当前位置:文档之家› 三角函数的周期性数学教案

三角函数的周期性数学教案

三角函数的周期性数学教案
三角函数的周期性数学教案

三角函数的周期性数学教案

一、学习目标与自我评估

1掌握利用单位圆的几何方法作函数的图象

2结合的图象及函数周期性的定义了解三角函数的周期性,及最小正周期

3会用代数方法求等函数的周期

4理解周期性的几何意义

二、学习重点与难点

“周期函数的概念”,周期的求解。

三、学法指导

1、是周期函数是指对定义域中所有都有

,即应是恒等式。

2、周期函数一定会有周期,但不一定存在最小正周期。

四、学习活动与意义建构

五、重点与难点探究

例1、若钟摆的高度与时间之间的函数关系如图所示

(1)求该函数的周期;

(2)求时钟摆的高度。

例2、求下列函数的周期。

(1)(2)

总结:(1)函数(其中均为常数,且

的周期T=。

(2)函数(其中均为常数,且

的周期T=。

例3、求证:的周期为。

例4、(1)研究和函数的图象,分析其周期性。

(2)求证:的周期为(其中均为常数,

总结:函数(其中均为常数,且

的周期T=。

例5、(1)求的周期。

(2)已知满足,求证:是周期函数

课后思考:能否利用单位圆作函数的图象。

六、作业:

七、自主体验与运用

1、函数的周期为()

A、B、C、D、

2、函数的最小正周期是()

A、B、C、D、

3、函数的最小正周期是()

A、B、C、D、

4、函数的周期是()

A、B、C、D、

5、设是定义域为R,最小正周期为的函数,

若,则的值等于()

A、1

B、

C、0

D、

6、函数的最小正周期是,则

7、已知函数的最小正周期不大于2,则正整数

的最小值是

8、求函数的最小正周期为T,且,则正整数

的最大值是

9、已知函数是周期为6的奇函数,且则

10、若函数,则

11、用周期的定义分析的周期。

12、已知函数,如果使的周期在内,求

正整数的值

13、一机械振动中,某质子离开平衡位置的位移与时间之间的

函数关系如图所示:

(1)求该函数的周期;

(2)求时,该质点离开平衡位置的位移。

14、已知是定义在R上的函数,且对任意有

成立,

(1)证明:是周期函数;

(2)若求的值。

三角函数的定义导学案

5,则 b的值。 3的终边上,且|OP|=2,则点P的坐标? 2 ,-3),,则定义:叫做角α的余弦,记作cosα,即cosα=; α=- 5 2,则sin α,tanα的值分别为(另外,角α的正割:secα= 1 cosαx 角α的余割:cscα= 1 sinαy 角α的余切:cotα= 1 2C- 3 A 1 高一数学学案 必修四第一章第3节三角函数的定义(1) 制作人:适用范围:高一使用日期:4.17 【教学目标】 1、三角函数定义; 2、利用定义求角的六个三角函数; 3、特殊角的三角函数值。 4、通过角定义的学习,进一步体会数形结合的思想方法 【教学重难点】 1、用定义求三角函数值; 2、特殊角三角函数值。 【教学内容】 1.任意角三角函数的定义 任意角三角函数的定义 如图所示,以任意角α的顶点O为坐标原点,以角α的始边的方向作为x轴的正方向,建立直 角坐标系.设P(x,y)是任意角α终边上不同于坐标原点的任意一点. 变式训练2:若角α的终边经过点P(-b,4)且cosα=- 3 例2、求下列各角的六个三角函数值: (1)0;(2)π;(3) 3π 2 变式训练3:若点P在角 π 【课堂练习】 1、(1)已知角α终边经过点p( 1 cosα=______,sinα=______,tanα=______, cotα=______,secα=______,cscα=______。 其中,r=OP=x2+y2>0. x x r r y y r叫做角α的正弦,记作sinα,即sinα=r; 2、设π A、-1;不存在 B、1;不存在 C、-1;0 D、1;0 )。 y y x叫做角α的正切,记作tanα,即tanα=x. r =; r =; x tanα=y. 例1、已知角α终边过点P(2,-3),求角α的六个三角函数值。 3、如果角α的终边过点(2sin30°,-2cos30°),则sinα的值等于() 13 2 B- 2 D 2 4、若角α的终边经过点M(0,m)(m≠0),则下列式子无意义的是() A、sinα B、cosα C、tanα D、cotα 15.已知角 α的终边上一点的坐标为( 3 ,- 1 ),则角α的最小正值为( 22)变式训练1:设角α的终边经过点P(3x,-4x)(x<0),则sinα-cosα的值?

