同济大学弹性力学全解共26页文档
- 格式:ppt
- 大小:3.62 MB
- 文档页数:26
硕士研究生课程弹塑性力学II(C)第一讲绪论、张量分析简介同济大学地下建筑与工程系《弹性力学》,徐芝伦,高等教育出版社,2006v4《弹性力学》,杨桂通,高等教育出版社,1998《弹塑性力学引论》,杨桂通,清华大学出版社2004《塑性力学》,夏志皋,同济大学出版社,1991《塑性力学基础》,王仁等,科学出版社,1982《塑性力学基础》,北川浩,高等教育出版社,1982《岩土塑性力学原理》,郑颖人等,建筑工业出版社,2002相关书籍Timoshenko S.P, Goodier J N. Theory of elasticity. 3rd ed. New York: McGraw-Hill Book Co, 1970 (徐芝伦译)Chen W.F. Limit analysis and soil plasticity. 1975, New York: Elsevier Scientific Publishing Company;J. C. Simo, T. J. Hughes. Computational Inelasticity.1998,Springer.弹性力学部分目录§1.1弹性力学的任务、内容和方法§1.2弹性力学的基本假设§1.3弹性力学的发展简史§1.1弹性力学的任务、内容和方法•弹性力学,也称弹性理论,是固体力学学科的一个分支基本任务:解决构件的强度、刚度和稳定问题。
最大限度解决并统一经济与安全的矛盾。
研究对象:完全弹性体(包括构件、实体)。
主要研究内容:在外界因素(载荷或温度变化)作用下,弹性体的应力和变形问题。
•弹性是变形固体的基本属性。
弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。
绝对弹性体是不存在的。
物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。
•“完全弹性”是对弹性体变形的抽象。
【最新整理,下载后即可编辑】【最新整理,下载后即可编辑】习题解答第二章2.1计算:(1)piiqqjjkδδδδ,(2)pqi ijkjke e A ,(3)ijp klpkilje e B B 。
解:(1)piiqqjjkpqqjjkpjjkpkδδδδδδδδδδ===;(2)()pqi ijk jk pj qk pk qj jk pq qpe e A A A A δδδδ=-=-;(3)()ijp klp ki lj ik jl il jk ki lj ii jj ji ije e B B B B B B B B δδδδ=-=-。
2.2证明:若ij ji a a =,则0ijk jke a =。
证:20ijk jk jk jk ikj kj ijk jk ijk kj ijk jk ijk jki e a e a e a e a e a e a e a ==-=-=+。
2.3设a 、b 和c 是三个矢量,试证明:2[,,]⋅⋅⋅⋅⋅⋅=⋅⋅⋅a a a b a cb a b b bc a b c c a c b c c证:1231112123222123333[,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ⋅⋅⋅⋅⋅⋅=⋅⋅⋅==a a a b a c b a b b b c a b c c a c b c c 。
2.4设a 、b 、c 和d 是四个矢量,证明:()()()()()()⨯⋅⨯=⋅⋅-⋅⋅a b c d a c b d a d b c证:()()ij ijkk l m lmn n i j l m ijk lmk a b ec d e a b c d e e ⨯⋅⨯=⋅=a b c d e e【最新整理,下载后即可编辑】图2.4)(jmim jl δδ-=()()()()=⋅⋅-⋅⋅a c b d a d b c 。
