8-1已知具有理想继电器的非线性系统如图8-1所示,试用相平面法分析
- 格式:doc
- 大小:85.00 KB
- 文档页数:4
·43·第8章 非线性控制系统的分析例题解析例8-1 设非线性系统具有典型结构,试用等效增益概念分析具有死区的三位置理想继电特性(见图8-1(a))对系统稳定性的影响。
图8-1 稳定性分析解:由等效增益定义x y K /=知,等效增益曲线如图8-1(b)所示,其中∆=/M K m 。
设系统不存在非线性时,临界稳定增益为K c ,于是① 若K c >K m ,如图8-1(b)所示,则因实际增益小于临界增益K c ,所以系统稳定 ② 若K c <K m ,如图8-1(c )所示,其中x 0=M./K c ,则当x<x 0时,因m K K >,系统不稳定,x 发散;当x 增加至使x >x 0时,此时m K K <,系统稳定,x 收敛;当x 减小至使x <x 0时,重复上述过程。
可见,在这种情况下,系统将出现以x 0为振幅的自激振荡。
③ 原系统加入具有死区的理想三位置继电特性后,改善了系统的稳定性。
不论原系统是否发散,现系统都不会发散,但可能产生一个以x 0为振幅的自激振荡。
例8-2 试求图8-2所示非线性环节的描述函数。
(a ) (b )·44·图 8-2 非线性环节解:(1)对于图8-2(a ),因为t X x x y ωsin ,3==且单值奇对称,故A1=03204320432043sin 4sin 1sin 11X t td X t d t X t td y B ====⎰⎰⎰πππωωπωωπωωπ21143)(X X A j X B X N =+=图 8-3(2)对于图8-2(b ),因为图示非线性可以分解为图8-3所示两个环节并联,所以 K XMX N X N X N +=+=π4)()()(21 例8-3 试将图8-4(a ),(b )所示系统归化为一个非线性部分和一个线性部分串联的典型结构。
(a ) (b )图 8-4解:(1)G 1与G 2是小回路的负反馈,则2111G G G G +=从而得典型结构,见图8-5。
第二章习题及答案2-1 试建立题2-1图所示各系统的微分方程 [其中外力)(t F ,位移)(t x 和电压)(t u r 为输入量;位移)(t y 和电压)(t u c 为输出量;k (弹性系数),f (阻尼系数),R (电阻),C (电容)和m (质量)均为常数]。
解(a )以平衡状态为基点,对质块m 进行受力分析(不再考虑重力影响),如图解2-1(a)所示。
根据牛顿定理可写出22)()(dtyd m dt dy f t ky t F =-- 整理得)(1)()()(22t F m t y m k dt t dy m f dtt y d =++(b )如图解2-1(b)所示,取A,B 两点分别进行受力分析。
对A 点有 )()(111dtdydt dx f x x k -=- (1) 对B 点有 y k dtdydt dx f 21)(=- (2) 联立式(1)、(2)可得:dtdx k k k y k k f k k dt dy2112121)(+=++ (c) 应用复数阻抗概念可写出)()(11)(11s U s I csR cs R s U c r ++= (3) 2)()(R s Uc s I =(4) 联立式(3)、(4),可解得:CsR R R R Cs R R s U s U r c 212112)1()()(+++=微分方程为:r r c c u CR dt du u R CR R R dt du 121211+=++ (d) 由图解2-1(d )可写出[]Css I s I s I R s U c R R r 1)()()()(++= (5) )()(1)(s RI s RI Css I c R c -= (6) []Css I s I R s I s U c R c c 1)()()()(++= (7)联立式(5)、(6)、(7),消去中间变量)(s I C 和)(s I R ,可得:1312)()(222222++++=RCs s C R RCs s C R s U s U r c 微分方程为 r r r c c c u RC dt du CR dt du u R C dt du CR dt du 222222221213++=++ 2-2 试证明题2-2图中所示的力学系统(a)和电路系统(b)是相似系统(即有相同形式的数学模型)。
