第2讲(空间组合)-要点
- 格式:ppt
- 大小:7.55 MB
- 文档页数:27
第二讲 线性子空间一、线性子空间的定义及其性质1. 定义:设1V 是数域K 上的线性空间V 的一个非空子集合,且对V 已有的线性运算满足以下条件 (1) 如果1,V y x ∈,则1V y x ∈+; (2) 如果1V x ∈,K k ∈,则1V kx ∈, 则称1V 是V 的一个线性子空间或子空间。
2. 性质:(1)线性子空间1V 与线性空间V 享有共同的零元素; (2)1V 中元素的负元素仍在1V 中。
[证明](1)O x =0V V x ⊂∈1∴ V 中的零元素也在1V 中,1V 与V 享有共同的零元素。
(2)1V x ∈∀1)()1(V x x ∈-=- 封闭性∴ 1V 中元素的负元素仍在1V 中3. 分类:子空间可分为平凡子空间和非平凡子空间平凡子空间:{0}和V 本身 非平凡子空间:除以上两类子空间4. 生成子空间:设m x x x ,,21 为V 中的元素,它们的所有线性组合的集合⎭⎬⎫⎩⎨⎧=∈∑=m i i i i m i K k x k 1,2,1,也是V 的线性子空间,称为由m x x x ,,21 生(张)成的子空间,记为),,(21m x x x L 或者),,(21m x x x Span 。
若m x x x ,,21 线性无关,则{}m x x x L m =),,(dim 215. 基扩定理:设1V 是数域K 上的线性空间n V 的一个m 维子空间,m x x x ,,21 是1V 的一个基,则这m 个基向量必可扩充为n V 的一个基;换言之,在n V 中必可找到m n -个元素n m m x x x ,,21 ++,使得n x x x ,,21 成为n V 的一个基。
这m n -个元素必不在1V 中。
二、子空间的交与和1.定义:设1V 、2V 是线性空间V 的两个子空间,则 {}2121,V x V x x V V ∈∈={}2121,V y V x y x V V ∈∈+=+分别称为1V 和2V 的交与和。
高中数学空间几何组合教案
一、教学目标:
1. 熟练掌握空间几何基本概念和相关定理;
2. 能够运用组合的方法解决空间几何问题;
3. 培养学生逻辑思维和空间想象能力。
二、教学内容:
1. 空间几何基本概念和相关定理复习;
2. 组合的概念和性质;
3. 运用组合解决实际空间几何问题。
三、教学过程:
1. 导入:通过展示一些空间几何问题的图片或视频,引起学生的兴趣,并激发他们的空间想象能力。
2. 学习与讨论:教师讲解空间几何的相关概念和定理,学生跟随着思考和讨论。
特别是介绍组合的概念和性质,让学生了解如何利用组合的方法解决空间几何问题。
3. 练习:布置一些练习题,让学生独立或小组完成,加深他们对空间几何和组合的理解。
4. 分析与解答:教师对学生的练习成果进行分析和解答,指导他们在解题过程中注意的问题和方法。
5. 总结与拓展:总结本节课的重点内容,拓展空间几何和组合的应用领域,激发学生的学习兴趣。
四、作业布置:
1. 完成课堂练习题目;
2. 完成一些实际空间几何问题的分析与解答;
3. 阅读相关空间几何和组合的知识,并做好笔记。
五、教学反馈:
1. 教师对学生作业进行批阅和评价,及时反馈学生的学习情况;
2. 针对学生存在的问题进行指导和辅导,帮助学生提高空间几何和组合的能力。
重复地排列而形成,各时而减小,有穿插而形成。
各要素互-从这一点出发,进一步认像圆、?经过长期的研究、探索、比较,终于发现其,亦称“黄金比”若干毗邻的长方形,如果它们的对角线互相),一般可以现代著名的建筑师勒.柯布西耶把比例和人体尺度结合在一2·26m,肚脐至地面高度为1 13m,698mm,两者之商为1130rcan除以698得1.618,自古以来还有许多建筑家曾以各种不同的方法来分析研究建筑中的比例问题。
其中最流行的一种看法是:虽然有一但其中也包含着一些合理6度感。
部都必须认真地对待并给予恰当的处理第七章处理间——环境——又何偿不是一个领域呢?当然,当然,群体组合并不限于环境处理这一方面的问题。
顾及到自身的完整统一而“独善其身”,的范围内建立起一种秩序。
任何建筑,只有当它和环境融合在一起,现力。
群体组合分以下五个方面.一、建筑与环境任何建筑都必然要处在一定的环境之中,联系,环境的好坏对于建筑的影响甚大。
为此,首先面临的问题就是选择合适的建筑地段。
对于环境——自然——应当取何种态度呢?也很不相同。
脱离自然而孤立地存在,他在同一本书又说:“建筑就是建筑,合”从这里可以看_出:尽管他们所强调的侧重有所不同,的效果。
