SPC运用与异常判定
- 格式:pdf
- 大小:37.99 MB
- 文档页数:52
SPC控制图判断标准一:判稳准则在点子随机排列的情况下,符合下列个点之一就判稳:(1)连续25个点,界外点数d=0;(2)连续35个点,界外点数d≤1;(3)连续100个点,界外点数d≤2。
二:判异准则SPC的基准是稳态,如若过程出现显著偏离稳态则为异态。
异态出可分为异常好与异常坏两类。
判异准则:(1)点出界就判异;(2)界内点排列不随机判异。
2.1判异准则1一点落在A区以外。
出现该情况可能因素:计算错误、测量误差、原材料不合格、设备故障等。
点排布如下图2-1所示:图2-1 准则1判异图2.2判异准则2出现连续9点落在中心线一侧。
原因:分布的a减小。
点排布如下图2-2所示:图2-2 准则2判异图2.3判异准则3连续6点递增或递减。
产生趋势可能因素:工具逐渐磨损、维修水平逐渐降低、操作人员技能逐渐降低等。
点排布如下图2-3所示:图2-3 准则3判异图2.4判异准则4连续14点中相邻点上下交替。
产生趋势可能因素:轮流使用两台设备、两位人员轮流操作。
点排布如下图2-4所示:图2-4 准则4判异图2.5判异准则5连续3点落在中心线同一侧的B区以外。
产生趋势可能因素:参数u发生了变化。
点排布如下图2-5所示:图2-5准则5判异图2.6判异准则6连续5点中有4点落在中心线同一侧的C区以外。
表明参数u发生了变化。
点排布如下图2-6所示:图2-6准则6判异图2.7判异准则715点在C区中心线上下。
可能原因:①是否应用了假数据,弄虚作假;②是否数据分层不够。
点排布如下图2-7所示:图2-7准则7判异图2.8判异准则88点在中心线两侧,但无一在C区中。
原因:数据分层不够。
点排布如下图2-8所示:图2-8准则8判异图。
判异准则1:有点子落在界外。
判异准则2:连续9点落在中心线同一侧。
判异准则3:连续6点递增或递减。
判异准则4:连续14点相邻点上下交替。
判异准则5:连续3点中有2点落在中心线同一侧的B 区以外。
判异准则6:连续5点中有4点在中心线同一侧的C 区以外。
判异准则7:连续15点在C 区中心线上下。
判异准则8:连续8点在中心线两侧。
但无一在C 区中。
管制图异常的处理:
4. CPK≥1.33,说明制程能力较好,需继续保持; 1.33≥CPK≥1,说明制程能力一般,须改进加强; CPK≤1,说明制程能力较差,急需改进。
管制图判异准则及异常处理办法
1.SPC管制异常时首先检查是否严格按作业标准(SOP)测试;如确定为物料异常时,工程立即反馈供应商,要求供应商到现场确认。
同时视情况对库存、在途等状态的产品制定相应措施(退货、返工);
2.与供应商现场分析后,找到产生异常的原因;制定相应改善措施:修改模具、检修仪器、完善作业方法等;工程师需要到供应商现场确认改善措施完成效果或供应商提供有效的整改证据(样品、图纸等)。
3.SPC 产生异常的原因找到并实施纠正预防措施后,SPC 管制图向管制异常相反的方向转变,说明对策有效。
什么是SPC?怎么⽤SPC?1- What:什么是SPCSPC:统计过程控制SPC说到底,就是⼀个图表,把⽣产过程中的数据,收集起来⽤图表的形式展现出来。
它的作⽤可以⼤致总结为:⽅便⼤家从图表中,找出有异常的数据。
跟进数据趋势,预见异常发⽣的可能。
数据异常后,做出相应的改善对策SPC中有8种图表,根据不同的场景,使⽤不同的图表。
但是需要说明的是,这些图⽚都长的⼀样:是的,都长成上⾯这个样⼦。
当我花了两个星期,跟吃屎⼀样,把SPC⼿册啃完,画出那8个图之后,也发出了同样的感叹:卧草,都TM⼀样的,不就是个趋势图嘛!当然,趋势图也是数据统计,所以也可以看做是SPC的⼀种实现⽅法。
SPC本质上就是⼀种特殊的趋势图,不过SPC给他们起来⼀个更有⽓质的名字:控制图。
当然了,控制图还要和普通的趋势图有差异的,具体表现为以下⼏点:1. 控制图都有上下控制线和中⼼线,UCL和LCL(具体会在6-How⾥⾯说明)2. 控制图的数据收集规则、数据分析的规则,更加的繁琐,更加的严格3. 控制图⼀定要有相应的改善输出恩,SPC就是这么⼀个玩意⼉。