三角函数的定义学案

学习目标:理解任意角的三角函数的定义,了解终边相同的角的同一三角函数值相等,掌握三角函数(正弦、余弦、正切)的定义域,会运用任意角三角函数的定义求相关角的三角函数值。 课前预习 阅读课本P14—P17,填充下列空格 1.三角函数的定义(如图所示) 设α是一个任意大小的角,α的终边上任意一点P 的坐标是()y x ,,它与原点的距离是r (=r ),如上图所示,那么 ①比值 叫做α的正弦,记作 ,即 ; ②比值 叫做α的余弦,记作 ,即 ; ③比值 叫做α的正切,记作 ,即 ; ④比值 叫做α的余切,记作 ,即 ; ⑤比值 叫做α的正割,记作 ,即 ; ⑥比值 叫做α的余割,记作 ,即 。 2.三角函数的定义域 3.三角函数在各象限的符号 合作探究展示 角的终边 x y 0 αsin x y 0 αcos x y α tan

探究一 .已知角α的终边经过点P(4,-3),求sin α、cos α、tan α的值; 变式一 已知角α的终边经过点P(4a,-3a)(a ≠0),求2sin α+cos α的值; 探究二 求下列各角的六个三角函数值:⑴0; ⑵π; ⑶2 3π。 求 43π和56 π角的正弦、余弦和正切值. 引申 填表:

探究三 确定下 列各三角函数值的符号: ⑴516cos π; ⑵?? ? ??-34sin π; ⑶21556tan ' 已知点p (tan tan ,cos αα )在第四象限,则角α 在第 象限 当堂练习 (一)选择题 1、已知角α的终边过点P (-1,2),cos α的值为 ( ) A .- 55 B .- 5 C .552 D .2 5 2、α是第二象限角,P (x , 5 ) 为其终边上一点,且cos α= 4 2 x ,则sin α的值为 ( ) A . 410 B .46 C .4 2 D .-410 3.若0sin <α且0tan >α,则α是( ) A.第一象限的角 B.第二象限的角 C.第三象限的角 D.第四象限的角 4.设角θ终边上一点()()06,8<-a a a P ,则ααcos sin 2+的值为( ) A. 52 B.52或52- C.52 - D.与a 无关 二.填空题

三角函数的周期性

1.4.1三角函数的周期性 一、导学目标 1.引导学生从单位圆中,得出正弦、余弦函数值呈现周期性变化 2.函数周期性定义 3.能求三角函数的周期 二、知识回归 1.任意角的三角函数 sin y α= cos x α= 2.终边与α角相同 2απ+ 2απ- L L 2()k k Z απ+∈ 三角函数值相同 三、新知导学 由观察可知 1.三角函数值出现周期性变化的特点 sin(2)sin cos(2)cos x k x x k x ππ+=+= (k Z ∈) 2.函数定义 对于函数()f x ,如果存在一个非零常数T ,使定义域内每一个x ,都有()()f x T f x +=,则函数()f x 叫周期函数,非零常数T 叫做这个函数的周期。 3.正弦函数sin y x =,余弦函数cos y x =的周期 2,4,6,2,4,6,ππππππ---L L 2(,0)k k Z k π∈≠ 都是它们的周期 2π是所有周期中最小的正数,是sin ,cos x x 的最小的 正周期 周期函数()f x ,如果它所有的周期中存在一个最小的正数,这个最小正数就是()f x 的最小正周期,一般,函数周期都是指最小正周期 sin ,cos y x y x ==的周期是T=2π 四、例题分析与巩固训练

(1)()sin 3f x x = 1(2)()2cos()23 g x x π=- 分析:由sin ,cos x x 周期都是2π,设周期T 即可 (1) 设()f x 周期为T ,()()f x T f x += ∴sin3()sin3x T x += sin(33)sin 3x T x += 32T π∴= 23 T π= (2) 设()g x 周期为T ()()g x T g x += 2cos()2cos()2323 x T x ππ+-=- 即2cos ()2cos()23223x T x ππ??- +=-???? 22 T π∴= 巩固训练 A 1. 求下列函数的周期 (1)2sin 2y x =- (2)cos 3 x y = 2.判断下列说法是否正确,并说明理由 (1)76x π=时,2sin()sin 3x x π+=,则23 π一定是函数sin y x =的周期 B 思考 sin()cos() y A x y A x ω?ω?=+=+ (其中,,A ω?为常数,0,0A ω≠>) 的周期为2T π ω= 例2 若钟摆高度()h mm 与时间()t s 之间的函数关系如图所示 (1) 求该函数的周期

三角函数题型总结-教师版

三角函数题型总结-教师版

111111 cos sin sin 2224 S x y = =?=ααα, …… …………7分 2221112||[cos()]sin()sin(2)223343 S x y πππ = =-+?+=-+ααα. … …………9分 依题意得 2sin 22sin(2)3π=-+αα, 整 理得 cos20 =α. ………………11分 因为 62 ππ<<α, 所以 23π <<πα, 所 以 22 π= α, 即 4 π = α. …… …………13分 2、三角形中求值 〖例〗(2013年高考北京卷(理))在△ABC 中,a =3,b 6,∠B =2∠A . (I)求cosA 的值; (II)求c 的值. 【答案】 解:(I)因为a =3,b =2 ,∠B =2∠A . 所以在△ABC

