函数图像的描绘
- 格式:ppt
- 大小:781.00 KB
- 文档页数:23
1表示函数图像的三种方法在本章中,我们将学习三种表示函数的方法. 一、列表法通过表格的形式来表示两个变量的函数关系,称为列表法.用表格表示函数就是把自变量的一组值和其对应的函数值列成一个表格.这样表示函数的好处是非常直观,表格中已有的自变量的每一个值,不需要计算就可以直接从表格中找到与它对应的函数值,使用较方便.但列表法表示函数具有一定的局限性,列出的数值是有限的,而且从表格中也不容易看到自变量和与其函数值之间的对应关系.例1m的不同取值范围内的对应的y 值.二、解析式法两个变量之间的函数关系,一般情况下可以用含有这两个变量的等式表示.即解析式法,也叫关系式法.用解析法表示函数关系能准确地表示出自变量与其函数之间的数量关系,能很准确的得到所有自变量与其对应的函数值.但利用解析式表示的函数关系,在求函数值时,有时计算比较复杂,而且有的函数关系不一定能用解析式表示出来.如,函数解析式21y x =-能很好的表示y 与x 的对应关系,y 是x 的函数.三、图象法将自变量与其对应的函数值,组成一组组实数对,作为点的坐标,在平面直角坐标系内把这些所有点的坐标描述出来,即可得到函数的图象,用图象表示函数关系的方法,就叫图象法.用图象法表示函数形象直观,通过图象,可形象地把函数的变化趋势表示出来,根据函数的图象还能较好地研究函数的性质.画函数的图象时,要根据不同函数类型的图象特征,选用适当的方法.需要注意的是从函数图象上一般只能得到近似的数量关系.例2 如图表示的是某市6月份一天气温随时间变化的情况,请观察此图,并说说可以得到哪些结论?解:从图象上观察到这一天的最高气温是36℃; 这天共有9个小时的气温在31℃以上; 这天在3~15(点) 内温度在上升;通过计算可以得出次日凌晨1点的气温大约在23~26(℃)之间.。
绘制函数图象的五种技法如今的社会真的是靠脸吃饭的么?小编我却不以为然,还是觉得靠技术吃饭比较重要,技术不压身!现代教学是多媒体教学,那就离不开教学软件的支撑,几何画板就是其中之一。
在用几何画板辅助数学教学的过程中,常常涉及到函数图象的绘制。
熟练掌握绘制函数图象的方法,对提高数学教学效率很有帮助。
下面小编通过实例来系统总结绘制函数图象的五种技法,如果你get以下几个新技能,离超级学霸就不远啦!一、直接法例1 画函数y=sinx在R上的图象。
操作步骤:单击“图表”菜单下“绘制新函数”f(x)=sinx(如图1)。
二、轨迹法例2 画函数y=(1/4)x^2在区间[-2,3]上的图象。
操作步骤:(1)单击“绘图”菜单下“绘制点”C(-2,0),D(3,0),构造线段CD;(2)选中线段CD,单击“构造”菜单下“线段上的点”构造点E;(3)选中点E,单击“度量”菜单下“横坐标”得点E的横坐标xE;(4)单击“数据”菜单下“计算”,计算y值;(5)依次选中xE、y值,单击“绘图”菜单下“绘制(x,y)”,得点F;(6)选中点E与F,单击“构造”菜单下“轨迹”,得函数在区间[-2,3]的图象(如图2)。
三、参数法例3 绘制二次函数y=-x2+2x+3的图象。
操作步骤:(1)单击“数据”菜单下“新建参数”a=-1,b=2,c=3;(2)单击“绘图”菜单下“绘制新函数”f(x)= =-x2+2x+3(如图3)。
改变参数a、b、c的值(可在选中后按“+”或“-”键),可以动态地探索与发现抛物线的开口方向、顶点坐标和对称轴的变化过程.四、辅助函数法例4画下面函数的图象。
操作步骤:(1)单击“数据”菜单下“新建函数”f(x)=sinx,g(x)=cosx;(2)单击“绘图”菜单下“绘制新函数”。
(如图4)五、变换法一个平移就是一个向量,对于函数图象的平移,采取“标记向量”较为简单。
例5绘制与例2图象相同,而位置可任意改变的函数图象。
高等数学入门——描绘函数图像的一般步骤及例子高等数学是大学数学的基础课程之一,其重要内容之一是描绘函数的图像。