弹性力学网络课程第一章绪论内容介绍知识点弹性力学的特点弹性力学的基本假设弹性力学的发展弹性力学的任务弹性力学的研究方法内容介绍:一. 内容介绍本章作为弹性力学课程的引言,主要介绍课程的研究对象、基本分析方法和特点;课程分析的基本假设和课程学习的意义以及历史和发展。
弹性力学的研究对象是完全弹性体,因此分析从微分单元体入手,基本方程为偏微分方程。
偏微分方程边值问题在数学上求解困难,使得弹性力学的基本任务是研究弹性体由于外力载荷或者温度改变,物体内部所产生的位移、变形和应力分布等,为解决工程结构的强度,刚度和稳定性问题作准备,但是并不直接作强度和刚度分析。
本章介绍弹性力学分析的基本假设。
弹性力学分析中,必须根据已知物理量,例如外力、结构几何形状和约束条件等,通过静力平衡、几何变形和本构关系等,推导和确定基本未知量,位移、应变和应力等与已知物理量的关系。
由于工程实际问题的复杂性是由多方面因素构成的,如果不分主次地考虑所有因素,问题是十分复杂的,数学推导将困难重重,以至于不可能求解。
课程分析中使用张量符号描述物理量和基本方程。
目前,有关弹性力学的文献和工程资料都是使用张量符号的。
如果你没有学习过张量概念,请进入附录一学习,或者查阅参考资料。
二. 重点1.课程的研究对象;2.基本分析方法和特点;3.弹性力学的基本假设;4.课程的学习意义;5.弹性力学的发展。
特点:弹性力学,又称弹性理论。
作为固体力学学科的一个分支,弹性力学的基本任务是研究弹性体由于外力载荷或者温度改变,物体内部所产生的位移、变形和应力分布等,为解决工程结构的强度,刚度和稳定性问题作准备,但是并不直接作强度和刚度分析。
构件承载能力分析是固体力学的基本任务,但是对于不同的学科分支,研究对象和方法是不同的。
弹性力学的研究对象是完全弹性体,包括构件、板和三维弹性体,比材料力学和结构力学的研究范围更为广泛。
弹性是变形固体的基本属性,而“完全弹性”是对弹性体变形的抽象。
弹性力学01绪论1.1弹性力学的内容1.2弹性力学的几个基本概念 1.3弹性力学中的基本假定。
1.1、弹性力学的内容弹性力学:研究弹性体由于受外力、边界约束或温度等原因而发生的应力、变形和位移。
研究弹性体的力学:有材料力学、结构力学、弹性力学。
它们的研究对象分别如下: ①材料力学:研究杆件(如梁、柱和轴)的拉压、弯曲、剪切、扭转和组合变形等问题。
②结构力学:在材料力学基础上研究杆系结构(如桁架、钢架等)③弹性力学:研究各种形状的弹性体,如杆件、平面体、空间体、板壳、薄壁结构等问题。
在研究方法上,弹性力学和材料力学也有区别:弹力研究方法:在区域V 内严格考虑静力学、几何学和物理学三方面条件,建立三套方程;在边界s 上考虑受力或约束条件,并在边界条件下求解上述方程,得出较精确的解答。
材力也考虑这几方面的条件,但不是十分严格的:常常引用近似的计算假设(如平面截面假设)来简化问题,并在许多方面进行了近似的处理。
因此材料力学建立的是近似理论,得出的是近似的解答。
从其精度来看,材料力学解法只能适用于杆件。
例如:材料力学:研究直梁在横向载荷作用下的平面弯曲,引用了平面假设,结果:横截面上的正应力按直线分布。
()zM x yI σ⋅=弹性力学:梁的深度并不远小于梁的跨度,而是同等大小的,那么,横截面的正应力并不按直线分布,而是按曲线变化的。
22()345z M x y y y q I h h σ⎛⎫⋅=+- ⎪⎝⎭这时,材料力学中给出的最大正应力将具有很大的误差。
弹性力学在力学学科和工程学科中,具有重要的地位:弹性力学是其他固体力学分支学科的基础。
弹性力学是工程结构分析的重要手段。
尤其对于安全性和经济性要求很高的近代大型工程结构,须用弹力方法进行分析。
工科学生学习弹力的目的:1)理解和掌握弹力的基本理论; 2)能阅读和应用弹力文献;3)能用弹力近似解法(变分法、差分法和有限单元法)解决工程实际问题: 4)为进一步学习其他固体力学分支学科打下基础。