需要说明的是,SPC和标准值没有关系,没有标准值也是可以做SPC控制图的。
2- Why:为什么要⽤SPC说实话:都TM是客户要求的,是⽼板要求。
(当我们是⼯程师的时候,都是这么想的)说假话:为了及时发现⽣产过程中,由特殊原因导致的异常,及时改善。
为了深⼊分析系统中的普通原因,进⼀步提⾼产品品质,为客户提供更好的产品。
(当成为⼀个⼯⼚的品质副总时,如何将⼀线数据浮上来,你会⾃然⽽然的想到SPC)在思考为什么要⽤SPC时,我们的观点和认知,是随着职位不断成长的。
不要硬逼着⾃⼰去理解SPC⼿册⾥,那⼗⼏页鸡汤式的SPC概述。
格局到了,⾃然就理解了。
但是SPC的作⽤是不会发⽣变化的,做就对了。
3- When:在什么时候⽤SPCSPC⼿册⾥⾯说,SPC只有在过程受控状态下,才能使⽤。
但是实际上,SPC就是⼀个图表,任何情况,任何产品,只要有数据就可以⽤SPC控制图。
SPC在生产线上实时监测与异常响应机制在制造业中,生产线上的实时监测和异常响应机制对于确保生产过程的稳定性和质量至关重要。
统计过程控制(SPC)是一种常用的方法,用于监控并改善生产过程中的变异性,从而实现质量控制和生产效率的提升。
本文将探讨SPC在生产线上实时监测与异常响应机制方面的应用。
SPC的基本原理SPC是一种基于统计学原理的质量管理方法,通过收集数据、分析数据和采取行动来实现过程的持续改进。
其基本原理包括以下几个方面:1.数据收集:在生产过程中收集相关数据,如尺寸、重量、颜色等,以便进行后续的统计分析。
2.数据分析:通过建立控制图等工具,对数据进行统计分析,识别是否存在特殊原因引起的变异,以区分正常变异和异常变异。
3.过程改进:一旦发现异常变异,需要采取相应的措施来纠正问题,确保生产过程保持稳定。
SPC在生产线上的应用SPC在生产线上的应用可以帮助企业实现以下几个目标:1.实时监测生产过程:通过实时采集数据并生成控制图,可以及时监测生产过程的稳定性,发现异常情况。
2.及时发现问题:一旦控制图显示出异常,可以立即通过SPC方法找出问题的根本原因,并快速作出反应。
3.提高质量:通过持续改进生产过程,逐步降低产品的变异性,提高产品一致性和质量水平。
实时监测与异常响应机制在生产线上实时监测与异常响应机制中,SPC起着关键作用。
其具体运作流程如下:1.数据采集:生产过程中的数据采集可以通过自动化系统实现,将数据传输到SPC软件中进行处理。
2.控制图生成:SPC软件会根据收集的数据生成相应的控制图,包括X-bar图、极差图等,以便分析生产过程的稳定性。
3.异常检测:通过控制图的分析,可以及时发现生产过程中的异常变异,如超出控制限、连续递增或递减等情况。
4.问题分析:一旦发现异常,需要立即对问题进行深入分析,找出根本原因并制定相应的改进计划。
5.异常响应:根据问题的性质和严重程度,制定相应的异常响应措施,确保生产过程稳定并避免质量问题的发生。
8张图直观讲解SPC八大判异原则(燃爆质量圈)当我们要求供应商使用SPC进行过程控制的时候,必然会涉及到的一个问题就是8大判异原则。
也就是说,管制图中出现下面的8种点位分布的时候,我们就认为过程出现了特殊原因,我们必须找出点位分布异常的特殊原因,将其消除,从而提前遏制不良品的产生。
作为SQE,你有没有被供应商问及,为啥这8种分布叫做异常分布?今天就从统计学角度,跟大家解释一下,我们通常所说的8大判异原则为啥能够判异,其暗示的潜在异常原因是什么!首先所有SQE必须要清醒地认识:异常的出现就是小概率事件产生了!首先给大家解释下正态分布的概率比例,见下图:在这张图上,请大家忽略SQE供应商质量平台的logo和名称,专注地记住左A,左B,左C,右C,右B,右A这6个分区;同时在ABC分区的下方都有一个相同颜色的小数:0.023,0.136,0.341(这是样本点出现在相应分区的概率,查表可得,有兴趣,大家可以自己去查表,我们在本文结束的时候有表哦)好,接下来,我给大家一一解释8大判异入选异常判断准则的缘由:2/3A(连续3点中有2点在中心线同一侧的B区外<即A区内>)解释:0.023的平方=0.00529,就是说抽1000数据,才会出现6次这样的情况,小概率事件产生了,肯定有特殊原因导致!原因:一般认为是新员工,工艺方法错误,机器故障,原材料不合格,测量错误,计算错误,检验方法或标准变化。