建筑与环境的统一主要是指两者联系的有机性,安排上。
用莱特自己的话来讲:房子做成它所在地段的—部分。
此外,对于自然环境的结合和利用.地形、地貌,而且还可以大到相当远的范围。
限度地利用自然条件来美化环境。
二、关于结合地形的问题[图124]14种秩序感和互相吸引的关系,从而结成有机统一的整体。
现代建筑,比较强调功能对于形式的影响和作用,序感,或秩序感,这其中自然也就包含有统一的因素了。
筑与地形之间发生某种内在的联系.成群体的各单体建筑具有统一的形式和风格处理。
—而结合成为同一个“族类”,从而达到群体组合的统一。
一。
这是因为居住建筑于达到风格上的统一。
即使有很多困难,至少也应当争取大体上的统一。
第2讲空间几何体的表面积与体积【2014年高考会这样考】考查柱、锥、台、球的体积和表面积,由原来的简单公式套用渐渐变为与三视图及柱、锥与球的接切问题相结合,难度有所增大.【复习指导】本讲复习时,熟记棱柱、棱锥、圆柱、圆锥的表面积和体积公式,运用这些公式解决一些简单的问题.基础梳理1.柱、锥、台和球的侧面积和体积面积体积圆柱S侧=2πrh V=Sh=πr2h圆锥S侧=πrlV=13Sh=13πr2h=13πr2l2-r2圆台S侧=π(r1+r2)lV=13(S上+S下+S上S下)h=13π(r21+r22+r1r2)h直棱柱S侧=Ch V=Sh正棱锥S侧=12Ch′V=13Sh正棱台S侧=12(C+C′)h′V=13(S上+S下+S上S下)h球S球面=4πR2V=43πR32.几何体的表面积(1)棱柱、棱锥、棱台的表面积就是各面面积之和.(2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和.两种方法(1)解与球有关的组合体问题的方法,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.球与旋转体的组合,通常作它们的轴截面进行解题,球与多面体的组合,通过多面体的一条侧棱和球心或“切点”、“接点”作出截面图.(2)等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高.这一方法回避了具体通过作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.双基自测1.(人教A版教材习题改编)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是().A.4πS B.2πSC.πS D.23 3πS解析设圆柱底面圆的半径为r,高为h,则r=S π,又h=2πr=2πS,∴S圆柱侧=(2πS)2=4πS.答案 A2.(2012·东北三校联考)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为().A.3πa2B.6πa2C.12πa2D.24πa2解析由于长方体的长、宽、高分别为2a、a、a,则长方体的体对角线长为(2a)2+a2+a2=6a.又长方体外接球的直径2R等于长方体的体对角线,∴2R=6a.∴S球=4πR2=6πa2.答案 B3.(2011·北京)某四面体的三视图如图所示,该四面体四个面的面积中最大的是( ).A .8B .6 2C .10D .8 2解析 由三视图可知,该几何体的四个面都是直角三角形,面积分别为6,62,8,10,所以面积最大的是10,故选择C. 答案 C 4.(2011·湖南)设右图是某几何体的三视图,则该几何体的体积为( ). A.92π+12 B.92π+18 C .9π+42 D .36π+18解析 该几何体是由一个球与一个长方体组成的组合体,球的直径为3,长方体的底面是边长为3的正方形,高为2,故所求体积为2×32+43π⎝ ⎛⎭⎪⎫323=92π+18.答案 B5.若一个球的体积为43π,则它的表面积为________. 解析 V =4π3R 3=43π,∴R =3,S =4πR 2=4π·3=12π. 答案 12π考向一几何体的表面积【例1】►(2011·安徽)一个空间几何体的三视图如图所示,则该几何体的表面积为().A.48 B.32+817C.48+817 D.80[审题视点] 由三视图还原几何体,把图中的数据转化为几何体的尺寸计算表面积.解析换个视角看问题,该几何体可以看成是底面为等腰梯形,高为4的直棱柱,且等腰梯形的两底分别为2,4,高为4,故腰长为17,所以该几何体的表面积为48+817.