三角函数的公式五点作图奇偶性周期性
- 格式:doc
- 大小:243.50 KB
- 文档页数:47
高二数学三角函数的奇偶性与周期性的应用数学中的三角函数是一种重要且广泛应用的数学工具,其中奇偶性与周期性是三角函数的重要性质。
在高二数学学习中,我们经常会遇到需要应用三角函数的奇偶性与周期性的问题。
本文将介绍三角函数的奇偶性与周期性,并通过实际例子说明其在数学问题中的应用。
一、三角函数的奇偶性三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。
在数学中,我们定义函数f(x)的奇偶性,可以通过以下规则来判断:1. 函数f(x)是奇函数,当且仅当f(x)满足f(-x)=-f(x)。
2. 函数f(x)是偶函数,当且仅当f(x)满足f(-x)=f(x)。
根据这个定义,我们可以得出一些基本结论:1. 正弦函数是奇函数,即sin(-x)=-sin(x)。
2. 余弦函数是偶函数,即cos(-x)=cos(x)。
3. 正切函数是奇函数,即tan(-x)=-tan(x)。
4. 反正弦、反余弦、反正切等反函数,没有固定的奇偶性。
那么,三角函数的奇偶性有什么应用呢?下面通过一个例子来说明。
例子:某直角三角形的两条直角边分别为a和b(a>b),求证:sin(a-b)=sin(b-a)。
解答:我们可以利用正弦函数的奇函数性质来证明这个等式。
根据奇函数的定义,我们知道sin(-x)=-sin(x),也就是说sin(a-b)=-sin(b-a)。
所以,要证明sin(a-b)=sin(b-a),只需要证明-sin(b-a)=-sin(a-b)即可。
通过数学推导,我们可以得出-sin(b-a)=-sin(a-b)的结果,从而证明了sin(a-b)=sin(b-a)。
二、三角函数的周期性除了奇偶性外,三角函数还具有周期性的性质。
周期性是指函数值在一定的区间内重复出现。
在数学中,我们定义周期函数f(x)的周期为T,当且仅当f(x)满足f(x+T)=f(x)。
常见的三角函数的周期如下:1. 正弦函数和余弦函数的周期都是2π,即sin(x+2π)=sin(x),cos(x+2π)=cos(x)。
⾼⼀数学三⾓函数基本公式 三⾓函数是⾼中的⼀个重要知识点,是经常要考察的内容,下⾯百分⽹店铺为⼤家整理了⾼⼀数学三⾓函数的基本公式,希望能对⼤家有帮助,更多内容欢迎关注应届毕业⽣⽹! 公式⼀: 设α为任意⾓,终边相同的⾓的同⼀三⾓函数的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式⼆: 设α为任意⾓,π+α的三⾓函数值与α的三⾓函数值之间的关系: sin(π+α)= —sinα cos(π+α)= —cosα tan(π+α)= tanα cot(π+α)= cotα 公式三: 任意⾓α与 —α的三⾓函数值之间的关系: sin(—α)= —sinα cos(—α)= cosα tan(—α)= —tanα cot(—α)= —cotα 公式四: 利⽤公式⼆和公式三可以得到π—α与α的三⾓函数值之间的关系: sin(π—α)= sinα cos(π—α)= —cosα tan(π—α)= —tanα cot(π—α)= —cotα 公式五: 利⽤公式—和公式三可以得到2π—α与α的三⾓函数值之间的关系: sin(2π—α)= —sinα cos(2π—α)= cosα tan(2π—α)= —tanα cot(2π—α)= —cotα 公式六: π/2±α及3π/2±α与α的三⾓函数值之间的关系: sin(π/2+α)= cosα cos(π/2+α)= —sinα tan(π/2+α)= —cotα cot(π/2+α)= —tanα sin(π/2—α)= cosα cos(π/2—α)= sinα tan(π/2—α)= cotα cot(π/2—α)= tanα sin(3π/2+α)= —cosα cos(3π/2+α)= sinα tan(3π/2+α)= —cotα cot(3π/2+α)= —tanα sin(3π/2—α)= —cosα cos(3π/2—α)= —sinα tan(3π/2—α)= cotα cot(3π/2—α)= tanα (以上k∈Z) 【拓展】⾼⼀数学三⾓函数的解题思路 第⼀:三⾓函数的重要性,即使你⾼⼀勉强过了,我希望你能在暑假好好学习三⾓函数知识。
三角函数的奇偶性、周期性、对称性角度1 三角函数的周期性函数f (x )=(3sin x +cos x )(3cos x -sin x )的最小正周期是( B )A.π2B .π C.3π2D .2π解析:f (x )=(3sin x +cos x )(3cos x -sin x )=3sin x cos x +3cos 2x -3sin 2x -sin x cos x =2sin x cos x +3(cos 2x -sin 2x )=sin2x +3cos2x =2sin ⎝ ⎛⎭⎪⎫2x +π3. 由T =2π2=π,知函数f (x )的最小正周期为π. 角度2 三角函数的奇偶性(2019·武汉调研)设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=( A )A .-π6 B.π6 C .-π3 D.π3解析:f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3, 由题意可得f (0)=2sin ⎝ ⎛⎭⎪⎫θ-π3=±2,即sin ⎝ ⎛⎭⎪⎫θ-π3=±1,∴θ-π3=π2+k π(k ∈Z ), ∴θ=5π6+k π(k ∈Z ),∵|θ|<π2, ∴k =-1时,θ=-π6.角度3 三角函数的对称性(2019·安徽江南十校联考)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为4π,且∀x ∈R ,有f (x )≤f ⎝ ⎛⎭⎪⎫π3成立,则f (x )图象的一个对称中心坐标是( A )A.⎝ ⎛⎭⎪⎫-2π3,0B.⎝ ⎛⎭⎪⎫-π3,0 C.⎝ ⎛⎭⎪⎫2π3,0 D.⎝ ⎛⎭⎪⎫5π3,0 解析:由f (x )=sin(ωx +φ)的最小正周期为4π, 得ω=12.