中,由正弦定理得3sin sin 2A A =.所以2sin cos sin 3A A A =.故cos 3 A =. (II)由(I)知 cos A = ,所以 sin A == .又因为 ∠B=2∠A,所以2 1cos 2cos 13 B A =-= .所以2sin 1cos B B = -= . 在△ABC 中,53sin sin()sin cos cos sin C A B A B A B =+=+=所以sin 5sin a C c A ==. 【举一反三】 (2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对)) 设ABC ?的内角 ,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=. (I)求B (II)若31 sin sin 4 A C = ,求C . 【答案】 ③三角不等式

高中数学必修四1.2.1任意角的三角函数导学案

1.2.1任意角的三角函数(A层学案) 学习目标:1.能借助单位圆记住任意角的正弦、余弦、正切函数的定义; 2.记住诱导公式一并会应用。 学习重点:任意角三角函数的定义及诱导公式一的应用。 学习难点:任意角的三角函数的定义。 一、课前预习案 1.任意角三角函数 (1)在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么: ①y叫做α的________,记作______,即sinα=y; ②x叫做α的________,记作______,即cosα=x; ③y x 叫做α的________,记作______,即tanα= y x (x≠0). (2)在平面直角坐标系中,设α是一个任意角,它的终边上任意一点P(x,y),它到原点的距离r(r>0),r=,那么任意角α的三角函数的定义为: sinα= cosα= tanα= 2.正弦、余弦、正切函数值在各象限的符号 记忆口诀:。 3.诱导公式一 终边相同的角的同一三角函数的值________,即: sin(α+k·2π)=________,cos(α+k·2π)=________, tan(α+k·2π)=________,其中k∈Z. 角α0π 6 π 4 π 3 π 2 2 3 π 3 4 π 5 6 ππ 3 2 π2π sin αcos αtan α

二、课内探究案 知识点一利用定义求角的三角函数值 例1:已知角α的终边经过点P(-4,3),求sin α、cos α、tan α的值.变式训练1: (1)已知角α的终边过点 0(3,4) P--,求角α的正弦、余弦和正切值. (2)已知角α的终边经过点P(-4a,3a)(a≠0),求sinα、cosα、tanα的值. 知识点二:三角函数值的符号问题 例2. (1)α是第四象限角,则下列数值中一定是正值的是( ) A.sin α B.cos α C.tan α D.cos α或tan α (2)若sin θ·tan θ>0,cos θ·tan θ<0,则sin θ·cos θ______0 (填“>”“<”或“=”). (3)函数的值域是_______. 变式训练2:判断下列各式的符号. (1)sin 370°+cos 370°.

1.2.2同角的三角函数的基本关系 学案

1.2.2同角的三角函数的基本关系 课前预习学案 预习目标: 通过复习回顾三角函数定义和单位圆中的三角函数线,为本节所要学习的同角三角函数的基本关系式做好铺垫。 预习内容: 复习回顾三角函数定义和单位圆中的三角函数线: 提出疑惑: 与初中学习锐角三角函数一样,我们能不能研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化呢? 课内探究学案 学习目标: ⒈掌握同角三角函数的基本关系式,理解同角公式都是恒等式的特定意义; 2 通过运用公式的训练过程,培养学生解决三角函数求值、化简、恒等式证明的解题技能,提高运用公式的灵活性; 3 注意运用数形结合的思想解决有关求值问题;在解决三角函数化简问题过程中,注意培养学生思维的灵活性及思维的深化;在恒等式证明的教学过程中,注意培养学生分析问题的能力,从而提高逻辑推理能力. 学习过程: 【创设情境】 与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化. 【探究新知】 探究:三角函数是以单位圆上点的坐标来定义的,你能从 圆的几何性质出发,讨论一 下同一个角不同三角函数之间的关系吗? 如图:以正弦线MP ,余弦线OM 和半径OP 三者的长构 成直角三角形,而且1OP =.由勾股定理由221MP OM +=, 因此221x y +=,即 . 根据三角函数的定义,当()2a k k Z π π≠+∈时,有 . 这就是说,同一个角α的正弦、余弦的平方等于1,商等于角α的正切. 【例题讲评】 例1化简: 440sin 12- 例2 已知α ααααsin 1sin 1sin 1sin 1+---+是第三象限角,化简 例3求证:α αααcos sin 1sin 1cos +=- 例4已知方程0)13(22=++-m x x 的两根分别是θθcos sin , ,