4/5C(连续5点中有4点在中心线同一侧的C区以外)解释:(0.136 0.023)的4次方=0.000639,就是说这种情况出现的概率是千分之六,小概率事件产生了,肯定有特殊原因导致!原因:一般认为是新员工,工艺方法错误,机器故障,原材料不合格,测量错误,计算错误,检验方法或标准变化。
6连串(连续6点递增或递减,即连成一串)解释:规律分布,必有异因!原因:刀具模具等工具的磨损,维护保养水平降低,操作工的技能越来越熟练。
spc控制图判定准则准则编辑稳态是生产过程追求的目标。
那么如何用控制图判断过程是否处于稳态?为此,需要制定判断稳态的准则。
判稳准则:在点子随机排列的情况下,符合下列各点之一就认为过程处于稳态:(1)连续25个点子都在控制界限内;(2)连续35个点子至多1个点子落在控制界限外;(3)连续100个点子至多2个点子落在控制界限外。
在讨论控制图原理时,已经知道点子出界就判断异常,这是判断异常的最基本的一条准则。
为了增加控制图使用者的信心,即使对于在控制界限内的点子也要观察其排列是否随机。
若界内点排列非随机,则判断异常。
判断异常的准则:符合下列各点之一就认为过程存在异常因素:(1)点子在控制界限外或恰在控制界限上;(2)控制界限内的点子排列不随机;(3)链:连续链,连续9点排列在中心线之下或之上;间断链,大多数点在一侧(4)多数点屡屡靠近控制界限(在2一3倍的标准差区域内出现)连续3个点至少有2点接近控制界限。
连续7个点至少有3点接近控制界限。
连续10个点至少有4点接近控制界限。
(5)倾向性(连续不少于6点有上升或下降的倾向)与周期性。
(6)连续14点中相邻点交替上下。
(7)点子集中在中心线附近。
(原因:数据不真实;数据分层不当)为了方便记忆,下面总结了控制图判异的八个准则:准则1:1个点子落在A区以外(点子越出控制界限)准则2:连续9点落在中心线同一侧准则3:连续6点递增或递减准则4:连续14点中相邻点子总是上下交替准则5:连续3点中有2点落在中心线同一侧B区以外准则6:连续5点中有4点子落在中心线同一侧C区以外准则7:连续15点落在中心线同两侧C区之内准则8:连续8点落在中心线两侧且无1点在C区中。
统计过程控制(SPC)稳异判别及预防控制措施一、编制目的:通过有效的运用SPC系统软件,从而保证我公司的产品过程控制满足产品质量要求,将产品质量安全隐患降到最低。
通过根据曲线图的波动能够及时发现问题、及时查找原因、及时制定应对措施从而保证终产品质量始终如一的满足客户需求。
对过程及曲线图的异常波动采取措施可以防止终产品质量偏离目标值、对过程及曲线图的异常波动采取措施可以保持过程的稳定、对过程及曲线图的异常波动采取措施可以确保波动可接受。
二、SPC的定义:S(Statistical) : 通过统计资料和分析方法的帮助。
P(Process): 了解引起过程波动的原因和过程的能力状态。
C(Control): 为达到既定的目标,不断进行改进的管理活动(SPC)是一种借助数理统计方法的过程控制工具。
它对生统计过程控制产过程进行分析评价,根据反馈信息及时发现系统性因素出现的征兆,并采取措施消除其影响,使过程维持在仅受随机性因素影响的受控状态,以达到控制质量的目的。
当过程仅受随机因素影响时,过程处于统计控制状态(简称受控状);当过程中存在系统因素的影响时,过程处于统计失控状态(简称失控状态)。
由于过程波动具有统计规律性,当过程受控时,过程特性一般服从稳定的随机分布;而失控时,过程分布将发生改变。
SPC正是利用过程波动的统计规律性对过程进行分析控制的。
因而,它强调过程在受控和有能力的状态下运行,从而使产品和服务稳定地满足顾客的要求。
三、过程控制系统的四个基本原理:1.过程的定义:合理配置资源,能有效控制地将输入转化为输出的集合2.过程性能的体现:取决于供需双方的沟通,过程的设计和实施方式过程的运作和管理方式原理二.性能的信息过程的实时信息由过程输出直接获得,实时信息是揭示过程的客观运行实况,过程的有用信息由过程本质分析获得,有用信息是显示过程实际与目标差异,过程的特征信息由过程变化波动获得,特征信息是采取改善输出措施的依据。