相平面法
- 格式:ppt
- 大小:1015.50 KB
- 文档页数:41
7-4 相 轨 迹一、相轨迹的概念设二阶系统可以用下列常微分方程描述),(x x f x= 或),(xx f dtxd = 式中),(xx f 一般是x 和x 的非线性函数。
该系统的时域解,可以用x 与t 的关系曲线来表示。
也可把时间t 作为参变量,用x 与x之间的关系曲线来表示。
下面以线性二阶系统为例加以说明。
设线性二阶系统如图7-34(a)所示,其单位阶跃响应及其导数如图7-34(b)所示。
即可把系统的阶跃响应用图7-34(c)所示的x 与x 之间的关系曲线来描述,由图可见,xx -曲线同样很直观地表示了系统的运动特性。
从某种意义上来说,甚至比)(t x 曲线更形象,可获得更多的信息。
显然,如果把方程),(x x f x=看作是一个质点运动方程,用x 表示质点的位置,那么x 就表示质点的运动速度。
用x 和x 描述方程的解,也就是用质点的“状态”(位置和速度)来表示该质点的运动。
在物理学中,这种不直接用时间变量而用状态变量来描述运动的方法称为相空间方法,也称为状态空间法。
在自动控制理论中,把具有直角坐标xx -的平面称为相平面。
相平面是二维的状态空间(平面),相平面上的每个点对应着系统的一个运动状态,这个点就称为相点。
相点随时间t 的变化在xx -平面上描绘出的轨迹线,表征了系统运动状态(相)的演变过程,这种轨迹称为相轨迹。
对于二阶系统,它的状态变量只有两个,所以二阶系统的运动可在相平面上表示出来。
对于三阶系统,它有三个状态变量,必须用三维空间来描述其相迹,这就比较困难了。
对于三阶以上的系统,要作其相轨迹就更加困难;然而原则上可以将二维空间中表示点运动的概念扩展到n 维空间去。
相平面法是一种用图解求下列两个联立一阶微分方程组的方法。
首先把二阶常微分运动方程),(x x f x= 改写成两个联立一阶微分方程,令1x x =,21x x =∙则有12212(,)dx x dt dx f x x dt ⎧=⎪⎪⎨⎪=⎪⎩ 或 (,)dxx dtdx f x x dt⎧=⎪⎪⎨⎪=⎪⎩ (7-20)用(7-20)式的第一个方程除第二个方程,可得xx x f dx xd ),(1= (7-21)解(7-21)式就可得相轨迹方程,作出相迹来。
7.2 相平面法相平面法是一种在时域中求解二阶微分方程的图解法。
它不仅能分析系统的稳定性和自振荡,而且能给出系统运动轨迹的清晰图像。
相平面法一般适用于二阶非线性系统的分析。
7.2.1 相平面的基本概念图7-8 相轨迹291ξ=292293294295296297图7-11 确定相轨迹切线方向的方向场及相平面上的一条相轨迹7.2.3 非线性系统的相平面分析1. 利用二阶线性系统的相轨迹分析一类非线性系统例7-3 试确定下列方程的奇点及其类型,画出相平面图的大致图形。
(1)0sgn =++x x x (2)0||=+x x解 (1)系统方程可写为系统的奇点Ⅰ:1-=I e x Ⅱ:1=II e x系统特征方程为012=+s ,特征根j s ±=2,1,奇点为中心点。
画出系统的相平面图如图2987-12所示。
x 轴是两部分相轨迹的分界线,称之为“开关线”。
上、下两半平面的相轨迹分别是以各自奇点I e x 和II e x 为中心的圆,两部分相轨迹相互连接成为相轨迹图。
由图可见,系统的自由响应运动最终会收敛到)1,1(-之间。
奇点在)1,1(-之间连成一条线,称之为奇线。
图7-12 相轨迹图 图7-13 相轨迹图(2)系统方程可写为特征方程、特征根和奇点为Ⅰ:012=+s ,j s ±=2,1, 奇点0=eI x (中心点) Ⅱ:012=-s , 12,1±=s , 奇点0=eII x (鞍点)画出系统的相平面图如图7-13所示。
x轴是开关线,左半平面相轨迹由鞍点决定,右半平面相轨迹由中心点确定。
由图可见,系统的自由响应总是会向x 轴负方向发散,系统不稳定。
2. 非线性系统相平面分析大多数非线性控制系统所含有的非线性特性是分段线性的,或者可以用分段线性特性来近似。
用相平面法分析这类系统时,一般采用“分区一衔接”的方法。