高考数学导数与三角函数压轴题综合归纳总结教师版

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题,内容主要包括函数零点个数的确定、根据函数零点个数求参数范围、隐零点问题及零点存在性赋值理论.其形式逐渐多样化、综合化. 一、零点存在定理 例1.【2019全国Ⅰ理20】函数,为的导数.证明: (1)在区间 存在唯一极大值点; (2)有且仅有2个零点. 【解析】(1)设()()g x f x '=,则()()() 2 11 cos ,sin 11g x x g x x x x '=- =-+++. 当1,2x π??∈- ???时,单调递减,而()00,02g g π?? ''>< ??? , 可得在1,2π?? - ?? ?有唯一零点,设为. 则当()1,x α∈-时,()0g x '>;当,2x πα?? ∈ ??? 时,. 所以在()1,α-单调递增,在,2πα?? ???单调递减,故在1,2π?? - ???存在唯一极大 值点,即()f x '在1,2π?? - ?? ?存在唯一极大值点. (2)()f x 的定义域为. (i )由(1)知, ()f x '在()1,0-单调递增,而()00f '=,所以当时, ,故()f x 在单调递减,又,从而是()f x 在的唯 一零点. ()sin ln(1)f x x x =-+()f x '()f x ()f x '(1,)2 π-()f x ()g'x ()g'x α()0g'x <()g x ()g x (1,)-+∞(1,0)x ∈-()0f 'x <(1,0)-(0)=0f 0x =(1,0]-

(ii )当0,2x π?? ∈ ??? 时,由(1)知,在单调递增,在单调递减,而 ,02f π??'< ???,所以存在,2πβα?? ∈ ???,使得,且当时, ;当,2x πβ??∈ ???时,.故在单调递增,在,2πβ?? ???单调递 减.又,1ln 1022f ππ???? =-+> ? ???? ?,所以当时,. 从而()f x 在0,2π?? ??? 没有零点. (iii )当,2x ππ??∈ ???时,()0f x '<,所以()f x 在,2ππ?? ???单调递减.而 ()0,02f f ππ??>< ??? ,所以()f x 在,2ππ?? ??? 有唯一零点. (iv )当时,()l n 11x +>,所以<0,从而()f x 在没有零点. 综上, ()f x 有且仅有2个零点. 【变式训练1】【2020·天津南开中学月考】已知函数3()sin (),2 f x ax x a R =-∈且 在,0,2π?? ????上的最大值为32π-, (1)求函数f (x )的解析式; (2)判断函数f (x )在(0,π)内的零点个数,并加以证明 【解析】(1)由已知得()(sin cos )f x a x x x =+对于任意的x∈(0, 2 π), 有sin cos 0x x x +>,当a=0时,f(x)=? 3 2 ,不合题意; 当a<0时,x∈(0, 2π),f′(x)<0,从而f(x)在(0, 2 π )单调递减, 又函数3 ()sin 2f x ax x =- (a∈R)在[0, 2 π]上图象是连续不断的, 故函数在[0, 2 π ]上的最大值为f(0),不合题意; ()f 'x (0,)α,2απ?? ???(0)=0f '()0f 'β=(0,)x β∈()0f 'x >()0f 'x <()f x (0,)β(0)=0f 0,2x ?π?∈ ???()0f x >(,)x ∈π+∞()f x (,)π+∞

三角函数·函数的周期性

三角函数·函数的周期性 教学目标 1.使学生理解函数周期性的概念,并运用它来判断一些简单、常见的三角函数的周期性. 2.使学生掌握简单三角函数的周期的求法. 3.培养学生根据定义进行推理的逻辑思维能力,提高学生的判断能力和论证能力. 教学重点与难点 函数周期性的概念. 教学过程设计 师:上节课我们学习了利用单位圆中的正弦线作正弦函数的图象.今天我们将利用正弦函数图象,研究三角函数的一个重要性质.请同学们观察y=sinx,x ∈R的图象: (老师把图画在黑板左上方.) 师:通过观察,同学们有什么发现? 生:正弦函数的定义域是全体实数,值域是[-1,1].图象有规律地不断重复出现. 师:规律是什么? 生:当自变量每隔2π时,函数值都相等.

师:正弦函数的这种性质叫周期性.我们将会发现,不但正弦函数具有这种性质,其它的三角函数和不少的函数也都具有这样的性质,因此我们就把它作为今天研究的课题:函数的周期性.(老师在黑板左上方写出课题) 师:我们先看函数周期性的定义.(老师板书) 定义对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期. 师:请同学们逐字逐句的阅读定义,找出定义中的要点. 生:首先T是非零常数,第二是自变量x取定义域内的每一个值时都有f (x+T)=f(x). 师:找得准!那么为什么要这样规定呢? 师:如果T=0,那么f(x+T)=f(x)恒成立,函数值当然不变,没有研究价值;如果T为变数,就失去了“周期”的意义了.“每一个值”的含义是无一例外. 师:除这两条外,定义中还有一个隐含的条件是什么? 生:如果x属于y=f(x)的定义域,则T+x也应属于此定义域. 师:对.否则f(x+T)就没有意义. 师:函数周期性的定义有什么用途? 生:它为我们提供判定函数是否具有周期性的理论依据. 师:下面我们看例题. (老师板书) 例1 证明y=sinx是周期函数. 生:因为由诱导公式有sin(x+2π)=sinx.所以2π是y=sinx是一个周期.故它就是周期函数. 例2

