA是二面角A—BE—P的平面角.=3,则∠PBA=60°.在Rt△P AB中,tan∠PBA=P AAB故二面角A—BE—P的大小是60°.9.B 10.C11.证明(1)由E、F分别是A1B、A1C的中点知EF∥BC.因为EF⊄平面ABC,BC⊂平面ABC.所以EF∥平面ABC.(2)由三棱柱ABC—A1B1C1为直三棱柱知CC1⊥平面A1B1C1.又A1D⊂平面A1B1C1,故CC1⊥A1D.又因为A1D⊥B1C,CC1∩B1C=C,故A1D⊥平面BB1C1C,又A1D⊂平面A1FD,所以平面A1FD⊥平面BB1C1C.12.(1)证明∵P A⊥底面ABC,∴P A⊥BC.又∠BCA=90°,∴AC⊥BC.又∵AC∩P A=A,∴BC⊥平面P AC.(2)解∵DE∥BC,又由(1)知,BC⊥平面P AC,∴DE⊥平面P AC.又∵AE⊂平面P AC,PE⊂平面P AC,∴DE⊥AE,DE⊥PE.∴∠AEP 为二面角A —DE —P 的平面角. ∵P A ⊥底面ABC ,∴P A ⊥AC , ∴∠P AC =90°.∴在棱PC 上存在一点E , 使得AE ⊥PC .这时∠AEP =90°,故存在点E ,使得二面角A —DE —P 为直二面角. 13.(1)证明 连接BD ,∵D 是AC 的中点,P A =PC =5, ∴PD ⊥AC .∵AC =22,AB =2,BC =6, ∴AB 2+BC 2=AC 2.∴∠ABC =90°,即AB ⊥BC .∴BD =12AC =2=AD .∵PD 2=P A 2-AD 2=3,PB =5, ∴PD 2+BD 2=PB 2.∴PD ⊥BD . ∵AC ∩BD =D ,∴PD ⊥平面ABC .(2)解 取AB 的中点E ,连接DE 、PE ,由E 为AB 的中点知DE ∥BC , ∵AB ⊥BC ,∴AB ⊥DE . ∵PD ⊥平面ABC ,∴PD ⊥AB .又AB ⊥DE ,DE ∩PD =D ,∴AB ⊥平面PDE ,∴PE ⊥AB . ∴∠PED 是二面角P —AB —C 的平面角.在△PED 中,DE =12BC =62,PD =3,∠PDE =90°,∴tan ∠PED =PDDE = 2.∴二面角P —AB —C 的正切值为 2.2.3.3 直线与平面垂直的性质 2.3.4 平面与平面垂直的性质一、基础过关1.已知两个平面互相垂直,那么下列说法中正确的个数是( )①一个平面内的直线必垂直于另一个平面内的无数条直线;②一个平面内垂直于这两个平面交线的直线必垂直于另一个平面内的任意一条直线; ③过一个平面内一点垂直于另一个平面的直线,垂足必落在交线上; ④过一个平面内的任意一点作交线的垂线,则此直线必垂直于另一个平面. A .4B .3C .2D .1 2.在圆柱的一个底面上任取一点(该点不在底面圆周上),过该点作另一底面的垂线,则这条垂线与圆柱的母线所在直线的位置关系是( ) A .相交B .平行C .异面D .相交或平行3.若m 、n 表示直线,α表示平面,则下列命题中,正确命题的个数为( )①⎭⎪⎬⎪⎫m ∥n m ⊥α⇒n ⊥α; ② ⎭⎪⎬⎪⎫m ⊥αn ⊥α⇒m ∥n ; ③⎭⎪⎬⎪⎫m ⊥αn ∥α⇒m ⊥n; ④⎭⎪⎬⎪⎫m ∥αm ⊥n ⇒n ⊥α. A .1 B .2C .3D .4 4.在△ABC 所在的平面α外有一点P ,且P A =PB =PC ,则P 在α内的射影是△ABC 的( )A .垂心B .内心C .外心D .重心5. 如图所示,AF ⊥平面ABCD ,DE ⊥平面ABCD ,且AF =DE ,AD =6,则EF =________.6.若α⊥β,α∩β=AB ,a ∥α,a ⊥AB ,则a 与β的关系为________. 7. 如图,在三棱锥P -ABC 中,P A ⊥平面ABC ,平面P AB ⊥平面PBC .求证:BC ⊥AB .8. 如图所示,在正方体ABCD —A 1B 1C 1D 1中,M 是AB 上一点,N 是A 1C 的中点,MN ⊥平面A 1DC . 