答案 C以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.【训练1】若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于().A. 3 B.2C.2 3 D.6解析由正视图可知此三棱柱是一个底面边长为2的正三角形、侧棱为1的直三棱柱,则此三棱柱的侧面积为2×1×3=6.答案 D考向二 几何体的体积【例2】►(2011·广东)如图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为( ).A .18 3B .12 3C .9 3D .6 3[审题视点] 根据三视图还原几何体的形状,根据图中的数据和几何体的体积公式求解.解析 该几何体为一个斜棱柱,其直观图如图所示,由题知该几何体的底面是边长为3的正方形,高为3,故V =3×3×3=9 3. 答案 C以三视图为载体考查几何体的体积,解题的关键是根据三视图想象原几何体的形状构成,并从三视图中发现几何体中各元素间的位置关系及数量关系,然后在直观图中求解.【训练2】 (2012·东莞模拟)某几何体的三视图如图所示,则该几何体的体积等于( ).A.283πB.163π C.43π+8 D .12 π解析 由三视图可知,该几何体是底面半径为2,高为2的圆柱和半径为1的球的组合体,则该几何体的体积为π×22×2+43π=283π.答案 A考向三 几何体的展开与折叠【例3】►(2012·广州模拟)如图1,在直角梯形ABCD 中,∠ADC =90°,CD ∥AB ,AB =4,AD =CD =2,将△ADC 沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体DABC ,如图2所示.(1)求证:BC ⊥平面ACD ; (2)求几何体DABC 的体积.[审题视点] (1)利用线面垂直的判定定理,证明BC 垂直于平面ACD 内的两条相交线即可;(2)利用体积公式及等体积法证明. (1)证明 在图中,可得AC =BC =22,从而AC 2+BC 2=AB 2,故AC ⊥BC , 取AC 的中点O ,连接DO ,则DO ⊥AC ,又平面ADC ⊥平面ABC ,平面ADC ∩平面ABC =AC ,DO ⊂平面ADC ,从而DO ⊥平面ABC ,∴DO ⊥BC , 又AC ⊥BC ,AC ∩DO =O ,∴BC ⊥平面ACD .(2)解 由(1)可知,BC 为三棱锥BACD 的高,BC =22,S △ACD =2,∴V BACD = 13S △ACD ·BC =13×2×22=423,由等体积性可知,几何体DABC 的体积为423.(1)有关折叠问题,一定要分清折叠前后两图形(折前的平面图形和折叠后的空间图形)各元素间的位置和数量关系,哪些变,哪些不变.(2)研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题.【训练3】已知在直三棱柱ABCA1B1C1中,底面为直角三角形,∠ACB=90°,AC=6,BC=CC1=2,P是BC1上一动点,如图所示,则CP+P A1的最小值为________.解析P A1在平面A1BC1内,PC在平面BCC1内,将其铺平后转化为平面上的问题解决.计算A1B=AB1=40,BC1=2,又A1C1=6,故△A1BC1是∠A1C1B=90°的直角三角形.铺平平面A1BC1、平面BCC1,如图所示.CP+P A1≥A1C.在△AC1C中,由余弦定理得A1C=62+(2)2-2·6·2·cos 135°=50=52,故(CP+P A1)min=5 2.答案5 2难点突破17——空间几何体的表面积和体积的求解空间几何体的表面积和体积计算是高考的一个常见考点,解决这类问题,首先要熟练掌握各类空间几何体的表面积和体积计算公式,其次要掌握一定的技巧,如把不规则几何体分割成几个规则几何体的技巧、把一个空间几何体纳入一个更大的几何体中的补形技巧、对旋转体作其轴截面的技巧、通过方程或方程组求解的技巧等,这是化解空间几何体面积和体积计算难点的关键.【示例1】►(2010·安徽)一个几何体的三视图如图,该几何体的表面积为().A .280B .292C .360D .372【示例2】► (2011·全国新课标)已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为________.。
