2013年 同济大学博士生入学考试 弹性力学真题
- 格式:pdf
- 大小:267.29 KB
- 文档页数:2
华中科技大学土木工程与力学学院 《弹性理论》考试卷(闭卷B 标答)2013—2014学年度第一学期 成绩 学号 专业 班级 学生姓名一、判断题(正确打∨,错误打×,每小题2分,共计24分)1、在小变形假设下,弹性问题和塑性问题的平衡方程是相同的。
( ∨ )2、如果仅存在x ε,y ε,xy γ,其他应变分量均为零,则该问题是平面应变问题。
( × )3、按位移求解是静定问题。
( ∨ )4、如果材料的物理方程符合广义胡克定律,则三个主应力均为拉应力时,不能产生压应变。
( × )5、同一边界上,既有位移边界条件,又有应力边界条件,这样的边界条件称为混合边界条件。
( ∨ )6、如果物体一小部分边界上受到一个平衡力系作用,那么这个面力就会使远处产生显著的应力。
( × )7、积分形式的应力边界条件在主要边界上是近似的,在次要边界上是精确的。
( × )8、按应力求解可以适用于应力边界条件和混合边界条件,不适用于位移边界条件。
( × )9、在应力边界问题中,如果两个弹性体具有相同的边界形状,并受到同样分布的外力,那么即使两个弹性体的材料不同,两者的应力分布也是相同的。
( × )10、径向位移只产生径向应变,环向位移不会产生径向应变。
( × )11、在位移轴对称问题中应力和位移都是轴对称的。
( ∨ )12、任何情况下,体积应变等于三个正应变之和。
( × )二、试确定应变状态()22y x k x +=ε,2ky y =ε,0=z ε,kxy xy 2=γ,0=yz γ,0=zx γ是否存在。
(10分)解:是平面应变问题,满足变形协调方程 因此该应变状态存在。
三、如果ϕ为平面调和函数,满足02=∇ϕ,问ϕϕ)(221y x +=可否能作为应力函数?(12分) 解:四、厚度1=δ的简支梁,不计体力,受一端的集中力偶M 的作用。
试检查位移 y l x EI M u )2(-=,22)(2y EIM x x l EI M v μ--=是否为该问题的解答。
弹塑性力学试卷及习题解答弹塑性力学试卷配套教材《弹性与塑性力学》陈惠发1.是非题(认为该题正确,在括号中打√;该题错误,在括号中打×。
)(每小题 2 分)(1)物体内某点应变为0 值,则该点的位移也必为0 值。
(2)可用矩阵描述的物理量,均可采用张量形式表述。
3)因张量的分量是随坐标系的变化而变化,故张量本身也应随坐标系变化。
()4)弹性的应力和应变张量两者的主方向是一致性,与材料无关的。
()5)对于常体力平面问题,若应力函数x,y 满足双调和方程 2 20,那么,由x,y 确定的应力分量必然满足平衡微分方程。
()(6)若某材料在弹性阶段呈各向同性,故其弹塑性状态势必也呈各向同性。
()(7)Drucker 假设适合于任何性质的材料。
()(8)应变协调方程的几何意义是:物体在变形前是连续的,变形后也是连续的。
()(9)对于任何材料,塑性应变增量均沿着当前加载面的法线方向。
()(10)塑性应变增量的主方向与应力增量的主方向不重合。
P107;226 ()2.填空题(在每题的横线上填写必要的词语,以使该题句意完整。
)(每小题 2 分)(1)设x,y a1x a2x y a3y ,当a1,a2,a3满足_________________________________ 关系时x,y 能作为应力函数。
(2)弹塑性力学是研究固体受外界因素作用而产生的______________________ 的一门学科。
(3)导致后继屈曲面出现平移及扩大的主要原因是材料_______________________ 。
(4)π 平面上的一点对应于应力的失量的 _____________________ 。
P65(5)随动强化后继屈服面的主要特征为:__________________________________________ 。
(6)主应力轴和主应变轴总是重合的材料为_______________________ 。
2013年同济大学工程热力学考研真题2013年同济大学硕士研究生入学统一考试试题科目代码:816考试科目:工程热力学试题满分:150分一、判断对错题,共15道题,每道题目2分,共30分。
1、膨胀功、技术功、流动功都是过程量,都与过程有关。
2、公式&q=cvdT+pdv只适用于闭口稳定系统。
3、实际气体的压缩因子可以大于1,可以等于1,也可以小于1。
4、闭口绝热系统的熵不可能减少。
5、理想气体经历绝热节流后流体温度不变,所以节流过程并不造成能量品质下降。
6、热电合供循环可以有效提高动力循环热效率。
7、理想气体混合物的焓、熵只是温度的单值函数。
8、再热循环可以有助于提高循环的热效率。
9、蒸汽动力循环的气体吸热温度越高,热效率就越大。
10、湿空气的含湿量是指每千克空气中含有的水蒸汽量。
其他几道记不清楚了。
二、简答题,共5道题,每到8分,共40分。
1、系统的状态只由两个独立参数确定。
气体的压力和比体积确定后,可以求出温度。
但是理想气体的热力学能和焓只取决于温度,前后是否矛盾?为什么?2、有个人根据&qrev=Tds=cdT推导得到ds=cdT/T,说熵只取决于温度,对吗?为什么?3、计算热效率的两个公式nt =1-q2/q1和nt=1-T2/T1是不是一样的?分别适用于哪些情况?为什么?4、燃气轮机在燃烧过程之前为什么要设置压缩机来压缩气体?5、分析回热循环和热效率的关系。