求证:(1)MN ∥AD 1; (2)M 是AB 的中点.二、能力提升9. 如图所示,平面α⊥平面β,A ∈α,B ∈β,AB 与两平面α、β所成的角分别为π4和π6.过A 、B 分别作两平面交线的垂线,垂足分别为A ′、B ′,则AB ∶A ′B ′等于( )A .2∶1B .3∶1C .3∶2D .4∶310.设α-l -β是直二面角,直线a ⊂α,直线b ⊂β,a ,b 与l 都不垂直,那么( )A .a 与b 可能垂直,但不可能平行B .a 与b 可能垂直,也可能平行C .a 与b 不可能垂直,但可能平行D .a 与b 不可能垂直,也不可能平行11.直线a 和b 在正方体ABCD -A 1B 1C 1D 1的两个不同平面内,使a ∥b 成立的条件是________.(只填序号)①a 和b 垂直于正方体的同一个面; ②a 和b 在正方体两个相对的面内,且共面; ③a 和b 平行于同一条棱;④a 和b 在正方体的两个面内,且与正方体的同一条棱垂直. 12.如图所示,在多面体P —ABCD 中,平面P AD ⊥平面ABCD ,AB ∥DC ,△P AD 是等边三角形,已知BD =2AD =8,AB =2DC =4 5. (1)设M 是PC 上的一点, 求证:平面MBD ⊥平面P AD ; (2)求四棱锥P —ABCD 的体积. 三、探究与拓展13.如图,直三棱柱ABC -A 1B 1C 1中,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD . (1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.答案1.B 2.B 3.C 4.C 5.6 6.a ⊥β7.证明 在平面P AB 内,作AD ⊥PB 于D . ∵平面P AB ⊥平面PBC , 且平面P AB ∩平面PBC =PB . ∴AD ⊥平面PBC . 又BC ⊂平面PBC , ∴AD ⊥BC .又∵P A ⊥平面ABC , BC ⊂平面ABC ,∴P A ⊥BC ,∴BC ⊥平面P AB . 又AB ⊂平面P AB , ∴BC ⊥AB .8.证明 (1)∵ADD 1A 1为正方形, ∴AD 1⊥A 1D .又∵CD ⊥平面ADD 1A 1, ∴CD ⊥AD 1. ∵A 1D ∩CD =D , ∴AD 1⊥平面A 1DC . 又∵MN ⊥平面A 1DC , ∴MN ∥AD 1.(2)连接ON ,在△A 1DC 中, A 1O =OD ,A 1N =NC .∴ON 綊12CD 綊12AB ,∴ON ∥AM . 又∵MN ∥OA ,∴四边形AMNO 为平行四边形, ∴ON =AM . ∵ON =12AB ,∴AM =12AB ,∴M 是AB 的中点. 9.A 10.C 11.①②③12.(1)证明 在△ABD 中,∵AD =4,BD =8,AB =45, ∴AD 2+BD 2=AB 2.∴AD ⊥BD .又∵面P AD ⊥面ABCD ,面P AD ∩面ABCD =AD ,BD ⊂面ABCD ,∴BD ⊥面P AD ,又BD ⊂面BDM , ∴面MBD ⊥面P AD . (2)解 过P 作PO ⊥AD , ∵面P AD ⊥面ABCD , ∴PO ⊥面ABCD ,即PO 为四棱锥P —ABCD 的高. 又△P AD 是边长为4的等边三角形, ∴PO =2 3.在底面四边形ABCD 中,AB ∥DC ,AB =2DC ,∴四边形ABCD 为梯形.在Rt △ADB 中,斜边AB 边上的高为4×845=855,此即为梯形的高. ∴S 四边形ABCD =25+452×855=24. ∴V P —ABCD =13×24×23=16 3.13.(1)证明 由题设知,三棱柱的侧面为矩形.由于D 为AA 1的中点,故DC =DC 1.又AC =12AA 1,可得DC 21+DC 2=CC 21,所以DC 1⊥DC .而DC 1⊥BD ,CD ∩BD =D ,所以DC 1⊥平面BCD .因为BC ⊂平面BCD ,所以DC 1⊥BC .