第2讲 空间几何体的表面积与体积一、知识梳理1.多面体的表(侧)面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱 圆锥 圆台侧面展开图侧面积公式S 圆柱侧=2πrl S 圆锥侧=πrlS 圆台侧=π(r +r ′)l表面积 体积柱体 (棱柱和圆柱)S 表面积=S 侧+2S 底 V =S 底h锥体 (棱锥和圆锥)S 表面积=S 侧+S 底 V =13S 底h 台体 (棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h 球S =4πR 2 V =43πR 31.正方体与球的切、接常用结论 正方体的棱长为a ,球的半径为R ,(1)若球为正方体的外接球,则2R =3a ; (2)若球为正方体的内切球,则2R =a ;(3)若球与正方体的各棱相切,则2R=2a .2.长方体共顶点的三条棱长分别为a ,b,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. 二、习题改编1.(必修2P27练习1改编)已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为 cm.解析:由题意,得S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π,解得r 2=4,所以r =2(cm).答案:22.(必修2P27例4改编)圆柱的底面直径与高都等于球的直径,则球的体积与圆柱的体积比V 球∶V 柱为 .解析:设球的半径为R ,则V 球V 柱=43πR 3πR 2×2R =23.答案:23一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)多面体的表面积等于各个面的面积之和.( ) (2)锥体的体积等于底面积与高之积.( ) (3)球的体积之比等于半径比的平方.( )(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( ) (5)长方体既有外接球又有内切球.( ) 答案:(1)√ (2)× (3)× (4)√ (5)× 二、易错纠偏常见误区(1)锥体的高与底面不清楚致误; (2)不会分类讨论致误.1.如图,长方体ABCD A 1B 1C 1D 1的体积是120,E 为CC 1的中点,则三棱锥E BCD 的体积是 .解析:设长方体中BC =a ,CD =b ,CC 1=c ,则abc =120,所以V E BCD=13×12ab ×12c =112abc =10. 答案:102.将一个相邻边长分别为4π,8π的矩形卷成一个圆柱,则这个圆柱的表面积是 .解析:当底面周长为4π时,底面圆的半径为2,两个底面的面积之和是8π;当底面周长为8π时,底面圆的半径为4,两个底面的面积之和为32π.无论哪种方式,侧面积都是矩形的面积32π2,故所求的表面积是32π2+8π或32π2+32π.答案:32π2+8π或32π2+32π空间几何体的表面积(师生共研)(1)(2018·高考全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π(2)(2020·湖南省五市十校联考)某四棱锥的三视图如图所示,其侧视图是等腰直角三角形,俯视图的轮廓是直角梯形,则该四棱锥的各侧面面积的最大值为( )A .8B .4 5C .8 2D .12 2【解析】 (1)因为过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为22,底面圆的直径为22,所以该圆柱的表面积为2×π×(2)2+22π×22=12π.(2)由三视图可知该几何体是一个底面为直角梯形,高为4的四棱锥,如图,其中侧棱PA ⊥平面ABCD ,PA =4,AB =4,BC =4,CD =6,所以AD =25,PD =6,PB =42,连接AC ,则AC =42,所以PC =43,显然在各侧面面积中△PCD 的面积最大,又PD =CD =6,所以PC 边上的高为62-⎝ ⎛⎭⎪⎫4322=26,所以S △PCD =12×43×26=122,故该四棱锥的各侧面面积的最大值为122,故选D.【答案】 (1)B (2)D空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积问题应注意衔接部分的处理. (3)旋转体的表面积问题应注意其侧面展开图的应用.1.(2020·江西七校第一次联考)一个半径为1的球对称削去了三部分,其俯视图如图所示,那么该立体图形的表面积为( )A .3πB .4πC .5πD .6π解析:选C.