第八章 非线性控制系统习题答案8-1 解:由原方程得:2225.03)5.03(),(x x x x x x x x x x f x--+-=----== ,令0==x x,得:0)1(2=+=+x x x x ,解出奇点为:1,0-=x 。
在0=x 处,特征根为:984.025.02,1j s ±=,显然为不稳定的焦点。
在1-=x 处,特征根为:225.45.02,1±=s ,显然为鞍点。
概略画出奇点附近的相轨迹如下:-1习题8-1相轨迹图8-2解:原方程可改写为:⎩⎨⎧=-+≥=++0II 0Ix x x x x x x x 0,:0,:系统的特征方程及特征根为:⎪⎩⎪⎨⎧+-==+±-==++)(618.0,618.1,01II )(2321,01I 2,122,12鞍点-:稳定焦点:s s s js s s 推导等倾线方程:xx dx xd --==1α,则有:x x xβα=+-=11 ,即: ⎪⎪⎩⎪⎪⎨⎧-=≥--=0,11II 0,11I x x βαβα::,画出系统相平面如下:习题8-2相平面图8-3 (1)解:相平面上任一点的相轨迹斜率为:x xxdxx dsin+-=,由=dxx d,得:),2,1,0(±±==kkxπ,因此在相平面的x轴上,),2,1,0(±±==kkxπ的点均为奇点。
在x轴上满足),2,1,0(2±±==kkxπ的所有奇点附近,由泰勒级数展开来验证这类奇点为稳定焦点。
在x轴上满足),2,1,0()12(±±=+=kkxπ的所有奇点附近,由泰勒级数展开来验证这类奇点为鞍点。
绘制相轨迹如下图所示:习题8-3(1)相轨迹图(2)解:原方程可改写为:⎩⎨⎧=-≥=+IIIxxxxxx0,:0,:系统的特征方程及特征根为:⎪⎩⎪⎨⎧±==±==+)(1,01II)(,01I2,122,12鞍点-:中心点:ssjss推导等倾线方程:⎪⎪⎩⎪⎪⎨⎧≥11xxxxxx,=,-=αα,画出系统相平面如下:习题8-3(2)相轨迹图(3)解:令0==xx,得0sin=x,得出系统的奇点:,2,,0ππ±±=x当,2,1,02±±==kx,κπ时,令2xx+=κπ,可以验证奇点,2,1,02±±==kx,κπ为中心点。
参考答案一、填空题1. 非本质;本质2. 自持振荡3. 初始条件;输入信号大小4. 饱和非线性;死区非线性;间隙非线性;继电器非线性5. 不稳定6. 稳定;不稳定;半稳定7. 自左向右;自右向左 二、分析与计算题1. 求3()()y t ax t =的描述函数。
解:由于3()()y t ax t =是单值奇函数,所以其傅里叶级数展开式中A 0=0、A 1=0、φ1=0,将()sin x t A t ω=代入B 1的计算公式,可得2102330340320320303031()sin 1sin sin 2sin 21cos 2()2212cos 2cos 241cos 412cos 22242311(cos 2cos 4)828231(sin 284B y t td taA t td t aA td t aA t d t aA t t d t tt aA d t aA t t d t aA πππππππωωπωωωπωωπωωπωωωπωωωπωωωπππ===-=-+=+-+==-+=-⎰⎰⎰⎰⎰⎰⎰31sin 4)003234t t aA ππωω+=所以32133()44B aA N A aA A A ===2.设具有滞环继电器非线性特性的非线性系统结构如题图8.1所示,已知b =1,a =0.3,试判断系统是否存在自持振荡,若存在,则求出自持振荡的幅值和频率。
题图8.1解:具有滞环的继电器非线性特性的描述函数为24()j()abN A A a Aπ=≥其描述函数负倒数特性为1j ()()4a A a N A bπ-=≥ 可见,描述函数负倒数特性的虚部为常数4a b π-,即1()N A -曲线为一条虚部为4abπ-的直线。