(2)解 DC 1⊥BC ,CC 1⊥BC ⇒BC ⊥平面ACC 1A 1⇒BC ⊥AC ,取A 1B 1的中点O ,过点O 作OH ⊥BD 于点H ,连接C 1O ,C 1H ,A 1C 1=B 1C 1⇒C 1O ⊥A 1B 1,面A 1B 1C 1⊥面A 1BD ⇒C 1O ⊥面A 1BD ,又∵DB ⊂面A 1DB ,∴C 1O ⊥BD ,又∵OH ⊥BD ,∴BD ⊥面C 1OH ,C 1H ⊂面C 1OH ,∴BD ⊥C 1H ,得点H 与点D 重合,且∠C 1DO 是二面角A 1-BD -C 的平面角,设AC =a ,则C 1O =22a ,C 1D =2a =2C 1O ⇒∠C 1DO =30°,故二面角A 1-BD -C 1的大小为30°.章末检测一、选择题1.下列推理错误的是() A.A∈l,A∈α,B∈l,B∈α⇒l⊂αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A∈l,l⊂α⇒A∈α2.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于() A.30°B.45°C.60°D.90°3.下列命题正确的是() A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行4.在空间四边形ABCD的边AB,BC,CD,DA上分别取E、F、G、H四点,如果EF,GH交于一点P,则() A.P一定在直线BD上B.P一定在直线AC上C.P一定在直线AC或BD上D.P既不在直线AC上,也不在直线BD上5.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是() A.①和②B.②和③C.③和④D.②和④6.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是() A.AB∥m B.AC⊥m C.AB∥βD.AC⊥β7.如图(1)所示,在正方形SG1G2G3中,E,F分别是G1G2及G2G3的中点,D是EF的中点,现在沿SE,SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G,如图(2)所示,那么,在四面体S-EFG中必有()。
高一数学(必修2)直线题组练习高一数学必修2 (平行与垂直的判断 )一、选择题1、直线 l 1:ax+y=3;l 2:x+by-c=0,则 ab=1 是 l1||l2的A充要条件B充足不用要条件C必需不充足条件 D 既不充足也不用要条件2、两条直线mx+y-n=0和x+my+1=0相互平行的条件是A m=1B m=±1C m1n1D m 1 或n1m1n13、直线 xsinα+ycosα+1=0 与 xcosα-ysin α+2=0直线的地点关系是A平行B订交但不垂直C订交垂直D视α 的取值而定4、已知 P(a,b)与 Q(b-1,a+1)(a≠b-1)是轴对称的两点,那么对称轴方程是A x+y=0B x-y=0C x+y-1=0D x-y+1=05、已知直线mx+4y-2=0与2x-5y+n=0相互垂直,垂足坐标为(1,p),则m-n+p=A 24B 20C 0D -46、由三条直线 3x-4y+12=0,4x+3y-9=0,14x-2y-19=0 所围成的三角形是A锐角不为 450的直角三角形B顶角不为 900的等腰三角形C 等腰直角三角形D等边三角形7、已知△ ABC 中, A(2,4),B(- 6,- 4),C(5,- 8),则∠ C 等于A40 B -arctan40C arctan40D arctan2727278、直线 3x+3y+8=0 直线 xsinα+ycosα+1=0(4) 的角是2A B C3D54444二、填空题40 arctan271、与直线 2x+3y+5=0 平行,且在两坐标轴上截距之和为10/3 的直线的方程为________;2、与直线 2x-y+4=0 的夹角为 450,且与这直线的交点恰幸亏x 轴上的直线方程为_____;3、直线过点 A(1, 3 ) 且与直线x- 3 y=0成600的角,则直线的方程为__3三、解答题1、直线过 P(1,2)且被两条平行直线 4x+3y+1=0 和 4x+3y+6=0 截得的线段长为 2 ,求这条直线的方程。