因为f (x )≤f ⎝ ⎛⎭⎪⎫π3恒成立,所以f (x )max =f ⎝ ⎛⎭⎪⎫π3,即12×π3+φ=π2+2k π(k ∈Z ), 由|φ|<π2,得φ=π3, 故f (x )=sin ⎝⎛⎭⎪⎫12x +π3.令12x +π3=k π(k ∈Z ),得x =2k π-2π3(k ∈Z ), 故f (x )图象的对称中心为⎝⎛⎭⎪⎫2k π-2π3,0(k ∈Z ),当k =0时,f (x )图象的对称中心为⎝ ⎛⎭⎪⎫-2π3,0. 三角函数的奇偶性、对称性和周期性问题的解题思路(1)奇偶性的判断方法:三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.(2)周期的计算方法:利用函数y =A sin(ωx +φ),y =A cos(ωx +φ)(ω>0)的周期为2πω,函数y =A tan(ωx +φ)(ω>0)的周期为πω求解.(3)解决对称性问题的关键:熟练掌握三角函数的对称轴、对称中心.提醒:对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.(1)函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3+φ,φ∈(0,π)满足f (|x |)=f (x ),则φ的值为( C )A.π6 B.π3 C.5π6D.2π3解析:因为f (|x |)=f (x ),所以函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3+φ是偶函数, 所以-π3+φ=k π+π2,k ∈Z , 所以φ=k π+5π6,k ∈Z , 又因为φ∈(0,π),所以φ=5π6.(2)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)的最小正周期为4π,则该函数的图象( B )A .关于点⎝ ⎛⎭⎪⎫π3,0对称B .关于点⎝ ⎛⎭⎪⎫5π3,0对称C .关于直线x =π3对称 D .关于直线x =5π3对称解析:函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)的最小正周期是4π,而T =2πω=4π,所以ω=12,即f (x )=2sin ⎝ ⎛⎭⎪⎫12x +π6.函数f (x )的对称轴为x 2+π6=π2+k π,解得x =23π+2k π(k ∈Z ); 函数f (x )的对称中心的横坐标为x 2+π6=k π,解得x =2k π-13π(k ∈Z ).。
三角函数的周期性与奇偶性三角函数是高中数学中的一个重要部分,它的周期性和奇偶性是在学习三角函数的过程中需要掌握的基本概念。
三角函数中主要包括正弦函数、余弦函数和正切函数。
1. 正弦函数的周期性和奇偶性正弦函数的定义式为y = sin x,其中x为自变量,y为因变量。
正弦函数的图像是一条波形曲线,它的周期为2π,即当x增加一个周期时,y的值会重复一次。
具体来说,正弦函数在[0,2π]区间内的最小正周期为2π。
因此,在对正弦函数进行周期性和奇偶性的分析时,可以把自变量限制在[0,2π]之间。
正弦函数的奇偶性是指当x取反时,y的值是否发生变化。
可以通过正弦函数的定义式来进行验证:sin(-x) = -sin x。
因此,正弦函数是一个奇函数,即在[0,2π]内,正弦函数关于坐标轴的原点对称。
2. 余弦函数的周期性和奇偶性余弦函数的定义式为y = cos x,其中x为自变量,y为因变量。
余弦函数的图像也是一条波形曲线,它的周期也是2π。
与正弦函数类似,余弦函数的最小正周期也为2π。
在对余弦函数进行周期性和奇偶性的分析时,也可以把自变量限制在[0,2π]之间。
余弦函数的奇偶性是指当x取反时,y的值是否发生变化。
通过余弦函数的定义式可以得知:cos(-x) = cos x。
因此,余弦函数是一个偶函数,即在[0,2π]内,余弦函数关于y轴对称。
3. 正切函数的周期性和奇偶性正切函数的定义式为y = tan x,其中x为自变量,y为因变量。
正切函数在定义域内有无数个周期,其最小正周期为π,即当x增加π时,y的值会重复一次。
因此,在对正切函数进行周期性和奇偶性的分析时,需要考虑其多个周期的情况。
正切函数的奇偶性是指当x取反时,y的值是否发生变化。
通过正切函数的定义式可以得知:tan(-x) = -tan x。
因此,正切函数是一个奇函数,即在其每个周期内,正切函数关于坐标轴的原点对称。
综上所述,三角函数的周期性和奇偶性是其在数学中的重要概念之一。
六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)0≠C0=C平行于x 轴的直线y 轴本身 定义域R定义域R二、幂函数 αx y = ,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数x y =2x y =3x y =21xy =1-=x y定义域 R R R [0,+∞) {x|x ≠0} 值域 R [0,+∞) R [0,+∞) {y|y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增[0,+∞) 增 增 增(0,+∞) 减 (-∞,0] 减(-∞,0) 减公共点(1,1)xy Ox y =2x y =21xy =1-=xy 3x y = O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。
三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;性质函数x a y =)1(>ax a y =)10(<<a定义域 R 值域(0,+∞) 奇偶性 非奇非偶公共点过点(0,1),即0=x 时,1=y单调性在),(∞+∞-是增函数 在),(∞+∞-是减函数 1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。
三角函数的周期性和奇偶性三角函数是数学中重要的函数之一,包括正弦函数、余弦函数、正切函数等。