由于10()(21)(0.41)G s s s =++,所以222222222210(j )(2j 1)(0.4j 1)10(12j )(10.4j )(14)(10.16)10(1 2.4j 0.8)(14)(10.16)10824j (14)(10.16)(14)(10.16)G ωωωωωωωωωωωωωωωωω=++--=++--=++-=-++++由以上可知,1()N A -曲线与(j )G ω必有交点,而且交点为稳定的,因此会产生自持振荡。
7-5 非线性控制系统的相平面分析法相平面法在分析非线性系统时是很有用处的。
但是,我们在介绍非线性系统的分析方法之前,先讨论一下相平面法在分析线性二阶系统中的应用是很有好处的。
因为许多非线性元件特性一般都可分段用线性方程来表示,所以非线性控制系统也可以用分段线性系统来近似。
一、线性控制系统的相平面分析1、阶跃响应 设线性二阶控制系统如图7-38所示。
若系统开始处于平衡状态。
试求系统在阶跃函数)(1)(0t R t r ⋅= 作用下,在e e -平面上的相轨迹。
建立系统微分方程式,由图示系统可得Ke c cT =+ 因为c r e -=,代入上式得r r T Ke e e T +=++ (7-31) 对于->⋅=0),(1)(0t t R t r 时,0)()(==t r t r因此上式可写成0=++Ke e e T (7-32)方程(7-32)与(7-22)式相仿。
因为假设系统开始处于平衡状态,所以误差信号的初始条件是0)0(R e =和0)0(=e。
e e -平面上的相轨迹起始于)0,(0R 点,而收敛于原点(系统的奇点)。
当系统特征方程的根是共轭复数根,并且位于左半平面时,其相轨迹如图7-39(a)所示。
根据ee -平面上的相轨迹就可方便的求得c c -平面上系统输出的相轨迹,如图7-39(b)所示。
由图7-39可见,欠阻尼情况下系统的最大超调量P σ及系统在稳态时的误差为零。
因为e e -平面相轨迹最终到原点,即奇点;所以在cc -平面上相轨迹最终到达0R c =的稳态值,则奇点坐标为)0,(0R 。
2、斜坡响应 对于斜坡输入t V t r 0)(=;当0>t 时,)(t r 的导数0)(V t r= 及0)(=t r 。
因此,方程(7-31)可以写成0V Ke e eT =++ 或 0)(0=-++KV e K e e T 令v e K V e =-0,代入上式,则有0V Ke ee T =++ννν (7-33) 在v v ee -平面上,方程(7-33)给出了相平面图与在e e -平面上方程(7-32)给出的相平面图是相同的。
8非线性控制系统前面几章讨论的均为线性系统的分析和设计方法,然而,对于非线性程度比较严重的系统,不满足小偏差线性化的条件,则只有用非线性系统理论进行分析。
本章主要讨论本质非线性系统,研究其基本特性和一般分析方法。
8.1非线性控制系统概述在物理世界中,理想的线性系统并不存在。
严格来讲,所有的控制系统都是非线性系统。
例如,由电子线路组成的放大元件,会在输出信号超过一定值后出现饱和现象。
当由电动机作为执行元件时,由于摩擦力矩和负载力矩的存在,只有在电枢电压达到一定值的时候,电动机才会转动,存在死区。
实际上,所有的物理元件都具有非线性特性。
如果一个控制系统包含一个或一个以上具有非线性特性的元件,则称这种系统为非线性系统,非线性系统的特性不能由微分方程来描述。
图8-1所示的伺服电机控制特性就是一种非线性特性,图中横坐标u为电机的控制电压,纵坐标为电机的输出转速,如果伺服电动机工作在A1OA2区段,则伺服电机的控制电压与输出转速的关系近似为线性,因此可以把伺服电动机作为线性元件来处理。
但如果电动机的工作区间在B1OB2区段•那么就不能把伺服电动机再作为线性元件来处理,因为其静特性具有明显的非线性。
8.1.1控制系统中的典型非线性特性组成实际控制系统的环节总是在一定程度上带有非线性。