首先,根据非线性特性的线性分段情况,用几条分界线(开关线)把相平面分成几个线性区域,在各个线性区域内,各自用一个线性微分方程来描述。
7.2 相平面法相平面法是一种在时域中求解二阶微分方程的图解法。
它不仅能分析系统的稳定性和自振荡,而且能给出系统运动轨迹的清晰图像。
相平面法一般适用于二阶非线性系统的分析。
7.2.1 相平面的基本概念1. 相平面和相轨迹设一个二阶系统可以用下面的常微分方程),(=+xxfx(7-1)来描述。
其中),(xxf 是x和x 的线性或非线性函数。
在一组非全零初始条件下()0(x 和)0(x不全为零),系统的运动可以用解析解)(tx和)(tx 描述。
如果取x和x 构成坐标平面,则系统的每一个状态均对应于该平面上的一点,这个平面称相平面。
当t变化时,这一点在x-x 平面上描绘出的轨迹,表征系统状态的演变过程,该轨迹就叫做相轨迹(如图7-8(a)所示)。
相平面和相轨迹曲线簇构成相平面图。
相平面图清楚地表示了系统在各种初始条件下的运动过程。
例如,研究以方程22=++xxxωξω(7-2)描述的二阶线性系统在一组非全零初始条件下的运动。
当0=ξ时式(7-2)变为2=+xxω(7-3)初始条件为)0(xx=,)0(xx=,方程(7-3)对应有一对虚根,即ωjp±=-2,1式(7-3)的解为图7-8 相轨迹)sin(ϕω+=tAx(7-4)式中,2220ωxxA+=,arctanxxωϕ=设x为描述二阶线性系统的一个变量,取x为描述系统的另一状态变量,即)cos(ϕωω+==tAdtdxx (7-5)从式(7-4)、式(7-5)中消去变量t,可得出系统运动过程中两个状态变量的关系为222)(Axx=+ω这是一个椭圆方程。
椭圆的参数A取决于初始条件x和x 。
选取不同的一组初始条件,可得到不同的A,对应相平面上的相轨迹是不同的椭圆,这样便得到一个相轨迹簇。
0=ξ时的相平面图如图7-9所示,表明系统的响应是等幅周期运动。
图中箭头表示时间t增大的方向。
2.相轨迹的性质相平面的上半平面中,0>x ,相迹点沿相轨迹向x轴正方向移动,所以上半部分相轨迹箭头向右;同理,下半相平面0<x ,相轨迹箭头向左。
自动控制原理相平面法知识点总结自动控制原理相平面法是控制工程中的重要方法之一,通过将系统的转移函数映射到相平面上进行分析,可以得到系统的稳定性、动态响应等性能指标。
以下是对自动控制原理相平面法的知识点总结:1. 相平面的概念及表示相平面是用来表示系统传递函数的一种图形化工具,通常由实部和虚部组成。
相平面上的点代表传递函数在不同频率下的响应,可以通过绘制相平面上的轨迹来分析系统的动态特性。
2. 极点和零点极点和零点是传递函数中的重要概念。
极点是使传递函数分母等于零的根,影响系统的稳定性和动态响应;零点是使传递函数分子等于零的根,影响传递函数在不同频率下的响应特性。
3. 映射关系和稳定性判断相平面法中的映射关系将传递函数的极点映射到相平面上,通过分析相平面上的极点位置可以判断系统的稳定性。
一般来说,当系统的所有极点位于相平面的左半平面时,系统是稳定的;当存在极点位于右半平面时,系统是不稳定的。
4. 频率响应和幅频特性频率响应是指系统在不同频率下的输出响应情况。
相平面法可以通过绘制Bode图来分析系统的频率响应及其幅频特性。
幅频特性描述了系统的增益对频率的依赖关系,可以用来评估系统的稳定性和频率衰减特性。
5. 极点分布和动态响应传递函数的极点分布可以直接反映系统的动态响应特性。
相平面法可以通过绘制极点分布图来分析系统的阻尼比、超调量等动态性能指标。
例如,共轭复根表示系统存在振荡;实部大于零的极点会导致系统的不稳定和不良的动态特性。
6. 根轨迹分析根轨迹是描述系统极点随参数变化而形成的轨迹。
根轨迹可以通过绘制相平面上函数极点的运动轨迹来分析系统的稳定性和动态响应。
根轨迹的性质包括起点、终点、对称性等,可以提供关于系统稳定性和响应特性的重要信息。
7. 闭环稳定判据通过相平面法可以得到闭环传递函数的极点位置,进而判断闭环系统的稳定性。
常用的闭环稳定判据包括Nyquist判据和Routh-Hurwitz判据。