由题中俯视图可知该球被平均分成6部分,削去了3部分,剩余的3部分为该几何体,所以该立体图形的表面积为2×π×12+3×π×12=5π,故选C.2.(2020·辽宁丹东质量测试(一))一个圆锥的轴截面是面积为1的等腰直角三角形,则这个圆锥的侧面积为 .解析:设圆锥的底面圆半径为r ,因为圆锥的轴截面是面积为1的等腰直角三角形,所以等腰直角三角形的斜边长为2r ,斜边上的高为r ,所以12×2r ×r =1,解得r =1,圆锥的母线长l =12+12=2,圆锥的侧面积为πrl =2π. 答案:2π空间几何体的体积(多维探究) 角度一 求简单几何体的体积(1)(2020·石家庄质量检测)某几何体的三视图如图所示(图中小正方形网格的边长为1),则该几何体的体积是( )A .8B .6C .4D .2(2)将一张边长为12 cm 的正方形纸片按如图(1)所示将阴影部分的四个全等的等腰三角形裁去,余下部分沿虚线折叠并拼成一个有底的正四棱锥,如图(2)放置,如果正四棱锥的主视图是正三角形,如图(3)所示,则正四棱锥的体积是( )A.3236 cm 3B.6436 cm 3C.3232 cm 3D .6432 cm 3【解析】 (1)由三视图可得该几何体为底面是直角梯形的直四棱柱(如图所示),其中底面直角梯形的上、下底分别为1,2,高为2,直四棱柱的高为2,所以该几何体的体积为(1+2)×22×2=6,故选B.(2)设折成的四棱锥的底面边长为a cm ,高为h cm ,则h =32a cm ,由题设可得四棱锥侧面的高等于四棱锥的底面边长,所以12a +a =12×22⇒a =42,所以四棱锥的体积V =13×(42)2×32×42=6463cm 3,故选B. 【答案】 (1)B (2)B简单几何体体积的求法对于规则几何体,直接利用公式计算即可.若已知三视图求体积,应注意三视图中的垂直关系在几何体中的位置,确定几何体中的线面垂直等关系,进而利用公式求解.角度二 求组合体的体积(2020·唐山市摸底考试)已知某几何体的三视图如图所示(俯视图中曲线为四分之一圆弧),则该几何体的表面积为( )A .1-π4B .3+π2C .2+π4D .4【解析】 由题设知,该几何体是棱长为1的正方体被截去底面半径为1的14圆柱后得到的,如图所示,所以表面积S =2×(1×1-14×π×12)+2×(1×1)+14×2π×1×1=4.故选D.【答案】 D(1)处理体积问题的思路(2)求体积的常用方法 直接法 对于规则的几何体,利用相关公式直接计算割补法把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算 等体积法选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一个面作为三棱锥的底面进行等体积变换1.(2019·高考北京卷)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为 .解析:如图,由三视图可知,该几何体为正方体ABCD A 1B 1C 1D 1去掉四棱柱B 1C 1GF A 1D 1HE 所得,其中正方体ABCD A 1B 1C 1D 1的体积为64,VB 1C 1GF A 1D 1HE =(4+2)×2×12×4=24,所以该几何体的体积为64-24=40.答案:402.(2019·高考全国卷Ⅲ)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体ABCD A 1B 1C 1D 1挖去四棱锥O EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,AB =BC =6 cm ,AA 1=4 cm.3D 打印所用原料密度为0.9 g/cm 3.不考虑打印损耗,制作该模型所需原料的质量为 g.解析:长方体ABCD A 1B 1C 1D 1的体积V 1=6×6×4=144(cm 3),而四棱锥O EFGH 的底面积为矩形BB 1C 1C 的面积的一半,高为AB 长的一半,所以四棱锥O EFGH 的体积V 2=13×12×4×6×3=12(cm 3),所以长方体ABCD A 1B 1C 1D 1挖去四棱锥O EFGH 后所得几何体的体积V =V 1-V 2=132(cm 3),所以制作该模型所需原料的质量为132×0.9=118.8(g).