高数函数图形的描绘
- 格式:ppt
- 大小:1.86 MB
- 文档页数:16
函数图形的描绘在中学时我们用描点法来作函数的图像,这种方法常遗漏曲线的一些关键点,如极值点、拐点等,使得函数的一些重要性态难以准确地显示出来。
在本章前两节我们借助于导数的符号讨论了函数图形的升降和凹凸,以及在什么地方有极值点,什么地方有拐点,这样也就基本掌握了函数的性态,并把函数的图形画得比较准确。
此外,为了描绘函数图形在无穷远处的走势,还有必要讨论函数图形在无穷远处的变化趋势,即渐近线。
一、渐近线1、定义定义 若曲线)(x f y =上一动点沿着曲线无限远去时,该点与某条定直线L 的距离趋于零,则称直线L 为曲线)(x f y =的渐近线(如图153--)。
2、分类渐近线可分为水平渐近线、铅直渐近线和斜渐近线。
(1)水平渐近线 若函数)(x f y =的定义域为无穷区间,且C x f x =∞→)(lim (或C x f x x =-∞→+∞→)(lim )() 图153--则称直线C y =为曲线)(x f y =的水平渐近线。
例如,因为01lim=∞→x x ,故直线0=y 为曲线xy 1=的水平渐近线;又如,因为2arctan lim π=+∞→x x ,2arctan lim π-=-∞→x x ,故直线2π=y 及直线2π-=y 均为曲线x y arctan =的水平渐近线。
(2)铅直渐近线 若函数)(x f y =在点0x 处间断,且∞=→)(lim 0x f x x则称直线0x x =为曲线)(x f y =的铅直渐近线。
注:铅直渐近线定义式∞=→)(lim 0x f x x 中,0x x →可换作-→0x x 或+→0x x ,∞→)(x f 亦可换作-∞→)(x f 或+∞→)(x f 。
例如,因为∞=→x x 1lim0,故直线0=x 为曲线xy 1=的铅直渐近线;又如,因为-∞=+→x x ln lim 0,故直线0=x 为曲线x y ln =的铅直渐近线。
*(3)斜渐近线 设有函数)(x f y =,若0)]()([lim =+-∞→b ax x f x则称直线b ax y +=为曲线)(x f y =的斜渐近线,其中xx f a x )(lim∞→=,])([lim ax x f b x -=∞→注:若x x f x )(lim ∞→不存在,或虽然xx f x )(lim ∞→存在但])([lim ax x f x -∞→不存在,则可以断定)(x f y =不存在斜渐近线。
高等数学入门——描绘函数图像的一般步骤及例子高等数学是大学数学的基础课程之一,其重要内容之一是描绘函数的图像。
描绘函数图像的一般步骤如下:1.确定定义域和函数的类型:首先需要确定函数的定义域,即函数可以取值的范围。
同时,需要确定函数是一元函数还是多元函数,是线性函数还是非线性函数等。
2.求导或求导数的一般规律:对于一元函数,可以通过求导的方法来描绘函数的变化趋势。
求导可以确定函数的关键点,如极值点、拐点等。
对于多元函数,则需要利用偏导数来确定函数的变化趋势。
3.确定增减、凹凸和拐点:通过求导或偏导数,可以确定函数的单调性和凹凸性。
当导数为正时,函数单调递增;当导数为负时,函数单调递减。
当二阶导数大于零时,函数凹,小于零时函数凸。
4.确定函数的特殊点:特殊点包括与坐标轴的交点、零点、无穷大点等。
这些点是函数图像的关键部分,需要特别关注。
5.确定函数的渐近线:渐近线是函数图像在无穷远点的变化趋势。
有水平渐近线、垂直渐近线和斜渐近线等。
下面举例说明:例子1:绘制函数y=x^2-2x+1首先,确定定义域和函数的类型:该函数为一元二次函数,定义域为实数集。
然后,求导:y'=2x-2接着,确定增减、凹凸和拐点:当x<1时,y'<0,函数递减;当x>1时,y'>0,函数递增;令y'=0,则x=1,该点为拐点。
继续求二阶导数:y''=2可以确定函数为凹函数。
然后,确定函数的特殊点:与x轴的交点为y=0,即x=1;与y轴的交点为x=0。
最后,确定函数的渐近线:无垂直渐近线;当x趋于无穷大时,y趋于无穷大,可以确定y轴为水平渐近线。
综上所述,根据以上步骤,我们可以描绘出函数y=x^2-2x+1的图像。
例子2:绘制函数 y = sin(x) / x首先,确定定义域和函数的类型:该函数为一元函数,定义域为实数集,但要注意x≠0。
然后,求导:y' = (x*cos(x) - sin(x)) / x^2接着,确定增减、凹凸和拐点:当x<0时,y'>0,函数递增;当x>0时,y'<0,函数递减;令 y' = 0,则 x = tan(x),求解该方程需要使用数值逼近法得到近似解。