三角函数概念x教师版

角的概念、定义 一、知识清单 1. 终边相同的角 ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合): {} Z k k ∈+?=,360 |αββο ; ②终边在x 轴上的角的集合:{}Z k k ∈?=,180|οββ; ③终边在y 轴上的角的集合:{}Z k k ∈+?=,90180|οοββ; ④终边在坐标轴上的角的集合:{}Z k k ∈?=,90|οββ. 2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零, 熟记特殊角的弧度制. 3.弧度制下的公式 扇形弧长公式r =l α,扇形面积公式211 ||22 S R R α==l ,其中α为弧所对圆心 角的弧度数。 4.三角函数定义: 利用直角坐标系,可以把直角三角形中的三角函数推广到任意角的三角数.在α终边上任取一点(,)P x y (与原点不重合),记22||r OP x y ==+, 则sin y r α=,cos x r α=,tan y x α=,cot x y α=。 注: ⑴三角函数值只与角α的终边的位置有关,由角α的大小唯一确定,∴三角函数是以角为自变量,以比值为函数值的函数. ⑵根据三角函数定义可以推出一些三角公式: ①诱导公式:即 2 k π αα±→或902k αα±→o 之间函数值关系()k Z ∈,其规律是“奇变偶不变,符号看象限” ;如sin(270)α-=o cos α- ②同角三角函数关系式:平方关系,倒数关系,商数关系. ⑶重视用定义解题.

苏教版必修四3.2《二倍角的三角函数》word学案

一、学习目标 1、让学生自己由和角公式而导出倍角公式,了解它们的内在联系; 2、会利用倍角公式进行求值运算,培养运算和逻辑推理能力; 3、领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美,激发学生学数学的兴趣。 二、学习重点 倍角公式的形成,及公式的变形形式的运用。 三、学习难点 倍角公式的形成,及公式的变形形式的运用。 四、学习过程 问题1:两角和与差的正弦、余弦、正切公式是什么? 问题2:若β=α,结果会如何,你能得出什么结论? α2S : α2C : α2T : 问题3:你能利用同角三角函数公式对α2C 进行变形吗? 总结:公式α2S 、α2C 、α2T 叫做 ,简称 。 注意:(1)这里的“倍角”,实际上专指“二倍角”,遇到“三倍角”等名称时,“三”字等不能省去。 (2)倍角公式是和角公式的特例。 (3)倍角公式中的“倍角”的意义是相对的,如:4α是8α 的二倍角。 (4)倍角公式的公式特征:“倍角”与“二次”的关系。 试一试:不查表,求值: (1)sin 2230cos 2230''?= ; (2)=-π18cos 22 ; (3)=π-π8 cos 8sin 22 ;(4)= 40cos 20cos 10sin 。 例1:已知)0,2 (135cos παα-∈=且,求sin 2α,cos 2α,tan 2α的值。

例2:化简απ απ α222sin )3(cos )3(cos -++-。 例3:证明下列恒等式 (1)θθθθθtan 2cos 2sin 12cos 2sin 1=++-+; (2)1)10tan 3(40sin =- 。 例4:求函数2sin (sin cos )y x x x =+的最小正周期,以及最值。 例5:在半圆形钢板上截取一块矩形材料,怎样截取使这个矩形面积最大? 五、巩固练习 1、化简(1; (2; (3; (4。

人教版 高中数学必修4 三角函数知识点

高中数学必修4知识点总结 第一章 三角函数(初等函数二) ?? ?? ?正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<, 则sin y r α= ,cos x r α= ,()tan 0y x x α= ≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线:sin α=M P ,cos α=O M ,tan α=AT . 12、同角三角函数的基本关系:()2 2 1sin cos 1αα+=

人教版数学必修四三角函数复习讲义

第一讲 任意角与三角函数诱导公式 1. 知识要点 角的概念的推广: 平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。射线的起始位置称为始边,终止位置称为终边。 象限角的概念: 在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 终边相同的角的表示: α终边与θ终边相同(α的终边在θ终边所在射线上)?2()k k αθπ=+∈Z 。 注意:相等的角的终边一定相同,终边相同的角不一定相等. α终边在x 轴上的角可表示为:,k k Z απ=∈; α终边在y 轴上的角可表示为:,2 k k Z π απ=+∈; α终边在坐标轴上的角可表示为:,2 k k Z π α= ∈. 角度与弧度的互换关系:360°=2π 180°=π 1°= 1=°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. α与2 α的终边关系: 任意角的三角函数的定义: 设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),