描绘函数图像的一般步骤如下:1.确定定义域和函数的类型:首先需要确定函数的定义域,即函数可以取值的范围。
同时,需要确定函数是一元函数还是多元函数,是线性函数还是非线性函数等。
2.求导或求导数的一般规律:对于一元函数,可以通过求导的方法来描绘函数的变化趋势。
求导可以确定函数的关键点,如极值点、拐点等。
对于多元函数,则需要利用偏导数来确定函数的变化趋势。
3.确定增减、凹凸和拐点:通过求导或偏导数,可以确定函数的单调性和凹凸性。
当导数为正时,函数单调递增;当导数为负时,函数单调递减。
当二阶导数大于零时,函数凹,小于零时函数凸。
4.确定函数的特殊点:特殊点包括与坐标轴的交点、零点、无穷大点等。
这些点是函数图像的关键部分,需要特别关注。
5.确定函数的渐近线:渐近线是函数图像在无穷远点的变化趋势。
有水平渐近线、垂直渐近线和斜渐近线等。
下面举例说明:例子1:绘制函数y=x^2-2x+1首先,确定定义域和函数的类型:该函数为一元二次函数,定义域为实数集。
然后,求导:y'=2x-2接着,确定增减、凹凸和拐点:当x<1时,y'<0,函数递减;当x>1时,y'>0,函数递增;令y'=0,则x=1,该点为拐点。
继续求二阶导数:y''=2可以确定函数为凹函数。
然后,确定函数的特殊点:与x轴的交点为y=0,即x=1;与y轴的交点为x=0。
最后,确定函数的渐近线:无垂直渐近线;当x趋于无穷大时,y趋于无穷大,可以确定y轴为水平渐近线。
综上所述,根据以上步骤,我们可以描绘出函数y=x^2-2x+1的图像。
例子2:绘制函数 y = sin(x) / x首先,确定定义域和函数的类型:该函数为一元函数,定义域为实数集,但要注意x≠0。
然后,求导:y' = (x*cos(x) - sin(x)) / x^2接着,确定增减、凹凸和拐点:当x<0时,y'>0,函数递增;当x>0时,y'<0,函数递减;令 y' = 0,则 x = tan(x),求解该方程需要使用数值逼近法得到近似解。
二次函数的像绘制技巧在高中数学中,我们经常会遇到二次函数的相关知识。
二次函数是一种常见的函数形式,其图像通常呈现出抛物线的形状。
对于学习者来说,掌握绘制二次函数的像的技巧是非常重要的。
本文将介绍一些二次函数像绘制的技巧,帮助读者更好地理解和应用二次函数。
一、确定抛物线的开口方向和位置在绘制二次函数的像之前,首先需要确定这个抛物线的开口方向和位置。
二次函数的一般形式为:y = ax^2 + bx + c其中,a、b、c分别代表常数,a不等于0。
通过这个一般形式,我们可以判断出抛物线的开口方向。
当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。
同时,我们还需要确定抛物线的顶点位置。
对于一般形式的二次函数:y = ax^2 + bx + c顶点坐标可以通过以下公式计算得到:x = -b/2ay = f(x)其中,f(x)代表函数在x点的函数值。
通过确定开口方向和顶点位置,我们可以初步确定抛物线的形状和位置,为下一步的绘制做好准备。
二、找准关键点位置在绘制二次函数的像的过程中,我们需要找准一些关键点的位置,以便更好地绘制抛物线的形状。
首先,我们需要找到顶点坐标。
通过上一节中的公式,我们可以求得顶点的x坐标,再代入二次函数中求得对应的y坐标,从而确定顶点的位置。
其次,我们需要找到与x轴交点的位置。
当抛物线与x轴相交时,y的值为0。
我们可以通过令y等于0,解出x的值,从而得到与x轴相交的点的横坐标。
最后,我们还可以选择其他关键点,如对称轴上的点。
对称轴是通过顶点并与x轴垂直的一条线,即x = -b/2a。
我们可以选取对称轴两侧相等距离的点,并计算其函数值。
通过找准这些关键点的位置,我们可以更好地把握抛物线的形状和位置,从而进行准确的绘制。
三、作图绘制在确定了抛物线的开口方向、顶点位置和关键点位置后,我们可以进行作图绘制了。
首先,我们需要确定绘图的坐标轴范围。