具体内容记不清了,这道题我没复习,当时空在那里了。
三、计算题,共5道题目1、2kg的理想气体经历一个可逆多变过程,吸热Q,温度由T1降低到T2,对外作膨胀功,计算cp和cv的值。
(15分)2、某种气体经历了2个过程,热源的温度为600K,第一个过程是不可逆的过程,气体从热源吸收了100KJ的热量,热力学能增加了30KJ。
第二个过程是可逆的,经历过这2个过程后,气体回复到了初始状态。
总的熵增为0.262KJ/K。
(1)计算在第一个过程中气体所作的功;(2)计算第二个过程气体与热源交换的热量以及所作的功。
弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移」_2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。
3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。
4、物体受外力以后,其内部将发生内力,它的集度称为应力。
与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量, 也就是正应力和切应力。
应力及其分量的量纲是L M T。
5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性_________6、平面问题分为平面应力问题和平面应变问题。
7、已知一点处的应力分量J=100MPa 口y=50MPa弋xy=10/5O MPa,则主应力6= 150MPao^nQMPa a r=35l6"。
&已知一点处的应力分量, a ^200 MPa 口y=0MPa Jy=—400 MPa,则主应力▽“=512 MPa, 二2 =-312 MPa,: 1 =-37 ° 57'。
9、已知一点处的应力分量,匚x=-2000 MPa匚y =1000 MPa,岑=-400 MPa,则主应力匚1 = 1052 MPa二2= -2052 MPa , :- "-82 ° 32'。
10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。
11、表示应力分量与体力分量之间关系的方程为平衡微分方程。
12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。
分为位移边界条件、应力边界________________ 条件和混合边界条件。
13、按应力求解平面问题时常采用逆解法和半逆解法。
14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。
其具体步骤分为单元分析和整体分析两部分。
《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。
2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。
3.等截面直杆扭转问题中, 的物理意义是 杆端截面上剪应力对转轴的矩等于M dxdy D=⎰⎰2ϕ杆截面内的扭矩M 。
4.平面问题的应力函数解法中,Airy 应力函数在边界上值的物理意义为 边界上某一点(基准ϕ点)到任一点外力的矩 。
5.弹性力学平衡微分方程、几何方程的张量表示为: ,。
0,=+i j ij X σ)(21,,i j j i ij u u +=ε二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。
圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。
作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。
(2)将次要的位移边界条件转化为应力边界条件处理。
2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数的分离变量形式。
ϕ题二(2)图(a ) (b )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x ⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。
试求薄板面积的改变量。
S∆题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为。
由得,l ∆q E)1(1με-=)1(2222με-+=+=∆Eb a q b a l 设板在力P 作用下的面积改变为,由功的互等定理有:S ∆lP S q ∆⋅=∆⋅将代入得:l ∆221b a P ES +-=∆μ显然,与板的形状无关,仅与E 、、l 有关。
2013级弹塑性力学考试试题及答案(部分)1. 简答题:(每小题各2.5分)(1)给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么?题目重复(2)对于各向同性线弹性材料,应用广义虎克定律说明应力主轴与应变主轴重合。
答:各向同性线弹性材料,应用广义虎克定律为2,2,2,x x v y y v z z v G G G σελεσελεσελε=+=+=+ xy xyyz yz zx zxG G G τγτγτγ=== 由上式可知,当某个面上的剪切应力为零时,剪应变也为零,这说明应力的主方向与应变的主方向重合。