它与原点的距离是0r =>,那么sin ,cos y x r r αα==, ()tan ,0y x x α= ≠,cot x y α=(0)y ≠,sec r x α=()0x ≠,()csc 0r y y α=≠。 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 三角函数线的特征:正弦线MP“站在x 轴上(起点在x 轴上)”、余弦线OM“躺在x 轴上(起点是原点)”、正切线AT“站在点(1,0)A 处(起点是A )” 同角三角函数的基本关系式: 1. 平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+= 2. 倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1, 3. 商数关系:sin cos tan ,cot cos sin αα αααα = = 注意:1.角α的任意性。 2.同角才可使用。 3.熟悉公式的变 形形式。 三角函数诱导公式:“ (2 k πα+)”记忆口诀: “奇变偶不变,符号看象限” 典型例题 例1.求下列三角函数值: (1)cos210o; (2)sin 4 5π 例2.求下列各式的值: (1)sin(-3 4π ); (2)cos(-60o)-sin(-210o) 例3.化简 ) 180sin()180cos() 1080cos()1440sin(?--?-?-?-?+?αααα

三角函数周期性公式

设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα

三角函数(课时一)教师版

1 .1 图 7.3图7 .2图7三角函数及其有关概念 [知识清单] 一、角的概念 1. 角 角是以一点为公共端点的两条射线组成的图形.公共端点叫做角的顶点, 两条射线叫做 角的边。 2.正角、负角、零角 正角与负角是由旋转的方向决定的,我们把按逆时针方向旋转所形成的角 叫做正角,把按顺时针方向旋转所形成的角叫做负角形成一个数值为0的角,我们把这个角叫做零角。 3.终边相同的角 具有相同的终边的角叫做终边相同的角,如图7.1中的边相同的角。 ①终边相同的角不一定相等,但相等的角,终边一定相同; ②终边相同的角有无数多个,它们相差360°的整数倍,如: α与360()k k Z α+∈ ,β与360()k k Z β+∈ ,β与360()k k α+∈ Z 都是终边相同的角。 例 设176π α=- ,则与α终边相同的最小正角是多少? 解 1717777236066666 πππππα=-=--+=-?+ 所以,与176 πα=-终边相同的最小正角是76π 。 例 设203π α=,则与α终边相同的绝对值最小的负角是多少? 解 2020444 436033333 πππππα==+-=?- 所以,所求之角是43 π-。 4. 象限角 在第几象限,我们就说这个角是第几象限的角,如αβ与个象限,我们称其为界限角。 例 900- 是第几象限的角? 解 9002360-=-? , 所以900- 是第二象限的角。 例:-572。是( )象限的角。 5、角的度量 1). 角度制 当射线绕端点逆时针方向旋转使终边与始边第一次重 合时所形成的角叫做周角,规定1周角为360o。1周角的1 360 为1度, 2). 弧度制 等于半径长的圆弧所对的圆心角称为1弧度的角。用弧 度作单位来测量角的制度叫做弧度制。1弧度也记为1rad

如何求三角函数的周期

如何求三角函数的周期 三角函数的的周期是三角函数的重要性质,对于不同的三角函数式,如何求三角函数的周期也是一个难点,下面通过几个例题谈谈三角函数周期的求法. 1、根据周期性函数的定义求三角函数的周期 例1 求下列函数的周期 x y 2sin )1(= , 3 2tan )2(x y =. (1)分析:根据周期函数的定义,问题是要找到一个最小正数T ,对于函数定义域内的每一个x 值都能使x T x 2sin )(2sin =+成立,同时考虑到正弦函数x y sin =的周期是π2. 解:∵ )(2sin )22sin(2sin ππ+=+=x x x , 即 x x 2sin )(2sin =+π. ∴ 当自变量由x 增加到π+x 时,函数值重复出现,因此x y 2sin =的周期是π. (2) 分析:根据周期函数的定义,问题是要找到一个最小正数T ,对于函数定义域内的每一个x 值都能使 3 2tan )(32tan x T x =+成立,同时考虑到正切函数x y tan =的周期是π. 解:∵ )23(32tan )32tan(32tan ππ+=+=x x x , 即3 2tan )23(32tan x x =+π. ∴ 函数32tan x y =的周期是π2 3. 注意:1、根据周期函数的定义,周期T 是使函数值重复出现的自变量x 的增加值, 如),2()2(x f T x f =+周期不是T ,而是T 21; 2、”“)()(x f T x f =+是定义域内的恒等式,即对于自变量x 取定义域内的每个值时,上式都成立. 2、根据公式求周期 对于函数B x A y ++=)sin(?ω或B x A y ++=)cos(?ω的周期公式是| |2ωπ=T , 对于函数B x A y ++=)tan( ?ω或B x y ++=)cot(?ω的周期公式是||ωπ=T . 例3 求函数)623sin( 3π-=x y 的周期 解: 3 42 32ππ==T . 3、把三角函数表达式化为一角一函数的形式,再利用公式求周期 例4 求函数x x x y 2sin 2cos sin 32-=的周期 解:12cos 2sin 3sin 2cos sin 322-+=-=x x x x x y