答案:118.8球与空间几何体的接、切问题(师生共研)(1)若直三棱柱ABC A 1B 1C 1的6个顶点都在球O 的球面上,且AB =3,AC =4,AB⊥AC ,AA 1=12,则球O 的表面积为 .(2)(一题多解)(2019·高考天津卷)已知四棱锥的底面是边长为2的正方形,侧棱长均为 5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为 .【解析】 (1)将直三棱柱补形为长方体ABEC A 1B 1E 1C 1,则球O 是长方体ABEC A 1B 1E 1C 1的外接球.所以体对角线BC 1的长为球O 的直径. 因此2R =32+42+122=13. 故S 球=4πR 2=169π.(2)法一:由题意得圆柱的高为四棱锥高的一半,底面圆的直径为以四棱锥侧棱的四个中点为顶点的正方形的对角线,易求得圆柱的底面圆的直径为1,高为1,所以该圆柱的体积V =π×⎝ ⎛⎭⎪⎫122×1=π4.法二:由题可得,四棱锥底面对角线的长为2,则圆柱底面的半径为12,易知四棱锥的高为5-1=2,故圆柱的高为1,所以该圆柱的体积为π×⎝ ⎛⎭⎪⎫122×1=π4. 【答案】 (1)169π (2)π4处理球的“切”“接”问题的求解策略解决与球有关的切、接问题,其通法是作截面,将空间几何问题转化为平面几何问题求解,其解题的思维流程是:1.正四棱锥P ABCD 的侧棱和底面边长都等于22,则它的外接球的表面积是( ) A .16π B .12π C.8πD .4π解析:选A.设正四棱锥的外接球半径为R ,顶点P 在底面上的射影为O ,因为OA =12AC=12 AB 2+BC 2=12(22)2+(22)2=2,所以PO =PA 2-OA 2=(22)2-22=2.又OA =OB =OC =OD =2,由此可知R =2,于是S 球=4πR 2=16π.2.设球O 内切于正三棱柱ABC A 1B 1C 1,则球O 的体积与正三棱柱ABC A 1B 1C 1的体积的比值为 .解析:设球O 半径为R ,正三棱柱ABC A 1B 1C 1的底面边长为a ,则R =33×a 2=36a ,即a =23R ,又正三棱柱ABC A 1B 1C 1的高为2R ,所以球O 的体积与正三棱柱ABC A 1B 1C 1的体积的比值为43πR 334a 2×2R =43πR 334×12R 2×2R =23π27.答案:23π27核心素养系列14 直观想象——数学文化与空间几何体(2020·甘肃、青海、宁夏3月联考)汉朝时,张衡得出圆周率的平方除以16等于58.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,俯视图中的曲线为圆,利用张衡的结论可得该几何体的体积为( )A .32B .40 C.32103D .40103【解析】 将三视图还原成如图所示的几何体:半个圆柱和半个圆锥的组合体,底面半径为2,高为4,则体积V =12π×22×4+13×12π×22×4=323π,因为圆周率的平方除以16等于58,即π216=58,所以π=10,所以V =32103.故选C.【答案】 C本题是数学文化与三视图结合,主要是根据几何体的三视图及三视图中的数据,求几何体的体积或侧(表)面积.此类问题难点:一是根据三视图的形状特征确定几何体的结构特征;二是将三视图中的数据转化为几何体的几何度量.考查了直观想象这一核心素养.(2020·安徽六安一中模拟(四))我国南北朝时期的数学家祖暅提出了一条原理:“幂势既同,则积不容异”.意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.椭球体是椭圆绕其轴旋转所成的旋转体.如图,将底面直径都为2b ,高皆为a 的半椭球体和已被挖去了圆锥体的圆柱放置于同一平面β上,用平行于平面β且与平面β任意距离d 处的平面截这两个几何体,可横截得到S 圆及S 环两截面.可以证明S 圆=S 环总成立.据此,短半轴长为1,长半轴长为3的椭球体的体积是 .解析:因为S 圆=S 环总成立,所以半椭球体的体积为πb 2a -13πb 2a =23πb 2a ,所以椭球体的体积V =43πb 2a .因为椭球体的短半轴长为1,长半轴长为3. 所以椭球体的体积V =43πb 2a =43π×12×3=4π.答案:4π[基础题组练]1.(2020·安徽合肥质检)已知圆锥的高为3,底面半径为4,若一球的表面积与此圆锥侧面积相等,则该球的半径为( )A .5 B. 5 C .9D .3解析:选B.因为圆锥的底面半径r =4,高h =3,所以圆锥的母线l =5,所以圆锥的侧面积S =πrl =20π,设球的半径为R ,则4πR 2=20π,所以R =5,故选B.2.