本文将探讨三角函数的周期性和奇偶性,从而帮助读者更好地理解和应用这些函数。
一、周期性1. 正弦函数的周期性正弦函数的周期是2π(或360°),即f(x) = sin(x)在一个周期内的值与下一个周期内的值相同。
换句话说,正弦函数在每个2π的间隔内会重复自身的图像。
例如,f(0) = sin(0) = 0,f(2π) = sin(2π) = 0,f(4π) = sin(4π) = 0,以此类推。
这种周期性特征使得正弦函数在描述周期性现象时非常有用,比如震荡、波动等。
2. 余弦函数的周期性余弦函数的周期同样是2π(或360°),即f(x) = cos(x)在一个周期内的值与下一个周期内的值相同。
与正弦函数类似,余弦函数也在每个2π的间隔内重复自身的图像。
例如,f(0) = cos(0) = 1,f(2π) = cos(2π) = 1,f(4π) = cos(4π) = 1,以此类推。
余弦函数的周期性可以应用于描述周期性运动、振动等现象。
3. 正切函数的周期性正切函数的周期是π(或180°),即f(x) = tan(x)在一个周期内的值与下一个周期内的值相同。
不同于正弦函数和余弦函数,正切函数在每个π的间隔内重复自身的图像。
例如,f(0) = tan(0) = 0,f(π) = tan(π) = 0,f(2π) = tan(2π) = 0,以此类推。
正切函数的周期性可以应用于解决角度相关问题,比如角度变换、角度关系等。
二、奇偶性1. 正弦函数的奇偶性正弦函数的奇偶性体现在函数的对称性上。
具体来说,f(x) = sin(x)是一个奇函数,即f(-x) = -f(x)。
这意味着当自变量的符号取反时,函数值也取反。
例如,f(-π/2) = sin(-π/2) = -1,f(π/2) = sin(π/2) = 1,它们关于y轴对称。
三角函数的图象与性质教学目标:1、掌握正、余弦函数的定义域和值域;2、进一步理解三角函数的周期性和奇偶性的概念,会求它们的周期,会判断它们的奇偶性;3、能正确求出正、余弦函数的单调区间教学重点:正、余弦函数的性质教学难点:正、余弦函数的单调性知识要点:1、定义域:函数sin y x =及cos y x =的定义域都是(),-∞+∞,即实数集R2、值域:函数sin y x =,x R ∈及cos y x =,x R ∈的值域都是[]1,1-理解:(1)在单位圆中,正弦线、余弦线的长都是等于或小于半径的长1的,所以sin 1x ≤,cos 1x ≤,即1sin 1x -≤≤,1cos 1-≤≤。
(2)函数sin y x =在2,()2x k k Z ππ=+∈时,y 取最大值1,当22x k ππ=-,()k Z ∈时,y 取最小值-1;函数cos y x =在2x k π=,()k Z ∈时,y 取最大值1,当2x k ππ=+,()k Z ∈时,y 取最小值-1。
正弦函数s i n y x =,x R ∈和余弦函数cos y x =,x R ∈是周期函数,2k π(0)k Z k ∈≠且都是它们的周期,最小正周期是2π。
4、奇偶性正弦函数sin y x =,x R ∈是奇函数,余弦函数cos y x =,x R ∈是偶函数。
理解:(1)由诱导公式()sin sin x x -=-,cos()cos x x -=可知以上结论成立;(2)反映在图象上,正弦曲线关于原点O 对称,余弦曲线关于y 轴对称。
5、单调性(1)由正弦曲线可以看出:当x 由2π-增大到2π时,曲线逐渐上升,sin x 由-1增大到1;当x 由2π增大到32π时,曲线逐渐下降,sin x 由1减至-1,由正弦函数的周期性知道:①正弦函数sin y x =在每一个闭区间2,222k k ππππ⎡⎤-++⎢⎥⎣⎦()k Z ∈上,都从-1增大到1,是增函数; ②在每一个闭区间32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k Z ∈上,都从1减小到-1,是减函数。
高三数学一轮复习知识点讲解专题5.3 三角函数的图象与性质【考纲解读与核心素养】1. 理解正弦函数、余弦函数、正切函数的图象与性质,了解三角函数的周期性.2.本节涉及所有的数学核心素养:数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析等. 3.高考预测:(1) “五点法”作图; (2)三角函数的性质;(3)往往将三角恒等变换与三角函数图象、性质结合考查. 4.备考重点:(1)掌握正弦、余弦、正切函数的图象;(2)掌握三角函数的周期性、单调性、对称性以及最值.【知识清单】知识点1.正弦、余弦、正切函数的图象与性质正弦函数sin y x =,余弦函数cos y x =,正切函数tan y x =的图象与性质 性质sin y x =cos y x =tan y x =图象定义域R R,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭值域[]1,1- []1,1-R知识点2.“五点法”做函数()sin y A x h ωϕ=++的图象 “五点法”作图:先列表,令30,,,,222x ππωϕππ+=,求出对应的五个x 的值和五个y 值,再根据求出的对应的五个点的坐标描出五个点,再把五个点利用平滑的曲线连接起来,即得到()sin y A x h ωϕ=++在一个周期的图象,最后把这个周期的图象以周期为单位,向左右两边平移,则得到函数()sin y A x h ωϕ=++的图象.【典例剖析】高频考点一 三角函数的定义域和值域 【典例1】(2020·山东高一期末)函数tan2xy =的定义域为_____.【答案】{}2,x x k k Z ππ≠+∈ 【解析】 解不等式()22x k k Z ππ≠+∈,可得()2x k k Z ππ≠+∈, 因此,函数tan2xy =的定义域为{}2,x x k k Z ππ≠+∈. 故答案为:{}2,x x k k Z ππ≠+∈.【典例2】(2017新课标2)函数()的最大值是__________.【答案】1【解析】化简三角函数的解析式,则,由可得,当时,函数取得最大值1.【规律方法】1.