例如,作为放大元件的晶体管放大器,由于它们的组成元件(如晶体管、铁心等)都有一个线性工作范围,超出这个范围,放大器就会出现饱和现象;执行元件例如电动机,总是存在摩擦力矩和负载力矩,因此只有当输入电压达到一定数值时,电动机才会转动,即存在不灵敏区,同时,当输入电压超过一定数值时,由于磁性材料的非线性,电动机的输出转矩会出现饱和;各种传动机构由于机械加工和装配上的缺陷,在传动过程中总存在着间隙,等等。
实际控制系统总是或多或少地存在着非线性因素,所谓线性系统只是在忽略了非线性因素或在一定条件下进行了线性化处理后的理想模型。
常见典型非线性特性有饱和非线性、死区非线性、继电非线性、间隙非线性等。
第一部分信号系统实验一常用信号的观察一、实验目的1.了解常用信号的波形和特点。
2.了解相应信号的参数。
3.学习示波器的使用。
二、实验设备1.THBCC-1型信号与系统²控制理论及计算机控制技术实验平台2.双踪慢扫描示波器1台3.PC机(安装数字信号发生器的软件),串口通信线一根。
三、实验内容1.观察常用的信号,如:正弦波、方波、三角波、锯齿波及一些组织函数波形如y=sin(n ³x)+cos(m³x)。
2.用示波器测量信号,读取信号的幅度和频率,并用坐标纸上记录信号的波形。
四、实验原理说明描述信号的方法有多种,可以是数学表达式(时间的函数),也可以是函数图形(即为信号的波形)。
对于各种信号可以分为周期信号和非周期信号;连续信号和离散信号等。
五、实验步骤1.连接数字信号发生器的串口通信线,打开数字信号发生器的电源。
2.运行上位机的波形发生器软件,选择串口和波特率,然后选择波形,点击发送数据,用示波器观察输出的波形。
3.选择不同的频率,观察输出波形的变化。
六、实验报告1.根据实验测量的数据,绘制各个信号的波形图,并写出相应的数学函数表达式。
实验二 零输入、零状态及完全响应一、实验目的1.通过实验,进一步了解系统的零输入响应、零状态响应和完全响应的原理。
2.掌握用简单的R-C 电路观测零输入响应、零状态响应和完全响应的实验方法。
二、实验设备1.THBCC-1型 信号与系统²控制理论及计算机控制技术实验平台 2.双踪慢扫描示波器1台三、实验内容1.连接一个能观测零输入响应、零状态响应和完全响应的电路图(参考图2-1)。
2.分别观测该电路的零输入响应、零状态响应和完全响应的动态曲线。
四、实验原理1.零输入响应、零状态响应和完全响应的模拟电路如图2-1所示。
图2-1 零输入响应、零状态响应和完全响应的电路图2.合上图2-1中的开关K1,则由回路可得iR+Uc =E (1)∵ i =C dt dUC ,则上式改为=E c U dtc dURC + (2) 对上式取拉式变换得:RCU C (S )-RCU C (0)+U C (S )=S15∴RC 1S 5RC 1S 15S15=1RCS (0)RCU 1)S(RCS 15(S)=c U c ++⎪⎪⎪⎪⎭⎫⎝⎛+-+++,其中5V (0)U C =tRC 1-t RC 1-e e 1(t)=15c U 5+⎪⎪⎭⎫ ⎝⎛-(3)式(3)等号右方的第二项为零输入响应,即由初始条件激励下的输出响应;第一项为零状态响应,它描述了初始条件为零(Uc(0)=0)时,电路在输入E=15V作用下的输出响应,显然它们之和为电路的完全响应,图2-2所示的曲线表示这三种的响应过程。
第八章 习题
8-1已知具有理想继电器的非线性系统如图8-1所示,试用相平面法分析:
图8-1
(1)T d =0时系统的运动;
(2)T d =0.5时系统的运动,并说明比例微分控制对改善系统性能的作用; (3)T d =2,并考虑实际继电器有延迟时系统的运动。
8-2 设三个非线性系统的非线性环节一样,其线性部分分别为 (1)1
();(0.11)
G s s s =
+
(2)2
();(1)G s s s =
+ (3)2(1.51)
()(1)(0.11)
s G s s s s +=
++
用描述函数法分析时,哪个系统分析的准确度高。
8-3某单位反馈系统,其前向通路中有一描述函数4
()j
e
N A A
π-=的非线性元件,
线性部分的传递函数为15
()(0.51)
G s s s =+,试用描述函数法确定系统是否存在
自振?若有,参数是多少?