(2020·蓉城名校第一次联考)已知一个几何体的正视图和侧视图如图1所示,其俯视图用斜二测画法所画出的水平放置的直观图是一个直角边长为1的等腰直角三角形(如图2所示),则此几何体的体积为( )A .1 B. 2 C .2D .2 2解析:选B.根据直观图可得该几何体的俯视图是一个直角边长分别是2和2的直角三角形(如图所示),根据三视图可知该几何体是一个三棱锥,且三棱锥的高为3,所以体积V =13×⎝ ⎛⎭⎪⎫12×2×2×3= 2.故选B.3.(2020·武汉市武昌调研考试)中国古代数学名著《九章算术》中记载了公元前344年商鞅监制的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(单位:立方寸),则图中的x 为( )A .1.2B .1.6C .1.8D .2.4解析:选B.该几何体是一个组合体,左边是一个底面半径为12的圆柱,右边是一个长、宽、高分别为5.4-x ,3,1的长方体,所以组合体的体积V =V 圆柱+V 长方体=π·⎝ ⎛⎭⎪⎫122×x +(5.4-x )×3×1=12.6(其中π=3),解得x =1.6.故选B.4.(2020·辽宁大连第一次(3月)双基测试)我国古代数学名著《九章算术》中有如下问题:“今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺.问积几何 ”.羡除是一个五面体,其中三个面是梯形,另两个面是三角形,已知一个羡除的三视图如图中粗线所示,其中小正方形网格的边长为1,则该羡除的表面中,三个梯形的面积之和为( )A .40B .43C .46D .47解析:选C.由三视图可知,该几何体的直观图如图所示,其中平面ABCD ⊥平面ABEF ,CD =2,AB =6,EF =4,等腰梯形ABEF 的高为3,等腰梯形ABCD 的高为4,等腰梯形FECD的高为9+16=5,三个梯形的面积之和为2+62×4+4+62×3+2+42×5=46,故选C.5.(2020·辽宁沈阳东北育才学校五模)将半径为3,圆心角为2π3的扇形围成一个圆锥,则该圆锥的内切球的表面积为( )A .πB .2πC .3πD .4π解析:选B.将半径为3,圆心角为2π3的扇形围成一个圆锥,设圆锥的底面圆半径为R ,则有2πR =3×2π3,所以R =1.设圆锥的内切球半径为r ,圆锥的高为h ,内切球球心必在圆锥的高线上,因为圆锥的母线长为3,所以h =9-1=22,所以有rh -r =R 3,解得r =22,因此内切球的表面积S =4πr 2=2π.故选B. 6.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为 .解析:设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=13π×52×4+π×22×8,解得r =7.答案:77.(2020·沈阳质量监测)某四棱锥的三视图如图所示,则该四棱锥的侧面积是 .解析:由三视图可知该几何体是一个四棱锥,记为四棱锥P ABCD ,如图所示,其中PA ⊥底面ABCD ,四边形ABCD 是正方形,且PA =2,AB =2,PB =22,所以该四棱锥的侧面积S 是四个直角三角形的面积和,即S =2×⎝ ⎛⎭⎪⎫12×2×2+12×2×22=4+4 2.答案:4+4 28.(2020·长春市质量监测(一))已知一所有棱长都是2的三棱锥,则该三棱锥的体积为 .解析:记所有棱长都是2的三棱锥为P ABC ,如图所示,取BC 的中点D ,连接AD ,PD ,作PO ⊥AD 于点O ,则PO ⊥平面ABC ,且OP =63×2=233,故三棱锥P ABC 的体积V =13S △ABC·OP =13×34×(2)2×233=13.答案:139.如图,在四边形ABCD 中,∠DAB =90°,∠ADC =135°,AB =5,CD =22,AD =2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.解:由已知得CE =2,DE =2,CB =5,S 表面积=S圆台侧+S圆台下底+S圆锥侧=π(2+5)×5+π×25+π×2×22=(60+42)π,V =V 圆台-V圆锥=13(π·22+π·52+22·52π2)×4-13π×22×2=1483π. 10.