三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解. 2.三角函数值域的不同求法(1)利用sin x 和cos x 的值域直接求;(2)把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域; (3)把sin x 或cos x 看作一个整体,转换成二次函数求值域; (4)利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域. 【变式探究】1.(2020·上海高三专题练习)函数sin y m x n =+的最大值为2,最小值为4-,则m =_________,n =_________.【答案】3± 1- 【解析】由已知得24m n m n ⎧+=⎪⎨-+=-⎪⎩,解得31m n =±⎧⎨=-⎩. 故答案为:3±;1-.2.(2020·全国高一课时练习)求下列函数的定义域. (1)y =(2)sin cos tan x xy x+=.【答案】(1){|22,}x k x k k Z πππ≤≤+∈;(2)|,2k x x k Z π⎧⎫≠∈⎨⎬⎩⎭【解析】(1)要使函数有意义,必须使sin 0x ≥.由正弦的定义知,sin 0x ≥就是角x 的终边与单位圆的交点的纵坐标是非负数. ∴角x 的终边应在x 轴或其上方区域, ∴22,k x k k Z πππ≤≤+∈.∴函数y ={|22,}x k x k k Z πππ≤≤+∈.(2)要使函数有意义,必须使tan x 有意义,且tan 0x ≠.∴,()2x k k Z x k πππ⎧≠+⎪∈⎨⎪≠⎩ ∴,2kx k Z π≠∈. ∴函数sin cos tan x x y x +=的定义域为|,2k x x k Z π⎧⎫≠∈⎨⎬⎩⎭.【总结提升】在使用开平方关系sin α=±1-cos 2α和cos α=±1-sin 2α时,一定要注意正负号的选取,确定正负号的依据是角α所在的象限,如果角α所在的象限是已知的,则按三角函数在各个象限的符号来确定正负号;如果角α所在的象限是未知的,则需要按象限进行讨论. 高频考点二 三角函数的单调性【典例3】(2020·海南枫叶国际学校高一期中)函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k Z ππ-+∈ B .13(2,2),44k k k Z ππ-+∈ C .13(,),44k k k Z -+∈D .13(2,2),44k k k Z -+∈【答案】D 【解析】由五点作图知,1+42{53+42πωϕπωϕ==,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D.【典例4】(2020·河南洛阳�高一期末(理))已知sin33a =︒,cos55b =︒,tan35c =︒则a ,b ,c ,的大小关系是( ) A .a b c << B .a c b <<C .b a c <<D .b c a <<【答案】A 【解析】因为cos55sin35sin33b a ==>=,且sin 35tan 35sin 35cos35c ==>,所以c b a >>. 故选:A .【典例5】(2020·浙江柯城�衢州二中高三其他)已知函数()()2sin 0f x x ωω=>,则()f x 的最大值为________,若()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上是增函数,则ω的取值范围是________. 【答案】2 30,2⎛⎤ ⎥⎝⎦【解析】因为函数()()2sin 0f x x ωω=>, 所以()[]2sin 2,2ω=∈-f x x , 所以()f x 的最大值为2, 因为()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上是增函数, 所以,,4322πωπωππ⎡⎤⎡⎤-⊆-⎢⎥⎢⎥⎣⎦⎣⎦, 所以4232πωππωπ⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得30,2ω⎛⎤∈ ⎥⎝⎦.故答案为:(1). 2 (2). 30,2⎛⎤⎥⎝⎦【规律方法】1.求形如()sin y A x ωϕ=+或()cos y A x ωϕ=+ (其中A ≠0,0ω>)的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:①把“x ωϕ+ (0ω>)”视为一个“整体”;②A>0(A<0)时,所列不等式的方向与sin y x = (x R ∈),cos y x = (x R ∈)的单调区间对应的不等式方向相同(反).2.当0ω<时,需要利用诱导公式把负号提出来,转化为sin()y A x ωϕ=---的形式,然后求其单调递增区间,应把x ωϕ--放在正弦函数的递减区间之内;若求其递减区间,应把x ωϕ--放在正弦函数的递增区间之内.3.已知三角函数的单调区间求参数的取值范围的三种方法(1)子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解. (2)反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解. 【变式探究】1.(2020·河北路北�开滦第一中学高一期末)在ABC 中,A B C >>,且2C π≠,则下列结论中正确的是( ) A .tan tan A C < B .tan tan A C >C .sin sin <A CD .sin sin A C >【答案】D 【解析】若543,,12123124A B C πππππ=====,由于02C A π<<<,则tan tan A C >,所以A 选项错误. 若74,,1212312A B C ππππ====,则tan 0tan A C <<, 75sin sin sin sin sin 121212A C πππ==>=,所以BC 选项错误.在三角形ABC 中,大角对大边,由于A C >,所以a c >,由正弦定理得2sin 2sin R A R B >①,R 是三角形ABC 外接圆的半径.