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】3.1.2 两条直线平行与垂直的判定一、基础过关1.下列说法中正确的有( )①若两条直线斜率相等,则两直线平行;②若l 1∥l 2,则k 1=k 2;③若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,则两直线相交;④若两条直线的斜率都不存在,则两直线平行 A .1个 B .2个 C .3个 D .4个2.已知过点A (-2,m )和B (m,4)的直线与斜率为-2的直线平行,则m 的值为 ( ) A .-8 B .0 C .2D .10 3.已知l 1⊥l 2,直线l 1的倾斜角为45°,则直线l 2的倾斜角为( )A .45°B .135°C .-45°D .120° 4.已知A (m,3),B (2m ,m +4),C (m +1,2),D (1,0),且直线AB 与直线CD 平行,则m 的值为( )A .1B .0C .0或2D .0或15.经过点A (1,1)和点B (-3,2)的直线l 1与过点C (4,5)和点D (a ,-7)的直线l 2平行,则a =________.6. 直线l 1,l 2的斜率k 1,k 2是关于k 的方程2k 2-3k -b =0的两根,若l 1⊥l 2,则b =________;若l 1∥l 2,则b =________.7.(1)已知四点A (5,3),B (10,6),C (3,-4),D (-6,11),求证:AB ⊥CD .(2)已知直线l 1的斜率k 1=34,直线l 2经过点A (3a ,-2),B (0,a 2+1)且l 1⊥l 2,求实数a的值.8. 如图所示,在平面直角坐标系中,四边形OPQR 的顶点坐标按逆时针顺序依次为O (0,0)、P (1,t )、Q (1-2t,2+t )、R (-2t,2),其中t >0.试判断四边形OPQR 的形状.二、能力提升9.顺次连接A (-4,3),B (2,5),C (6,3),D (-3,0)所构成的图形是( )A .平行四边形B .直角梯形C .等腰梯形D .以上都不对10.已知直线l 1的倾斜角为60°,直线l 2经过点A (1,3),B (-2,-23),则直线l 1,l 2的位置关系是____________.11.已知△ABC 的顶点B (2,1),C (-6,3),其垂心为H (-3,2),则其顶点A 的坐标为________.12.已知△ABC三个顶点坐标分别为A(-2,-4),B(6,6),C(0,6),求此三角形三边的高所在直线的斜率.三、探究与拓展13.已知四边形ABCD的顶点A(m,n),B(5,-1),C(4,2),D(2,2),求m和n的值,使四边形ABCD为直角梯形.答案1.A 2.A 3.B 4.D 5.52 6.2 -987.(1)证明 由斜率公式得:k AB =6-310-5=35, k CD =11-(-4)-6-3=-53,则k AB ·k CD =-1,∴AB ⊥CD . (2)解 ∵l 1⊥l 2,∴k 1·k 2=-1,即34×a 2+1-(-2)0-3a=-1,解得a =1或a =3. 8.解 由斜率公式得k OP =t -01-0=t ,k QR =2-(2+t )-2t -(1-2t )=-t-1=t ,k OR =2-0-2t -0=-1t ,k PQ =2+t -t 1-2t -1=2-2t=-1t .∴k OP =k QR ,k OR =k PQ ,从而OP ∥QR ,OR ∥PQ . ∴四边形OPQR 为平行四边形. 