(应用型)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P A 1B 1C 1D 1,下部的形状是正四棱柱ABCD A 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍,若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?解:由PO 1=2 m ,知O 1O =4PO 1=8 m.因为A 1B 1=AB =6 m ,所以正四棱锥P A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3);正四棱柱ABCD A 1B 1C 1D 1的体积V 柱=AB 2·O 1O =62×8=288(m 3),所以仓库的容积V =V 锥+V 柱=24+288=312(m 3). 故仓库的容积是312 m 3.[综合题组练]1.(2019·高考全国卷Ⅰ)已知三棱锥PABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为( )A.86πB.46πC.26πD.6π解析:选D.因为点E,F分别为PA,AB的中点,所以EF∥PB,因为∠CEF=90°,所以EF⊥CE,所以PB⊥CE.取AC的中点D,连接BD,PD,易证AC⊥平面BDP,所以PB⊥AC,又AC∩CE=C,AC,CE⊂平面PAC,所以PB⊥平面PAC,所以PB⊥PA,PB⊥PC,因为PA=PB=PC,△ABC为正三角形,所以PA⊥PC,即PA,PB,PC两两垂直,将三棱锥PABC放在正方体中如图所示.因为AB=2,所以该正方体的棱长为2,所以该正方体的体对角线长为6,所以三棱锥PABC的外接球的半径R=62,所以球O的体积V=43πR3=43π⎝⎛⎭⎪⎫623=6π,故选D.2.如图,正方体ABCDA1B1C1D1的棱长为3,线段B1D1上有两个动点E,F且EF=1,则当E,F移动时,下列结论不正确的是( )A.AE∥平面C1BDB.四面体ACEF的体积不为定值C.三棱锥ABEF的体积为定值D.四面体ACDF的体积为定值解析:选B.对于A,如图1,AB1∥DC1,易证AB1∥平面C1BD,同理AD1∥平面C1BD,且AB 1∩AD 1=A ,所以平面AB 1D 1∥平面C 1BD ,又AE ⊂平面AB 1D 1,所以AE ∥平面C 1BD ,A 正确;对于B ,如图2,S △AEF =12EF ·h 1=12×1×(32)2-⎝ ⎛⎭⎪⎫3222=364,点C 到平面AEF的距离为点C 到平面AB 1D 1的距离d 为定值,所以V A CEF=V C AEF=13×364×d =64d 为定值,所以B 错误;对于C ,如图3,S △BEF =12×1×3=32,点A 到平面BEF 的距离为A 到平面BB 1D 1D 的距离d 为定值,所以V A BEF=13×32×d =12d 为定值,C 正确;对于D ,如图4,四面体ACDF 的体积为V A CDF=V F ACD=13×12×3×3×3=92为定值,D 正确.3.(2020·东北师大附中、重庆一中等校联合模拟)若侧面积为4π的圆柱有一外接球O ,当球O 的体积取得最小值时,圆柱的表面积为 .解析:设圆柱的底面圆半径为r ,高为h , 则球的半径R =r 2+⎝ ⎛⎭⎪⎫h 22.因为球的体积V =4π3R 3,故V 最小当且仅当R 最小.圆柱的侧面积为2πrh =4π,所以rh =2.所以h 2=1r,所以R =r 2+1r 2≥2,当且仅当r 2=1r2.即r =1时取等号,此时k 取最小值,所以r =1,h =2,圆柱的表面积为2π+4π=6π.答案:6π4.(2020·新疆第一次毕业诊断及模拟测试)如图,A 1B 1C 1D 1是以ABCD 为底面的长方体的一个斜截面,其中AB =4,BC =3,AA 1=5,BB 1=8,CC 1=12,求该几何体的体积.解:过A 1作A 1E ⊥BB 1于点E , 作A 1G ⊥DD 1于点G , 过E 作EF ⊥CC 1于点F ,过D 1作D 1H ⊥CC 1于点H ,连接EH ,GF , 因为平面ABB 1A 1∥平面DCC 1D 1, 所以A 1B 1∥D 1C 1.因为AA 1=BE =5,所以EB 1=8-5=3,C 1H =EB 1=3,GD 1=HF =12-5-3=4,则几何体被分割成一个长方体ABCD A 1EFG ,一个斜三棱柱A 1B 1E D 1C 1H 和一个直三棱柱A 1D 1G EHF .故该几何体的体积为V =3×4×5+12×3×4×4+12×3×4×3=102.。