14.有理数的除法(1)
- 格式:ppt
- 大小:589.50 KB
- 文档页数:10
人教版数学七年级上册1.4《有理数的除法》(第1课时)教学设计一. 教材分析人教版数学七年级上册1.4《有理数的除法》(第1课时)是学生在学习了有理数加减乘运算的基础上,进一步深化对有理数运算的理解和掌握。
本节内容主要介绍了有理数的除法运算,包括同号有理数的除法、异号有理数的除法以及除以0的情况。
通过本节课的学习,学生能够掌握有理数除法的基本运算方法,并能够正确进行计算。
二. 学情分析学生在进入七年级之前,已经初步掌握了有理数的基本概念和加减乘运算。
但是,对于除法运算,学生可能还存在一些困惑和误解。
因此,在教学过程中,教师需要针对学生的实际情况进行引导和讲解,帮助学生理解和掌握有理数的除法运算。
三. 教学目标1.知识与技能目标:学生能够理解有理数除法的基本概念,掌握同号有理数、异号有理数以及除以0的除法运算方法,并能够正确进行计算。
2.过程与方法目标:通过小组合作、讨论交流等方法,培养学生解决问题的能力和团队合作精神。
3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生的耐心和细心,使学生能够积极主动地参与数学学习。
四. 教学重难点1.教学重点:学生能够掌握有理数除法的基本运算方法,并能够正确进行计算。
2.教学难点:学生能够理解和掌握同号有理数、异号有理数以及除以0的除法运算方法。
五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助学生理解和掌握有理数除法的基本概念和运算方法。
2.实例讲解法:教师通过具体的例子,解释和说明有理数除法的运算规则,让学生能够直观地理解和掌握。
3.小组合作法:学生分组进行讨论和交流,共同解决问题,培养团队合作精神和解决问题的能力。
六. 教学准备1.教学PPT:教师准备相关的教学PPT,包括有理数除法的运算规则、例题等,以便进行直观的教学展示。
2.练习题:教师准备一些练习题,用于学生在课堂上进行操练和巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾之前学过的有理数加减乘运算,激发学生的学习兴趣,为新课的学习做好铺垫。
有理数的除法教案(14篇)有理数的除法教案1教学目标1.理解有理数除法的意义,娴熟掌控有理数除法法那么,会进行运算;2.了解倒数概念,会求给定有理数的倒数;3.通过将除法运算转化为乘法运算,培育同学的转化的思想;通过运算,培育同学的运算技能。
教学建议〔一〕重点、难点分析本节教学的重点是娴熟进行运算,教学难点是理解法那么。
1.有理数除法有两种法那么。
法那么1:除以一个数等于乘以这个数的倒数。
是把除法转化为乘法来解决问题。
法那么2是把有理数除法纳入有理数运算的统一程序:一确定符号;二计算绝对值。
如:按法那么1计算:原式;按法那么2计算:原式。
2.对于除法的两个法那么,在计算时可依据详细的状况选用,一般在不能整除的状况下应用第一法那么。
如;在有整除的状况下,应用第二个法那么比较方便,如;在能整除的状况下,应用第二个法那么比较方便,如,如写成就麻烦了。
〔二〕知识结构〔三〕教法建议1.同学实际运算时,老师要强调先确定商的符号,然后在依据不怜悯况采用适当的方法求商的绝对值,求商的绝对值时,可以径直除,也可以乘以除数的倒数。
2.关于0不能做除数的问题,让同学结合学校的知识接受这一认识就可以了,不必详细讲解并描述0为什么不能做除数的理由。
3.理解倒数的概念〔1〕依据定义乘积为1的两个数互为倒数,即:,那么互为倒数。
如:,那么2与,-2与互为倒数。
〔2〕由倒数的定义,我们可以得到求已知数倒数的一种基本方法:即用1除以已知数,所得商就是已知数的倒数。
如:求的倒数:计算,-2就是的倒数。
一般我们求已知数的倒数很少用这种方法,实际应用时我们常把已知数看作分数形式,然后把分子、分母颠倒位置,所得新数就是原数的倒数。
如-2可以看作,分子、分母颠倒位置后为,就是的倒数。
〔3〕倒数与相反数这两个概念很简单混淆。
要留意区分。
首先倒数是指乘积为1的两个数,而相反数是指和为0的两个数。
如:,2与互为倒数,2与-2互为相反数。
其次互为倒数的两个数符号相同,而互为相反数符号相反。
有理数的除法【目标导航】1. 理解除法是乘法的逆运算;2. 掌握除法法则,会进行有理数的除法运算;3. 经历利用已有知识解决新问题的探索过程.【预习引领】1.有理数的减法法则是什么? 2.两个有理数的乘法法则是什么? 3.在小学我们已经学习了除法运算,小学数的运算范围是怎样的?4.在有理数范围内又怎样进行除法运算呢?这节课共同研究有理数的除法.5.怎样计算8÷(-4)呢? 【要点梳理】知识点一:有理数的除法法则∵(-2)×(-4)=8 ∴8÷(-4)=-2∵8⎪⎭⎫⎝⎛-⨯41=-2 ∴8÷(-4)=8⎪⎭⎫ ⎝⎛-⨯41 同样可得:-9÷23=-9×32(-12)÷(-4)=(-12)⎪⎭⎫⎝⎛-⨯41换其他数的除法进行类似讨论,是否仍有除以a (≠a 0)可以转化为乘a1归纳有理数除法法则:除以一个不等于0的数,等于乘以这个数的倒数. ba b a 1⋅=÷0(≠b 因为一个数与它的倒数的符号相同,所以有理数的除法法则还有另一种说法:两数相除,同号得 ,异号得 ,并把绝对值相 .0除以任何一个不等于0的数,都得 .