又k OP ·k OR =-1,∴OP ⊥OR , 故四边形OPQR 为矩形. 9.B 10.平行或重合 11.(-19,-62) 12.解 由斜率公式可得k AB =6-(-4)6-(-2)=54,k BC =6-66-0=0,k AC =6-(-4)0-(-2)=5.由k BC =0知直线BC ∥x 轴,∴BC 边上的高线与x 轴垂直,其斜率不存在.设AB 、AC 边上高线的斜率分别为k 1、k 2,由k 1·k AB =-1,k 2·k AC =-1,即k 1·54=-1,k 2·5=-1,解得k 1=-45,k 2=-15.∴BC 边上的高所在直线的斜率不存在;AB 边上的高所在直线的斜率为-45;AC 边上的高所在直线的斜率为-15.13.解 ∵四边形ABCD 是直角梯形,∴有2种情形: (1)AB ∥CD ,AB ⊥AD , 由图可知:A (2,-1). (2)AD ∥BC ,AD ⊥AB ,⎩⎪⎨⎪⎧k AD =k BCk AD ·k AB =-1 ⇒⎩⎪⎨⎪⎧n -2m -2=3-1n -2m -2·n +1m -5=-1∴⎩⎨⎧m =165n =-85.综上⎩⎪⎨⎪⎧m =2n =-1或⎩⎨⎧m =165n =-85.。
高一数学(必修2)直线题组练习 高一数学必修2 (平行与垂直的判定)一、选择题1、直线l 1:ax+y=3;l 2:x+by-c=0,则ab=1是l 1||l 2的 A 充要条件 B 充分不必要条件 C 必要不充分条件 D 既不充分也不必要条件2、两条直线mx+y-n=0和x+my+1=0互相平行的条件是 A m=1 B m=±1 C ⎩⎨⎧-≠=11n m D ⎩⎨⎧≠-=⎩⎨⎧-≠=1111n m n m 或 3、直线xsin α+ycos α+1=0与xcos α-ysin α+2=0直线的位置关系是A 平行B 相交但不垂直C 相交垂直D 视α的取值而定4、已知P(a,b)与Q(b-1,a+1)(a ≠b-1)是轴对称的两点,那么对称轴方程是A x+y=0B x-y=0C x+y-1=0D x-y+1=05、已知直线mx+4y-2=0与2x-5y+n=0互相垂直,垂足坐标为(1,p),则m-n+p=A 24B 20C 0D -46、由三条直线3x-4y+12=0,4x+3y-9=0,14x-2y-19=0所围成的三角形是A 锐角不为450的直角三角形B 顶角不为900的等腰三角形C 等腰直角三角形D 等边三角形7、已知△ABC 中,A (2,4),B (-6,-4),C (5,-8),则∠C 等于 A 2740arctanB -2740arctanC +π2740arctan D -π2740arctan8、直线3x+3y+8=0直线xsin α+ycos α+1=0)24(παπ<<的角是A 4πα-B απ-4C 43πα-D απ-45 二、填空题1、与直线2x+3y+5=0平行,且在两坐标轴上截距之和为10/3的直线的方程为________;2、与直线2x-y+4=0的夹角为450,且与这直线的交点恰好在x 轴上的直线方程为_____;3、直线过点A (1,)33且与直线x-y 3=0成600的角,则直线的方程为__ 三、解答题1、直线过P (1,2)且被两条平行直线4x+3y+1=0和4x+3y+6=0截得的线段长为2,求这条直线的方程。
2、光线由点P (2,3)射到直线x+y=-1上反射后过点Q (1,1),求反射线的方程答案 一、1、C ; 2、 D 111nm m -≠=;3、 C(1)0cos 0sin ==αα或(2)1sin cos cos sin -=-•αααα; 4、D 解:111-=---+=ab ba K PQ 又对称轴通过PQ 的中点(x 0,y 0),由中点公式可得⎪⎩⎪⎨⎧++=-+=212100b a y b a x ,利用点斜式可得5、B 解:利用121-=k k 得m=10和⎩⎨⎧-=-=⇒⎩⎨⎧=+-=-+122052024n p n p p m ;6、C 解:由已知可知三直线的斜率分别为7,34,43321=-==k