由①得sin sin A C >.所以D 选项正确. 故选:D2.(2020·河南林州一中高一月考)π()sin()(0,),2f x x ωϕωϕ=+>≤若π8x =-是函数()f x 的零点,π8x =是函数()f x 的对称轴,()f x 在区间ππ(,)54上单调,则ω的最大值是 ( ) A .14 B .18C .20D .22【答案】A 【解析】因为π8x =-是函数()f x 的零点,π8x =是函数()f x 的对称轴, 所以2144n T n N ,π+=∈,即21244n ππω+=, n N ∈,即42,?n n N ω=+∈,即ω为正偶数. 因为()f x 在区间ππ,54⎛⎫⎪⎝⎭上单调,则ππ45202T π-=≤,即210T ππω=≥. 20ω≤. 当18ω=时,ππ sin 18088f ϕ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,得9 ,4k k Z πϕπ-+=∈,9 ,?4k k Z πϕπ=+∈,π 2ϕ≤,所以π4ϕ=,()πsin 184f x x ⎛⎫=+ ⎪⎝⎭,ππ,54x ⎛⎫∈ ⎪⎝⎭,时,π779518,42020x ππ⎛⎫+∈ ⎪⎝⎭,其中,901202f f ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,即()f x 在区间ππ,54⎛⎫⎪⎝⎭上不单调; 当14ω=时,ππ sin 14088f ϕ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,得7 ,4k k Z πϕπ-+=∈,7 ,?4k k Z πϕπ=+∈,π 2ϕ≤,所以π4ϕ=-,()πsin 144f x x ⎛⎫=- ⎪⎝⎭,ππ,54x ⎛⎫∈ ⎪⎝⎭,时,π516514,42020x ππ⎛⎫-∈ ⎪⎝⎭,满足()f x 在区间ππ,54⎛⎫⎪⎝⎭上不单调. 故ω的最大值是14. 故选A.3.(2019·涡阳县第九中学高一期末(文))已知函数()2sin 23f x x π⎛⎫=+⎪⎝⎭.求()f x 的单调增区间; 【答案】5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. 【解析】因为sin y x =在区间2,2,22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦上单调递增,所以222,232k x k k πππ-+π≤+≤+π∈Z ,解得5,1212k x k k Z ππππ-≤≤+∈ 所以()f x 的单调增区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. 【总结提升】1.对正弦函数、余弦函数单调性的两点说明(1)正弦函数、余弦函数在定义域R 上均不是单调函数,但存在单调区间.(2)由正弦函数、余弦函数的最小正周期为2π,所以任给一个正弦函数、余弦函数的单调区间,加上2k π,(k ∈Z)后,仍是单调区间,且单调性相同. 2.对正弦函数、余弦函数最值的三点说明(1)明确正、余弦函数的有界性,即|sin x |≤1,|cos x |≤1.(2)函数y =sin x ,x ∈D ,(y =cos x ,x ∈D )的最值不一定是1或-1,要依赖函数定义域D 来决定. (3)形如y =A sin(ωx +φ)(A >0,ω>0)的函数最值通常利用“整体代换”,即令ωx +φ=Z ,将函数转化为y =A sin Z 的形式求最值.3.正切函数单调性的三个关注点 (1)正切函数在定义域上不具有单调性.(2)正切函数无单调递减区间,有无数个单调递增区间,在(-π2,π2),(π2,32π),…上都是增函数.(3)正切函数的每个单调区间均为开区间,不能写成闭区间,也不能说正切函数在(-π2,π2)∪(π2,3π2)∪…上是增函数.高频考点三 三角函数的周期性 【典例6】(2018年全国卷Ⅲ文)函数的最小正周期为( )A. B. C. D.【答案】C 【解析】 由已知得的最小正周期故选C. 【规律方法】1.求三角函数的周期的方法(1)定义法:使得当x 取定义域内的每一个值时,都有()()f x T f x +=.利用定义我们可采用取值进行验证的思路,非常适合选择题;(2)公式法:()sin()f x A x ωϕ=+和()cos()f x A x ωϕ=+的最小正周期都是2||T πω=,()tan()f x A x ωϕ=+的周期为T πω=.要特别注意两个公式不要弄混; (3)图象法:可以画出函数的图象,利用图象的重复的特征进行确定,一般适应于不易直接判断,但是能够容易画出函数草图的函数;(4)绝对值或平方对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变,其它不定. 如x y x y sin ,sin 2==的周期都是π, 但sin y x =cos x +的周期为2π,而1|2sin(3)|,|2sin(3)2|626y x y x ππ=-+=-+,|tan |y x =的周期不变.2.使用周期公式,必须先将解析式化为sin()y A x h ωϕ=++或cos()y A x h ωϕ=++的形式;正弦余弦函数的最小正周期是2T πϖ=,正切函数的最小正周期公式是T πϖ=;注意一定要注意加绝对值.3.对称与周期:正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期. 【变式探究】已知函数y =12sin x +12|sin x |.(1)画出函数的简图;(2)这个函数是周期函数吗?如果是,求出它的最小正周期. 【答案】(1)见解析;(2)是,2π. 【解析】(1)y =12sin x +12|sin x |=⎩⎪⎨⎪⎧sin x ,x ∈[2k π,2k π+π]k ∈Z ,0,x ∈[2k π-π,2k πk ∈Z . 函数图象如图所示.(2)由图象知该函数是周期函数,其图象每隔2π重复一次,则函数的周期是2π. 