(3)泊松比是否可以大于0.5?大于0.5会导致什么结果?答:不可以,因为当泊松比大于0.5时,导致体积弹性模量会小于零,而体积弹性模量必须恒为正。
(4)弹性力学平面问题中物体内的应力分布是否与其弹性常数有关?试根据问题求解的基本方程和边界条件加以说明? 答:无关。
基本方程为:220ϕ∇∇=边界条件为:222()x x F x l m T y x y ϕϕ∂∂--=∂∂∂,222()y y l F y m T x y x ϕϕ∂∂-+-=∂∂∂ 应力分量为:22x x F x y ϕσ∂=-∂,22y y F y x ϕσ∂=-∂,2xy x yϕτ∂=-∂∂ 由于方程、边界条件以及应力分量表达式中都不含弹性常数,因此平面问题的应力解与材料的弹性性质无关。
(5)虚位移原理等价于哪两组方程?它在塑性力学中能否成立,为什么?答:平衡微分方程和静力边界条件。
成立,因为没有涉及到本构方程。
(6)什么是正交流动法则?它是在什么假定下导出的?答:正交流动法则为pij ijfd d ελσ∂=∂,它是在Drucker 公设上导出的。
(7)什么是硬化?什么是等向硬化?答:屈服极限不断提高称为硬化。
因拉伸提高了材料的屈服应力,在反向加载,屈服应力也得到同样程度的提高,称为等向硬化。
弹性力学试题及答案一、选择题(每题5分,共20分)1. 弹性力学中,描述材料弹性特性的基本物理量是()。
A. 应力B. 应变C. 弹性模量D. 泊松比答案:C2. 在弹性力学中,下列哪项不是胡克定律的内容?()A. 应力与应变成正比B. 材料是均匀的C. 材料是各向同性的D. 材料是线性的答案:B3. 弹性模量E和泊松比ν之间的关系是()。
A. E = 2(1 + ν)B. E = 3(1 - 2ν)C. E = 3(1 + ν)D. E = 2(1 - ν)答案:D4. 根据弹性力学理论,下列哪种情况下材料会发生塑性变形?()A. 应力小于材料的弹性极限B. 应力达到材料的弹性极限C. 应力超过材料的屈服强度D. 应力小于材料的屈服强度答案:C二、填空题(每题5分,共20分)1. 弹性力学中,应力的定义是单位面积上的______力。
答案:内2. 弹性力学的基本假设之一是______连续性假设。
答案:材料3. 弹性力学中,应变的量纲是______。
答案:无4. 弹性力学中,当外力撤去后,材料能恢复原状的性质称为______。
答案:弹性三、简答题(每题10分,共30分)1. 简述弹性力学中应力和应变的区别。
答案:应力是描述材料内部单位面积上受到的内力,而应变是描述材料在受力后形状和尺寸的变化程度。
2. 解释弹性力学中的杨氏模量和剪切模量。
答案:杨氏模量(E)是描述材料在拉伸或压缩过程中应力与应变比值的物理量,反映了材料的刚度;剪切模量(G)是描述材料在剪切应力作用下剪切应变与剪切应力比值的物理量,反映了材料抵抗剪切变形的能力。
3. 弹性力学中,如何理解材料的各向异性和各向同性?答案:各向异性是指材料的物理性质(如弹性模量、热膨胀系数等)在不同方向上具有不同的值;而各向同性则是指材料的物理性质在各个方向上都是相同的。
四、计算题(每题15分,共30分)1. 已知一圆柱形试件,其直径为50mm,长度为100mm,材料的弹性模量E=210GPa,泊松比ν=0.3。
《弹性力学》试题参考答案(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。
2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。
3.等截面直杆扭转问题中, M dxdy D=⎰⎰ 2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。
4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。
5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。
二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。
圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。
作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。
(2)将次要的位移边界条件转化为应力边界条件处理。
2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。
题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 已知。
试求薄板面积的改变量S ∆。
题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为l ∆。
由q E)1(1με-=得,)1(2222με-+=+=∆Eb a q b a l设板在力P 作用下的面积改变为S ∆,由功的互等定理有:l P S q ∆⋅=∆⋅将l ∆代入得:221b a P ES +-=∆μ显然,S ∆与板的形状无关,仅与E 、μ、l 有关。