k k 利用到角公式可得;7、A 解:2740arctan 2740411414114tan ,114,4=∠∴=⋅++-=-=-=C C k k BC AC8、D 解:)45tan()4tan(tan 11tan tan ,tan cos sin ,121απαπααθααα-=-=++-=∴-=-=-=k k二、1、2x+3y-4=0; 2、3x+y+6=0 或x-3y+2=0 3、x+3y-2=0或x=1 三、1、7x-y-5=0或x+7y-15=02、4x-5y+1=0高一数学必修2 (直线的方程)一、选择题1、直线xcos α+ysin α+1=0,α)2,0(π∈的倾斜角为A αB 2π-αC π-αD 2π+α 2、直线l 上一点(-1,2),倾斜角为α,且tan 212=α,则直线l 的方程是A 4x+3y+10=0B 4x-3y-10=0C 4x-3y+10=0D 4x+3y-10=0 3、直线aax y 1-=的图象可能是A B C Dx4、直线l过点P(1,3),且与x,y轴正半轴围成的三角形的面积等于6的直线方程A 3x+y-6=0B x+3y-10=0C 3x-y=0D x-3y+8=05、直线ax+by+c=0(ab≠0)在两坐标轴上的截距相等,则a,b,c满足的条件是A a=bB |a|=|b|C a=b且c=0D c=0或c≠0且a=b6、如果直线与坐标轴围成的三角形面积为3,且在x轴和y轴上的截距之和为5,那么这样的直线共有( )条A 4B 3C 2D 1二、填空题1、在y轴上的截距为-6,且与y轴相交成450角的直线方程是_________;2、直线l过点P(-1,1),且与直线l’:2x-y+3=0及x轴围成底边在x轴上的等腰三角形,则直线的方程为________;3、直线l过点P(4,3)且在x轴、y轴上的截距之比为1:2,则直线l的方程_______;4、斜率为3/4,且与两坐标轴围成的三角形的周长为12的直线的方程为________.三、解答题1、直线mx+ny-1=0的倾斜角是直线2x-y+1=0的倾斜角的2倍,与两坐标轴围成的三角形的面积等于6,试求m 和n 的值2、过点P(2,1),作直线l 交x,y 正半轴于A,B 两点,当|PA|·|PB|取得最小值时,求直线l 的方程 答案:一、DCBADA 二、1、x-y-6=0或x+y+6=0; 2、2x+y+1=0; 3、2x+y-11=0; 4、3x-4y ±12=0三、1、⎪⎩⎪⎨⎧-=-=⎪⎩⎪⎨⎧==41314131n m n m 或 2、x+y-3=0高一数学必修2(点斜式、斜截式)一、选择题1、把直线x-y+3-1=0绕点(1, 3)逆时针旋转150后,所得直线的方程为A y=-3xB y=3xC x-3y+2=0D x+3y-2=0 2、直线xcos α+ysin α+1=0,α)2,0(π∈的倾斜角为A αB 2π-αC π-αD 2π+α 3、直线l 上一点(-1,2),倾斜角为α,且tan 212=α,则直线l 的方程是A 4x+3y+10=0B 4x-3y-10=0C 4x-3y+10=0D 4x+3y-10=0 4、直线aax y 1-=的图象可能是A B C D 二、填空题1、直线l 过点(3,-3),并且倾斜角为1500,则直线l 的方程为_______;2、斜率与直线3x-2y=0的斜率相等,且过点(-4,3)的直线方程为_____;3、在y 轴上的截距为-6,且与y 轴相交成450角的直线方程是_________;4、直线l 过点P(-1,1),且与直线l ’:2x-y+3=0及x 轴围成底边在x 轴上的等腰三角形,则直线的方程为________;5、斜率为3/4,且与两坐标轴围成的三角形的周长为12的直线的方程为________. 