【特别提醒】最小正周期是指使函数重复出现的自变量x 要加上的最小正数,是对x 而言,而不是对ωx 而言.. 高频考点四 三角函数的奇偶性【典例7】(2018届辽宁省丹东市测试(二))设,若,则函数A. 是奇函数B. 的图象关于点对称C. 是偶函数D. 的图象关于直线对称【答案】C 【解析】 由题意得,∴.∴,∴函数为偶函数.故选C . 【规律方法】1. 一般根据函数的奇偶性的定义解答,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数;如果函数的定义域关于原点对称,则继续求()f x -;最后比较()f x -和()f x 的关系,如果有()f x -=()f x ,则函数是偶函数,如果有()f x -=-()f x ,则函数是奇函数,否则是非奇非偶函数.2. 如何判断函数()f x ωϕ+的奇偶性:根据三角函数的奇偶性,利用诱导公式可推得函数()f x ωϕ+的奇偶性,常见的结论如下:(1)若sin()y A x ωϕ=+为偶函数,则有()2k k Z πϕπ=+∈;若为奇函数则有()k k Z ϕπ=∈;(2)若cos()y A x ωϕ=+为偶函数,则有()k k Z ϕπ=∈;若为奇函数则有()2k k Z πϕπ=+∈;(3)若tan()y A x ωϕ=+为奇函数则有()k k Z ϕπ=∈. 【变式探究】(浙江省2019届高考模拟卷(二))函数的图象可能是( )A .B .C .D .【答案】A 【解析】 由题意得函数的定义域为,∵,∴函数为偶函数,∴函数图象关于y 轴对称,故排除C,D . 又当时,,因此可排除B . 故选A . 【特别提醒】利用定义判断与正切函数有关的一些函数的奇偶性时,必须要坚持定义域优先的原则,即首先要看f(x)的定义域是否关于原点对称,然后再判断f(-x)与f(x)的关系. 高频考点五 三角函数的对称性 【典例8】(2018年江苏卷)已知函数的图象关于直线对称,则的值是________. 【答案】【解析】 由题意可得,所以,因为,所以【规律方法】函数的对称性问题,往往先将函数化成sin )y A x B ωϕ=++(的形式,其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心, 关键是记住三角函数的图象,根据图象并结合整体代入的基本思想即可求三角函数的对称轴与对称中心. 【变式探究】(2021·广西钦州一中高三开学考试(理))关于函数()1cos cos f x x x=+有如下四个命题: ①()f x 的图像关于y 轴对称. ②()f x 的图像关于原点对称. ③()f x 的图像关于直线2x π=对称.④()f x 的图像关于点,02π⎛⎫⎪⎝⎭对称. 其中所有真命题的序号是__________. 【答案】①④ 【解析】对于①,()f x 定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,显然关于原点对称, 且()()()()11cos cos cos cos x x x f x f x x=-=-++=-,所以()f x 的图象关于y 轴对称,命题①正确;对于②,532f π⎛⎫= ⎪⎝⎭,532f π⎛⎫-= ⎪⎝⎭,则33f f ππ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象不关于原点对称,命题②错误; 对③,532f π⎛⎫= ⎪⎝⎭,2532f π⎛⎫=- ⎪⎝⎭,则233f f ππ⎛⎫⎛⎫≠ ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象不关于2x π=对称,命题③错误; 对④,1sin 2sin f x x x π⎛⎫-=+ ⎪⎝⎭,1sin 2sin f x x x π⎛⎫+=-- ⎪⎝⎭, 则22f x f x ππ⎛⎫⎛⎫-=-+⎪ ⎪⎝⎭⎝⎭,命题④正确. 故答案为:①④.【特别提醒】1.求y =Asin(ωx +φ)或y =Acos(ωx +φ)函数的对称轴或对称中心时,应把ωx +φ作为整体,代入相应的公式中,解出x 的值,最后写出结果.2.正切函数图象的对称中心是(k π2,0)而非(k π,0)(k ∈Z ).高频考点六 三角函数的图象和性质的应用 【典例9】(2018年理北京卷】设函数f (x )=,若对任意的实数x 都成立,则ω的最小值为__________. 【答案】 【解析】 因为对任意的实数x 都成立,所以取最大值,所以,因为,所以当时,ω取最小值为.【典例10】(2020·上海高三专题练习)函数3sin 1()sin 2x f x x -=+的最大值是____,最小值是_________.【答案】234- 【解析】3(sin 2)77()3sin 2sin 2x f x x x +-==-++ sin [1,1]x[]sin 21,3x ∴+∈11,1sin 23x ⎡⎤∴∈⎢⎥+⎣⎦777,sin 23x ⎡⎤∴-∈--⎢⎥+⎣⎦7234,sin 23x ⎡⎤∴-∈-⎢⎥+⎣⎦即max 2()3f x =,min ()4f x =- 故答案为:23;4- 【典例11】(2020·陕西省汉中中学(理))已知函数()2sin()1(0)6f x x πωω=-->的周期是π.(1)求()f x 的单调递增区间; (2)求()f x 在[0,]2π上的最值及其对应的x 的值.【答案】(1)(),63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)当0x =时,()min 2f x =-;当3x π=时,()max 1f x =.【解析】 (1)解:∵2T ππω==,∴2ω=,又∵0>ω,∴2ω=,∴()2sin 216f x x π⎛⎫=-- ⎪⎝⎭, ∵222262k x k πππππ-+≤-≤+,k Z ∈,∴222233k x k ππππ-+≤≤+,k Z ∈, ∴63k x k ππππ-+≤≤+,k Z ∈,∴()f x 的单调递增区间为(),63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦(2)解:∵02x π≤≤,∴02x ≤≤π,∴52666x πππ-≤-≤,∴1sin 2126x π⎛⎫-≤-≤ ⎪⎝⎭, ∴12sin 226x π⎛⎫-≤-≤ ⎪⎝⎭,∴22sin 2116x π⎛⎫-≤--≤ ⎪⎝⎭, 当0x =时,()min 2f x =-, 当226x ππ-=,即3x π=时,()max 1f x = 【规律方法】1.