弹性力学讲课文档contents •弹性力学基本概念与原理•弹性力学分析方法•一维问题求解方法与应用•二维问题求解方法与应用•三维问题求解方法与应用•弹性力学在工程中应用案例目录01弹性力学基本概念与原理弹性力学定义及研究对象定义弹性力学是研究弹性体在外力作用下产生变形和内部应力分布规律的科学。
研究对象主要研究弹性体(如金属、岩石、橡胶等)在小变形条件下的力学行为。
弹性体基本假设与约束条件基本假设连续性假设、完全弹性假设、小变形假设、无初始应力假设。
约束条件弹性体在变形过程中,必须满足几何约束(如位移连续、无重叠等)和物理约束(如应力平衡、应变协调等)。
应力单位面积上的内力,表示物体内部各部分之间的相互挤压或拉伸作用。
应变物体在外力作用下产生的形状和尺寸的变化,反映物体变形的程度。
位移物体上某一点在变形前后位置的变化,描述物体的整体移动。
关系应力与应变之间存在线性关系(胡克定律),位移是应变的积分结果。
应力、应变及位移关系弹性力学中能量原理能量守恒原理弹性体在变形过程中,外力所做的功等于弹性体内部应变能的增加。
最小势能原理在所有可能的位移场中,真实位移场使系统总势能取最小值。
虚功原理外力在虚位移上所做的虚功等于内力在相应虚应变上所做的虚功。
02弹性力学分析方法解析法分离变量法通过分离偏微分方程的变量,将其转化为常微分方程进行求解。
积分变换法利用积分变换(如傅里叶变换、拉普拉斯变换等)将偏微分方程转化为常微分方程或代数方程进行求解。
复变函数法引入复变函数,将弹性力学问题转化为复平面上的问题,利用复变函数的性质进行求解。
将连续问题离散化,用差分方程近似代替微分方程进行求解。
有限差分法有限元法边界元法将连续体划分为有限个单元,对每个单元进行分析并建立单元刚度矩阵,然后组装成整体刚度矩阵进行求解。
将边界划分为有限个单元,利用边界积分方程进行求解,适用于处理无限域和复杂边界问题。
半解析法有限体积法将计算区域划分为一系列控制体积,将待解的微分方程对每一个控制体积积分得出离散方程进行求解。
弹性力学第三章应变分析1、点的运动:i i u =u e ;2、★Cauchy 应变张量ε:描述微线段的相对伸长的夹角变化,刻画任一点处的变形状态。
几何方程:1()2=∇+∇εu u ,即(),,12ij i j j i u u ε=+用n ε表示n 方向的无穷段线段的相对伸长:n ij i jn n εε=⋅⋅=n εn 某点处任意两条微线段之间的夹角变化量:12sin ()cos 22ij i j n m ϕϕεεϕε∆++=⋅⋅=n εm 应变张量ε二阶对称张量,只有六个独立的分量。
有时把112233,,εεε写成,,x y z εεε,称为正应变分量;把122331,,εεε写成,,xy yz zx εεε,成为剪应力分量。
几何方程的分量形式:1, 21, 21, 2x xy y yz z zx u u v x y x v v w y z y w w u z x z εεεεεε⎧⎛⎫∂∂∂==+⎪ ⎪∂∂∂⎝⎭⎪⎪⎛⎫∂∂∂⎪==+⎨ ⎪∂∂∂⎝⎭⎪⎪∂∂∂⎛⎫⎪==+ ⎪∂∂∂⎝⎭⎪⎩应变分量的几何意义:11x εε=表示x 方向的正应变,12xy εε=表示角度变化的一半。
3、主应变:若某方向的微线段变形后方向不变,则该方向称为应变主方向,主方向的正应变称为主应变。
ε⋅=εn n ,应变主方向n 就是应变张量ε的主方向,主应变ε就是应变张量的特征值。
应变张量的特征方程:321230J J J εεε-+-=三个不变量:()11232122331312312det ii ii jj ij ij J J J θεεεεεεεεεεεεεεεεε===++⎧⎪⎪=-=++⎨⎪==⎪⎩ε,体积应变就是第一不变量。
4、★应变协调方程:∇⨯⨯∇=ε0注:i i x ∂∇=∂e ,旋度,curl i j j j i ijk k iu u e x∂=∇⨯=⨯=∂u u e e e 指标形式:,0ij kl ikp jlq e e ε=第四章应力分析1、外力:体力和面力。