三、解答题1、在直线方程y=kx+b 中,当x ∈[-3,4]时,y ∈[-8,13],求此直线x的方程2、求倾斜角是直线y=-3x+1的倾斜角的1/4,且分别满足下列条件的直线方程(1)经过点(3,-1);(2)在y轴上的截距为-5.3、过点P(2,1),作直线l交x,y正半轴于AB两点,当|PA|·|PB|取得最小值时,求直线的方程答案一、BDCB;二、1、x+3y=0; 2、3x-2y+18=0 ; 3、x-y-6=0或x+y+6=0;4、2x+y+1=0;5、3x-4y±12=0;三、1、y=-3x+42、3x-3y-15=03、x+y-3=0高一数学必修2(交点、距离)一、选择题1、直线3x-2y+m=0与直线(m 2-1)x+3y+2-3m=0的位置关系是 A 平行 B 垂直 C 相交 D 与m 的取值有关2、已知点P (-1,0),Q (1,0),直线y=-2x+b 与线段PQ 相交,则b 的取值范围是A [-2,2]B [-1,1]C [-21,21] D [0,2] 3、已知方程a|x|-y=0和x-y+a=0(a>0)所确定的曲线有两个交点,则a 的取值范围是A a>1B 0<a<1或a>1C 0<a<1D a>0 4、若直线l 1经过点(3,0),直线l 2经过点(0,4),且l 1||l 2, 若d 表示l 1与l 2间的距离,则A 0<d ≤3B 0<d ≤4C 0<d ≤5D 3≤d ≤5 5、已知点(1,cos θ)到直线xsin θ+ycos θ=1的距离等于41,且20πθ≤≤,则θ的值等于A 6πB 4πC 3πD 125π6、△ABC 的顶点A (3,-1),AB 边上中线所在的直线方程为x+y-8=0,直线l :x-2y+1=0是过点B 的一条直线,则AB 的中点D 到直线的距离为 A552 B 553 C 554 D5 二、填空题1、过直线x-2y+4=0与直线2x-y-1=0的交点M ,且与两点A (0,4),B (4,0)距离相等的直线的方程为________;2、三条直线2x-y+4=0,x-y+5=0和2mx-3y+12=0围成直角三角形,则m =_____3、过点(1,3)且与原点距离为1的直线方程为_____;4、垂直于直线x-3y+1=0且到原点的距离等于5的直线方程是____ 三、解答题1、直线l 经过2x-3y+2=0和3x-4y-2=0的交点,且与两坐标轴围成等腰直角三角形,求直线l 的方程2、直线l 经过点P (2,-5),且与点A (3,-2)和B (-1,6)的距离之比为1:2,则直线l 的方程 答案: 一、CAACAB二、1 、x=2或x+y-5=0; 2、2343--或;3、x=1或4x-3y+5=0;4、3x+y ±10=0 三、1、x-y-4=0或x+y-24=0 2、x+y+3=0或17x+y-29=0高一数学必修2(两点式、截距式)一、选择题1、过点(2,3)且在坐标轴上截距相等的直线有( )条 A 1 B 2 C 3 D 42、直线l 过点P(1,3),且与x,y 轴正半轴围成的三角形的面积等于6的直线方程A 3x+y-6=0B x+3y-10=0C 3x-y=0D x-3y+8=03、直线ax+by=1(ab ≠0)与两坐标轴围成的三角形的面积是 A ab 21 B ||21ab Cab21D ||21ab4、直线ax+by+c=0(ab ≠0)在两坐标轴上的截距相等,则a,b,c 满足的条件是A a=bB |a|=|b|C a=b 且c=0D c=0或c ≠0且a=b5、已知两点A(3,0),B(0,4),动点P(x,y)在线段AB 上运动,则xy 的最大值为A 2B 3C 4D 56、如果直线与坐标轴围成的三角形面积为3,且在x 轴和y 轴上的截距之和为5,那么这样的直线共有( )条A 4B 3C 2D 1二、填空题1、△OAB三个顶点O(0,0),A(-3,0),B(0,6),则过点O将△OAB 的面积分为1:2的直线l的方程是_____________;2、直线l过点P(4,3)且在x轴、y轴上的截距之比为1:2,则直线l的方程_______;3、经过点A(-2,2)且在第二象限与两坐标轴围成的三角形的面积最小时的直线方程为_______。