求形如y =a sin x +b 的函数的最值或值域时,可利用正弦函数的有界性(-1≤sin x ≤1)求解.2.对于形如y =A sin(ωx +φ)+k (Aω≠0)的函数,当定义域为R 时,值域为[-|A |+k ,|A |+k ];当定义域为某个给定的区间时,需确定ωx +φ的范围,结合函数的单调性确定值域.3.求形如y =a sin 2x +b sin x +c ,a ≠0,x ∈R 的函数的值域或最值时,可以通过换元,令t =sin x ,将原函数转化为关于t 的二次函数,利用配方法求值域或最值,求解过程中要注意正弦函数的有界性.4.求形如y =a sin x +bc sin x +d ,ac ≠0的函数的值域,可以用分离常量法求解;也可以利用正弦函数的有界性建立关于y 的不等式反解出y .综上可知,求与三角函数有关的函数的值域(或最值)的常用方法有:(1)借助于正弦函数的有界性、单调性求解;(2)转化为关于sin x 的二次函数求解.注意求三角函数的最值对应的自变量x 的值时,要考虑三角函数的周期性. 【变式探究】1.(2020·山东潍坊�高一期末)若函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π,则( ) A .(2)(0)5f f f π⎛⎫>>-⎪⎝⎭B .(0)(2)5f f f π⎛⎫>>-⎪⎝⎭C .(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭D .(0)(2)5f f f π⎛⎫->> ⎪⎝⎭【答案】C 【解析】由题意,函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π, 可得w ππ=,解得1w =,即()tan()4f x x π=+,令,242k x k k Z πππππ-+<+<+∈,即3,44k x k k Z ππππ-+<<+∈, 当1k =时,544x ππ<<,即函数()f x 在5(,)44ππ上单调递增, 又由4(0)(),()()()555f f f f f πππππ=-=-+=, 又由425ππ>>,所以(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭. 故选:C.2.(2020·陕西新城�西安中学高三月考(文))设0a <,若不等式22cos (1)cos 0x a x a -+-+≥对于任意的x ∈R 恒成立,则a 的取值范围是__________. 【答案】2a ≤- 【解析】令cos [1,1]t x =∈- ,则不等式22()(1)0f t t a t a =---≤ 对[1,1]t ∈- 恒成立,因此22(1)00,02(1)020f a a a a f a a -≤⎧-≤⎧⇒<∴≤-⎨⎨≤--≤⎩⎩ 3.(浙江省绍兴市第一中学2019届高三上期末)设函数(1)求函数的最小正周期和单调递增区间; (2)当时,的最大值为,求的值【答案】(1) 最小正周期,为的单调递增区间;(2) .【解析】 (1)则的最小正周期当时,单调递增即的单调递增区间为:(2)当时,当,即时,所以【总结提升】比较三角函数值大小的步骤:①异名函数化为同名函数;②利用诱导公式把角化到同一单调区间上;③利用函数的单调性比较大小.。
三角函数中的奇偶性与周期性三角函数是数学中非常重要的一类函数,包括正弦函数、余弦函数、正切函数等。
在学习三角函数时,我们会发现它们具有一些特殊的性质,即奇偶性与周期性。
本文将对三角函数中的奇偶性与周期性进行详细的探讨。
一、正弦函数的奇偶性与周期性正弦函数是最基本的三角函数之一,记作sin(x)。
我们来分别讨论正弦函数的奇偶性与周期性。
1. 奇偶性:正弦函数的图像关于y轴对称,即满足f(-x) = -f(x)。
这意味着当x取正值时,正弦函数取相应的正值;当x取负值时,正弦函数取相应的负值。
当x取0时,正弦函数的值为0。
因此,正弦函数是一个奇函数。
2. 周期性:正弦函数的图像在一个周期内重复,一个完整的周期是2π。
也就是说,对于任意实数x,有sin(x + 2π) = sin(x)。
所以正弦函数的周期为2π。
二、余弦函数的奇偶性与周期性余弦函数是三角函数中与正弦函数密切相关的函数,记作cos(x)。
现在我们来研究余弦函数的奇偶性与周期性。
1. 奇偶性:余弦函数的图像关于y轴对称,即满足f(-x) = f(x)。
这意味着当x取正值时,余弦函数取相应的正值;当x取负值时,余弦函数取相应的正值。
当x取0时,余弦函数的值为1。
因此,余弦函数是一个偶函数。
2. 周期性:余弦函数的图像在一个周期内重复,一个完整的周期是2π。
也就是说,对于任意实数x,有cos(x + 2π) = cos(x)。
所以余弦函数的周期为2π。
三、正切函数的奇偶性与周期性正切函数是另一种重要的三角函数,记作tan(x)。
我们来探讨正切函数的奇偶性与周期性。
1. 奇偶性:正切函数不具备奇偶性,即不满足f(-x) = ± f(x)。
也就是说,当x取正值时,正切函数可以是正值或负值;当x取负值时,正切函数也可以是正值或负值。
当x取0时,正切函数的值为0。
因此,正切函数是一个既非奇函数也非偶函数。
2. 周期性:正切函数的图像在一个周期内重复,一个完整的周期是π。
三角函数的公式
一、扇形的公式
若扇形的圆心角为α(α为弧度制),半径为r ,弧长为l ,周长为C ,面积为S ,则l=______________;C=___________________;S=________________ 二、三角函数的定义
(1)设α是一个任意大小的角,α的终边上任意一点P 的坐标是(x, y ),它与原点的距离是r,则sin α=_________;cos α=________;tan α=____________.