8-4已知非线性系统的结构图如图8-2所示,图中非线性环节的描述函数
6
()(0),2
A N A A A +=>+试用描述函数法确定:
图8-2
(1)使该非线性系统稳定,不稳定以及产生周期运动时,线性部分的k 值范围; (2)判断周期运动的稳定性,并计算稳定周期运动的振幅和频率。
8-5非线性系统如图8-3所示,试用描述函数法分析周期运动的稳定性,并确定系统输出信号振荡的振幅和频率。
图8-3
8-6试用描述函数法说明图8-4所示系统必然存在自振,并确定c 的自振振幅和频率,画出c,x,y 的稳态波形。
图8-4
8-7某线性系统的结构图如图8-5所示,试分别绘制下列三种情况时,变量e 的相轨迹,并根据相轨迹分别作出相应的e(t)曲线。
图8-5
(1)J=1,K 1=1,K 2=2,初始条件e(0)=3, (0)0;(0)1,(0) 2.5e e e ===-
; (2)J=1,K 1=1,K 2=0.5,初始条件e(0)=3, (0)0;(0)3,(0)0e e e ==-=
; (3)J=1,K 1=1,K 2=0,初始条件e(0)=1, (0)1;(0)0,(0)2e e e ===
;
8-8设一阶非线性系统的微分方程为3x x x =-+
试确定系统有几个平衡状态,分析各平衡状态的稳定性,并作出系统的相轨迹。
8-9试确定下列方程的奇点及类型,并用等倾线法绘制它们的相平面图: (1)||0x x x ++=
; (2)0x x sign x ++=
; (3)0x sin x
+= ;
(4)||0x x
+= ;
(5)112,
212,2x x x x x x ⎧=+⎪⎨⎪=+⎩
8-10若非线性系统的微分方程为 (1)2(30.5)0x x x x x +-++=
; (2)0x x x x
++=
; (3)20x x x
++= 。
试求系统的奇点,并概略绘制奇点附近的相轨迹。
8-11非线性系统的结构图如图8-6所示,系统开始是静止的,输入信号r(t)=4·1(t),试写出开关线方程,确定奇点的位置和类型,做出该系统的相平面图,并分析系统的运动特点。
图8-6
8-12变增益控制系统的结构图及其中非线性元件G N
的输入输出特性如图8-7
图8-7
所示,设系统开始处于零初始状态,若输入信号r(t)=R ·1(t),且R>e 0;kK<
1
4T
<K ,试绘出系统的平面图,分析采用变增益放大器对系统性能的影响。
8-13图8-8为一带有库仑摩擦的二阶系统,试用相平面法讨论库仑摩擦对系统单
位阶跃响应的影响。
图8-8
8-14设非线性系统如图8-62所示,输入为单位斜坡函数。
试在e e∙-平面上绘制相轨迹。
图8-9。