根据关键点的位置,我们可以选择合适的刻度,并绘制出坐标轴。
初二数学函数图像的描绘方法函数图像的描绘是初中数学课程中的重要内容之一,通过图像的描绘可以更直观地理解函数的性质和变化规律。
本文将介绍初二数学中常用的两种函数图像描绘方法:手工描绘和利用计算机软件描绘。
一、手工描绘函数图像手工描绘函数图像是一种基础的方法,只需用简单的工具如纸和铅笔即可完成。
以下是描绘函数图像的步骤:1. 根据函数表达式确定图像的定义域和值域。
比如对于函数y = f(x),我们需要确定x的取值范围,并通过函数表达式计算出对应的y值。
2. 利用坐标轴绘制准备工作。
准备一张纸,并在纸上绘制x轴和y轴。
根据定义域和值域的范围,在坐标轴上标出合适的刻度。
3. 确定函数的关键点。
根据函数的特点,找到一些关键点,如函数的零点、最大值、最小值等。
将这些关键点标在坐标轴上。
4. 连接关键点,描绘函数图像。
根据标出的关键点,用平滑的曲线将这些点连接起来,描绘出函数的图像。
5. 检查和修改。
检查已描绘的图像是否满足函数的性质,如单调性、奇偶性等。
如果需要,可以对图像进行修改和调整。
手工描绘函数图像的方法虽然简单,但对于初学者来说需要一定的练习和观察力。
它有助于加深对函数性质和变化规律的理解。
二、利用计算机软件描绘函数图像随着计算机技术的发展,利用计算机软件描绘函数图像已成为一种高效准确的方法。
以下是利用计算机软件描绘函数图像的步骤:1. 选择适当的函数图像绘制软件。
市面上有多种绘制函数图像的软件,如GeoGebra、Desmos等。
根据个人的需求和操作习惯选择合适的软件。
2. 打开软件并创建坐标系。
在软件中创建一个坐标系,设置x轴和y轴的范围和刻度。
3. 输入函数表达式。
输入函数的表达式,确保函数表达式无误。
4. 绘制函数图像。
软件会自动绘制函数的图像,显示在坐标系中。
可以通过调整函数的参数、颜色、线型等进行个性化设置。
5. 导出和保存。
可以将绘制好的函数图像导出为图片或保存为文件,方便在其他文档中使用或分享给他人。
数学中的函数图像的绘制与应用在数学中,函数是一个非常重要的概念。
而函数图像则是对函数进行可视化的一种方式,它可以让我们更加直观地理解函数的特征和性质。
本文将探讨函数图像的绘制方法、常见的函数图像形态及其应用。
一、函数图像的绘制方法函数图像绘制是一种基于函数的可视化表示方法。
为了绘制函数图像,我们需要先确定要绘制的函数。
这样才能在坐标系内绘制出函数的图像。
下面将介绍如何在笛卡尔坐标系中绘制常见的函数图像。
1. 直线函数的图像绘制直线函数方程为y=kx+b(其中k、b为常数),其图像通常是一条斜率为k,截距为b的直线。
这里以y=2x+1为例,绘制其函数图像的步骤如下:(1)构建坐标系:在纸上画一个直角坐标系。
(2)确定坐标:通过设定变量的值进行逐一计算;或设置x轴和y轴的单位间隔,根据方程中的值确定函数图像上的点坐标。
(3)依据坐标绘图:在坐标系中依照前面计算出来的坐标,描绘出直线。
2. 幂函数的图像绘制幂函数的方程通常具有以下形式:y=x^n(其中n为常数)。
幂函数的图像形态与其幂指数的正负有关。
当幂指数为正数时,函数的图像呈现出向上的凸形状;当幂指数为负数时,函数的图像则呈现出向下的凹形状。
以y=x^2为例,绘制其函数图像的步骤如下:(1)构建坐标系:在纸上画一个直角坐标系。
(2)确定坐标:通过设定变量的值进行逐一计算;或设置x轴和y轴的单位间隔,根据方程中的值确定函数图像上的点坐标。
(3)依据坐标绘图:在坐标系中依照计算出来的坐标,连结相邻的点形成一条曲线。
由于幂函数的曲线通常比较平滑,因此绘制时需要分段绘制(例如x<0部分,x=0的位置,x>0部分等),并且需要足够细致。
3. 三角函数的图像绘制三角函数具有周期性的特点,也就意味着可以将函数图像沿周期区间翻折并重叠,以此来推出整个函数图像的形态。
以下以正弦函数y=sin(x)为例,绘制其函数图像的步骤如下:(1)构建坐标系:在纸上画一个直角坐标系。