(2)设α是一个任意大小的角,α的终边与单位圆的交点P 的坐标是(x, y ),它与原点的距离是r,则sin α=_________;cos α=________;tan α=____________. 三、 同角三角函数的基本关系
(1)平方关系:sin 2|á+cos 2
|á=1. (2)商数关系:sin αcos α
=tan |á.
四、诱导公式 诱导公式(一)
tan )2tan(cos )2(cos sin )2sin(ααπα
απααπ=+=+=+k k k 诱导公式(二)
)tan()cos( sin )sin(=+=
+-=+απαπααπ
诱导公式(三)
)tan(cos )cos( )sin(=-=-=-αα
αα 诱导公式(四)
tan )tan()cos( )sin(ααπαπαπ-=-=
-=-
诱导公式(五)
=-=-)2
cos( cos )2sin(
απ
ααπ
诱导公式(六)
=+=+)2cos( cos )2sin(απ
ααπ 【方法点拨】 把α看作锐角
前四组诱导公式可以概括为:函数名不变,符号看象限
符号。
看成锐角时原函数值的前面加上一个把三角函数值,的同名
的三角函数值,等于它ααπαπααπ ,,
, ),Z (2-+-∈+k k
公式(五)和公式(六)总结为一句话:函数名改变,符号看象限 口诀: 变 不变,符号看象限
五:求特殊角的三角函数值
αcos
αtan
1、,0sin tan >θθ则θ在 ( )
A.第一、二象限
B.第一、三象限
C.第一、四象限
D.第二、四象限 2、一扇形的中心角为2,中心角所对的弦长为2,则此扇形的面积为( )
A .2
B .1
C .21sin 1
D .2
1
cos 1
3、已知⎪⎭
⎫
⎝⎛-
∈0,2πα,53cos =a ,则=αtan ( )
A.
43 B. 43- C. 34
D. 34
-
4、,2,4,81cos sin ⎪⎭⎫
⎝⎛∈=ππααα=-ααcos sin __________ 5、已知31)4
sin(=
-
π
α,则)4
cos(απ
+的值等于 ( ) A.
322 B.32
2- C.31-
D.
3
1
6、已知函数sin ,4()6(1),4
x x f x f x x π
⎧<⎪=⎨⎪-≥⎩,则(5)f 的值为( )
A .12
B .
2
C .
3 D .1
7、已知角θ的顶点在坐标原点,始边与x 轴正半轴重合终边在直线02=-y x 上,则
=----++)
sin()2
sin()cos()23sin(
θπθπ
θπθπ
( ) A .-2
B .2
C .0
D .
32
8. 2
2
sin 120cos180tan 45cos (330)sin(210)︒+︒+︒--︒+-︒ 9. ⎪⎭
⎫
⎝⎛-++425tan 325cos 613sin
πππ
10.已知sin(
)sin()sin()
2
()sin(3)cos()
2
f π
απαπααπ
παα+•+•-=
-•-.
(1)化简()f
α; (2)若13tan ()22
π
απα=<<,求()f α的值 (3)若sin 61)4
(2=
+π
α, 求cos ⎪⎭⎫ ⎝
⎛
-42πα的值
11、已知,5
5
2sin -=α且0tan <α (1)求αtan 的值;(2)求)
2
3sin()2cos()
2cos()sin(2απ
πααππα+---++的值;
12(本题满分14分)
已知θθcos ,sin 是关于x 的方程“025
24
22
=-+mx x ”的两根 1)求实数m 的值; 2)求sin()sin 2
π
θθ-+的值.
第一章第三节三角函数的作图及性质(一)
一、作图:五点作图法
例、画出下列函数的简图:
(1);
(2)
例、作出与
二、图像的应用
1、解方程和解不等式
例、在上,满足
的
( )
A. B.
C.
D.
例、求函数
例、解不等式2sin(2x+4
π)≥1
2、函数的零点
例、方程
)
A.1个
B.3个
C.2个
D.无穷多个
三、函数的性质 1、奇偶性与周期性
例题
(1)函数( )
A.最小正周期是
B.图象关于
轴对称 C.图象关于原点对称 D.图象关于
(2)函数的最小正周期T=__________.
(3)已知函数
( )
A.是周期为
的奇函
数 B.
的偶函数
C.是周期为
数 D.是周期为
的非奇非偶函数
(4)函数)
A.最小正周期为的奇函数
B.最小正周期
为的奇函数
C.最小正周期为的偶函数
D.最小正周期为
的偶函数
(5)函数)
A.周期为的偶函数
B.周期为
C.周期为
的偶函数 D.周期为
(6)若是周期为
的奇函数,则
)
A. B.
C.
D.
(7)函数( )
A. B.
C.
D.
(8)设函数f(x)满足f(-x)=f(2-x),且x [0,2]时f(x)=(x-1)2,求f(3),f(2017)
(9)若函数(其中
,
的最小正周期是
,且
__________,
.2、对称轴、对称中心
例题
(1)、函数( )
A. B.
C.
D.
(2)、下列函数中,最小正周期为,且
图象关于直线( ).
A. B.
C. D.
(3)函数对任意
都有
,则
)
A.或
B.
C.
D.
或
(4)关于函数,有以下命题:
①的表达式可改写成
②是以
为最小正周期的周期函数;
③
对称;
④
对称.其中正确命题的序号是__________(把你认为正确的序号都填上).
(5)已知函数
①函数的最小正周期;
②函数
(6)设函数,
的图象的一条对称轴是直线
(1)求;(2)画出函数
在区间。