九年级下数学锐角三角函数导学案 (1)

C B A C B A C B A B 课题:28.1锐角三角函数(1) 【导学过程】 一、自学提纲: 1、如图在Rt △ABC 中,∠C=90°,∠A=30°,BC=10m ,?求AB 2、如图在Rt △ABC 中,∠C=90°,∠A=30°,AB=20m ,?求BC 二、合作交流: 问题: 为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,?在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m ,那么需要准备多长的水管? 思考1:如果使出水口的高度为50m ,那么需要准备多长的水管? ; 如果使出水口的高度为a m ,那么需要准备多长的水管? ; 结论:直角三角形中,30°角的对边与斜边的比值 思考2:在Rt △ABC 中,∠C=90°,∠A=45°,∠A 对边与斜边 的比值是一个定值吗??如果是,是多少? 结论:直角三角形中,45°角的对边与斜边的比值 三、教师点拨: 从上面这两个问题的结论中可知,?在一个Rt △ABC 中,∠C=90°,当∠A=30°时,∠A 的对边与斜边的比都等于 1 2 ,是一个固定值;?当∠A=45°时,∠A 的对边与斜边的比都等于22,也是 一个固定值.这就引发我们产生这样一个疑问:当∠A 取其他一定度数的锐角时,?它的对边与斜边 的比是否也是一个固定值? 探究:任意画Rt △ABC 和Rt △A ′B ′C ′,使得∠C=∠C ′=90°, ∠A=∠A ′=a ,那么 '' '' BC B C AB A B 与有什么关系. 结论:这就是说,在直角三角形中,当锐角A 的度数一定时,不管三角形

关于《三角函数的周期性》的教案

关于《三角函数的周期性》的教案 一、目标与自我评估 1掌握利用单位圆的几何作函数的图象 2结合的图象及函数周期性的定义了解三角函数的周期性,及最小正周期 3会用代数方法求等函数的周期 4理解周期性的几何意义 二、学习重点与难点 “周期函数的概念”,周期的求解。 三、学法指导 1、是周期函数是指对定义域中所有都有 ,即应是恒等式。 2、周期函数一定会有周期,但不一定存在最小正周期。 四、学习活动与意义建构 五、重点与难点探究 例1、若钟摆的高度与时间之间的函数关系如图所示 (1)求该函数的周期; (2)求时钟摆的高度。 例2、求下列函数的周期。 (1)(2) 总结:(1)函数(其中均为常数,且 的周期T=。

(2)函数(其中均为常数,且 的周期T=。 例3、求证:的周期为。 例4、(1)研究和函数的图象,分析其周期性。 (2)求证:的周期为(其中均为常数, 且 总结:函数(其中均为常数,且 的周期T=。 例5、(1)求的周期。 (2)已知满足,求证:是周期函数 课后思考:能否利用单位圆作函数的图象。 六、作业: 七、自主体验与运用 1、函数的周期为() A、B、C、D、 2、函数的最小正周期是() A、B、C、D、 3、函数的最小正周期是() A、B、C、D、 4、函数的周期是() A、B、C、D、 5、设是定义域为R,最小正周期为的函数,

若,则的值等于() A、1 B、 C、0 D、 6、函数的最小正周期是,则 7、已知函数的最小正周期不大于2,则正整数 的最小值是 8、求函数的最小正周期为T,且,则正整数 的最大值是 9、已知函数是周期为6的奇函数,且则 10、若函数,则 11、用周期的定义分析的周期。 12、已知函数,如果使的周期在内,求 正整数的值 13、一机械振动中,某质子离开平衡位置的位移与时间之间的 函数关系如图所示: (1)求该函数的周期; (2)求时,该质点离开平衡位置的位移。 14、已知是定义在R上的函数,且对任意有 成立, (1)证明:是周期函数; (2)若求的值。 分类计数原理与分步计数原理、排列 一.教学内容:分类计数原理与分步计数原理、排列

高三文科数学专题复习 三角函数、解三角形 (教师版)

