同济大学弹性力学课件 (1)
- 格式:ppt
- 大小:253.00 KB
- 文档页数:26
有限元分析
的一般规律物体在空间的位置随时间的改变
对象内容
任务
对象内容
任务
概述
ANSYS 静力分析z起重机械有限元应用
整机模态分析
车辆安全性
工件淬火3.06 min 时的温度、组织分布(NSHT3D)
同济大学
同济大学
金属反挤压成型:温度分布和变化铸造成型:温度变化和气泡
速度
压力导流管分析
超音速飞行压力分布汽车气动分析
高速导弹气动
同济大学
两根热膨胀系数不同的棒焊接在一起,加热后的变形情况
子结构方法分析大型结构的早期应用法
梁单元
建模时充分利用重复性。
弹性力学ppt课件•弹性力学基本概念与原理•弹性力学分析方法与技巧目录•一维问题分析与实例讲解•二维问题分析与实例讲解•三维问题分析与实例讲解•弹性力学在工程领域应用探讨01弹性力学基本概念与原理弹性力学定义及研究对象定义弹性力学是研究弹性体在外力作用下产生变形和内力分布规律的科学。
研究对象弹性体,即在外力作用下能够发生变形,当外力去除后又能恢复原状的物体。
弹性体基本假设与约束条件基本假设连续性假设、完全弹性假设、小变形假设、无初始应力假设。
约束条件几何约束(物体形状和尺寸的限制)、物理约束(物体材料属性的限制)。
单位面积上的内力,表示物体内部的受力状态。
应力物体在外力作用下产生的变形程度,表示物体的变形状态。
应变物体上某一点在外力作用下的位置变化。
位移应力与应变之间存在线性关系,位移是应变的积分。
关系应力、应变及位移关系虎克定律及其适用范围虎克定律在弹性限度内,物体的应力与应变成正比,即σ=Eε,其中σ为应力,ε为应变,E为弹性模量。
适用范围适用于大多数金属材料在常温、静载条件下的力学行为。
对于非金属材料、高温或动载条件下的情况,需考虑其他因素或修正虎克定律。
02弹性力学分析方法与技巧0102建立弹性力学基本方程根据问题的具体条件和假设,建立平衡方程、几何方程和物理方程。
选择适当的坐标系和坐标…针对问题的特点,选择合适的坐标系,如直角坐标系、极坐标系或柱坐标系,并进行必要的坐标系转换。
求解基本方程采用分离变量法、积分变换法、复变函数法等方法求解基本方程,得到位移、应力和应变的解析表达式。
确定边界条件和初始条件根据问题的实际情况,确定位移边界条件、应力边界条件以及初始条件。
验证解析解的正确性通过与其他方法(如数值法、实验法)的结果进行比较,验证解析解的正确性和有效性。
030405解析法求解思路及步骤将连续体离散化为有限个单元,通过节点连接各单元,建立单元刚度矩阵和整体刚度矩阵,求解节点位移和单元应力。
硕士研究生课程弹塑性力学II(C)第一讲绪论、张量分析简介同济大学地下建筑与工程系《弹性力学》,徐芝伦,高等教育出版社,2006v4《弹性力学》,杨桂通,高等教育出版社,1998《弹塑性力学引论》,杨桂通,清华大学出版社2004《塑性力学》,夏志皋,同济大学出版社,1991《塑性力学基础》,王仁等,科学出版社,1982《塑性力学基础》,北川浩,高等教育出版社,1982《岩土塑性力学原理》,郑颖人等,建筑工业出版社,2002相关书籍Timoshenko S.P, Goodier J N. Theory of elasticity. 3rd ed. New York: McGraw-Hill Book Co, 1970 (徐芝伦译)Chen W.F. Limit analysis and soil plasticity. 1975, New York: Elsevier Scientific Publishing Company;J. C. Simo, T. J. Hughes. Computational Inelasticity.1998,Springer.弹性力学部分目录§1.1弹性力学的任务、内容和方法§1.2弹性力学的基本假设§1.3弹性力学的发展简史§1.1弹性力学的任务、内容和方法•弹性力学,也称弹性理论,是固体力学学科的一个分支基本任务:解决构件的强度、刚度和稳定问题。
最大限度解决并统一经济与安全的矛盾。
研究对象:完全弹性体(包括构件、实体)。
主要研究内容:在外界因素(载荷或温度变化)作用下,弹性体的应力和变形问题。
•弹性是变形固体的基本属性。
弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。
绝对弹性体是不存在的。
物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。
•“完全弹性”是对弹性体变形的抽象。