高三文科数学专题复习 三角函数、解三角形 专题一 三角函数的概念、同角三角函数的关系式及诱导公式 A 组 三年高考真题(2016~2014年) 1.(2015·福建,6)若sin α=- 5 13 ,且α为第四象限角,则tan α的值等于( ) A.125 B.-125 C.512 D.-512 1.解析 ∵sin α=-513,且α为第四象限角, ∴cos α=1213,∴tan α=sin αcos α=-5 12,故选D. 答案 D 2.(2014·大纲全国,2)已知角α的终边经过点(-4,3),则cos α=( ) A.45 B.35 C.-35 D.-45 2.解析 记P (-4,3),则x =-4,y =3,r =|OP |=(-4)2+32=5, 故cos α=x r =-45=-4 5,故选D. 3.(2014·新课标全国Ⅰ,2)若tan α>0,则( ) A.sin α>0 B.cos α>0 C.sin 2α>0 D.cos 2α>0 3.解析 由tan α>0,可得α的终边在第一象限或第三象限,此时sin α与cos α同号, 故sin 2α=2sin αcos α>0,故选C. 答案 C 4.(2016·新课标全国Ⅰ,14)已知θ是第四象限角,且sin ????θ+π4=35,则tan ????θ-π 4=________. 4.解析 由题意,得cos ????θ+π4=45,∴tan ????θ+π4=34.∴tan ????θ-π4=tan ????θ+π4-π 2=-1 tan ??? ?θ+π4=-43. 答案 -4 3 5.(2016·四川,11)sin 750°=________. 5.解析 ∵sin θ=sin(k ·360°+θ),(k ∈Z ), ∴sin 750°=sin(2×360°+30°)=sin 30°=12. 答案 1 2 6.(2015·四川,13)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________. 6.解析 ∵sin α+2cos α=0, ∴sin α=-2cos α,∴tan α=-2, 又∵2sin αcos α-cos 2α= 2sin α·cos α-cos 2αsin 2α+cos 2α=2tan α-1tan 2α+1, ∴原式=2×(-2)-1 (-2)2+1 =-1. 答案 -1 B 组 两年模拟精选(2016~2015年) 1.(2016·济南一中高三期中)若点(4,a )在12 y x =图象上,则tan a 6π的值为( ) A.0 B. 3 3 C.1 D. 3 1.解析 ∵a =412=2, ∴tan a 6 π= 3. 答案 D 2.(2016·贵州4月适应性考试)若sin ????π2+α=-3 5,且α∈????π2,π,则sin ()π-2α=( ) A.2425 B.1225 C.-1225 D.-24 25 2.解析 由sin ????π2+α=-35得cos α=-35, 又α∈????π2,π, 则sin α=4 5 ,

三角函数的有关计算导学案(含答案)

§1-3 三角函数的有关计算 学习目标 1.经历用由三角函数值求相应锐角的过程,进一步体会三角函数的意义. 2.能够利用计算器进行有关三角函数值的计算. 3.能够运用计算器辅助解决含三角函数值计算的实际问题. 学习重点 1.用计算器由已知三角函数值求锐角. 2.能够用计算器辅助解决含三角函数值计算的实际问题. 学习难点 用计算器辅助解决含三角函数值计算的实际问题. 学习过程 一、引入新课 已知tanA =56.78,求锐角A. ( 上表的显示结果是以“度”为单位的.再按 键即可显示以“度、分、秒”为单位的 结果.) 二、习题训练 1.根据下列条件求锐角θ的大小: (1)tan θ=2.9888; (2)sin θ=0.3957; (3)cos θ=0.7850; (4)tan θ=0.8972; (5) tan θ=22.3 (6) sin θ=0.6; (7)cos θ=0.2 (8)tan θ= 3; (9) sin θ= 2 3 2.某段公路每前进100米,路面就升高4米,求这段公路的坡角. 解:sin α= 100 4 =0.04,α=2°17′33″. 3.运用计算器辅助解决含三角函数值计算的实际问题. [例1]如图,工件上有-V 形槽.测得它的上口宽加20 mm 深19.2mm 。 求V 形角(∠ACB)的大小.(结果精确到1°) 分析:根据题意,可知AB =20 mm ,CD ⊥AB ,AC =BC ,CD=19.2 mm , 要求∠ACB ,只需求出∠ACD(或∠DCB)即可. 解:tanACD= 2 .1910 =CD AD ≈0.5208∴∠ACD =27.5°∠ACB =2∠ACD ≈2×27.5°=55°. [例2]如图,一名患者体内某重要器官后面有一肿瘤.在接受放射性治疗时,为了最大限度地保证疗效,并且防止伤害器官,射线必须从侧面照射肿瘤.已知肿瘤在皮下6.3 cm 的A 处,射线从肿瘤右侧9.8cm 的B 处进入身体,求射线的入射角度。 解:如图,在Rt △ABC 中, AC =6.3 cm ,BC=9.8 cm , ∴tanB= 8 .93 .6=BC AC ≈0.6429. ∴∠B ≈32°44′13″. 因此,射线的入射角度约为32°44′13″. 小结:这两例都是实际应用问题,确实需要知道角度,而且角度又不易测量,这时我们根 据直角三角形边的关系.即可用计算器计算出角度,用以解决实际问题.

相关主题
文本预览
相关文档 最新文档