例1 计算:()1()936÷- ; ()2 ;()3 ()4注:一般被除数的绝对值能整除除数的绝对值时用第二个除法法则较简便. 练习:计算:()()()7631-÷- ()()802-÷()()522603÷- ()()75.1874-÷⎪⎭⎫⎝⎛-例2 化简下列分数: (1)312- (2)1545--(3)3612-练习:化简下列分数:(1)1854- (2)147-- (3)80-知识点二: 乘除混合运算乘除混合运算先将除法化成乘法,然后确定积的符号,最后求出结果. 例3 计算:(1)-313÷213⨯(-2)(2)-34×(-112)÷(-214)练习:(1)()()⎪⎭⎫ ⎝⎛-÷-÷-511412(2)()25.05832-÷⎪⎭⎫⎝⎛-⨯⎪⎭⎫ ⎝⎛-(2)()74431165156⨯⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯-例4 化简b ba a +(ab ≠0)的所有可能的值有 ( )A .1个B .2个C .3个D .4个 点拨:本题含有绝对值符号,故要考虑a 、b的正负情况.当a >0时,a 1aa =;当a <0时,1aa=-.小结:本节课大家一起学习了有理数除法法则.有理数的除法有2种方法,•一是根据除以一个数等于乘以这个数的倒数,二是根据“两数相除,同号得正,异号得负,并把绝对值相除”.一般能整除时用第二种.【课堂操练】1.有理数的除法法则是:_______________ ________ _______.2.两数相除,同号得________,异号得________,并把绝对值_________.3.计算: (1) 0÷(-3)=_________ ;(2) )89(1-÷-=_________ ; (3) -5÷(-5)=_________ ; (4) -43)34(-÷=_________ .4.化简: (1) 721-=___ ; (2) -824=___ ; (3)()824---=___ ; (4)25.075.0-=___ ;(5)1527-=___ ; (6) 3432-=___ .5.倒数等于它本身的数是:________;零________倒数.(填“有”或“没有”).6.如果甲数除以乙数的商为0,那么一定是( )A.甲、乙两数都为零B.乙数为零,而甲数不为零C.甲数为零,而乙数不为零D.乙数为零,而甲数不一定为07.下列说法中错误的是 ( )A.小于-1数的倒数大于它本身B.大于1的数的倒数小于它本身C.一个数的倒数不能等于它本身D.a (a ≠0)的倒数是a1 8.计算:⑴ 911811÷⎪⎭⎫ ⎝⎛- ⑵⎪⎭⎫ ⎝⎛-÷315327⑶()25.2833-÷⎪⎭⎫ ⎝⎛- ⑷25272550÷- (5)()723628÷-⨯ (6)341121353÷⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-÷315327()25.2833-÷⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛-352512【课后盘点】1.两个有理数的商是正数,这两个数( ) A.都是负数 B.都是正数 C.至少有一个是正数 D.两数同号2.如果()()110x y +÷-=,那么( ) A.0=x B.0=y C.1-=x 或1≠y D. 1-=x 且1≠y3.若0<ac ,cab ≥0,则有( )A.b ≥0B.b >0C.b ≤0D.b <04.⎪⎭⎫ ⎝⎛-522÷3×31= .5.下列说法中不正确的是( ) A.零不能作除数B.互为倒数的两数乘积等于1C.零没有倒数D.1除以一个数,等于这个数的倒数 6. 的倒数等于本身, 的相反数等于本身, 的绝对值等于本身,•一个数除以 等于本身,一个数除以 等于这个数的相反数. 7.计算题: ⑴ 15(2)()714-÷-⑵ )711(875.3-÷÷⑶ )145()7(23-÷-÷-⑷ 33157-÷+÷-()()()713(5)1(10)(3)(3)834÷-⨯-÷-(6)9(11)3(3)-⨯-÷÷-⑺()()47124748⨯-÷÷-⑻()89441281÷⎪⎭⎫⎝⎛-⨯÷-⑼⎪⎭⎫⎝⎛-÷⨯⎪⎭⎫ ⎝⎛-÷715747328.计算题 ⑴ )711()322()324(-÷-÷-⑵ 7)412(54)721()5(÷-⨯⨯-÷-⑶ )1()2.4()6.5(0)1(1-⨯---÷+-÷⑷ )216132(181-+÷⑸ (-2)313()5(21-⨯-÷)⑹ )25.0()58(32-÷-⨯-⑺ )533(9441272-÷⨯⨯-⑻ )52(4.1431)6.0(43321-⨯÷⨯-⨯÷-9.计算:⑴ 45)53()125(⨯-÷-⑵ )412()211()43(+÷-⨯-⑶ )25.0()53()321(-÷-÷-⑷ 143)91()121(317÷+÷-⨯⑸ )6()7636(-÷-⑹ )2(9449)8110(-÷⨯÷-⑺ ⎥⎦⎤⨯⎢⎣⎡-÷÷--511)3132(433)2113(⑻ )145()2(52825-⨯-÷+-设计:韦业纯10.已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值为1,求3x -(a +b +cd )-x .11.已知a 、b 、c 在数轴上的位置如图所示:(1)求||a ab +1||b -2||bc bc(2)比较a +b ,b +c ,c -b 的大小,并用“〈”将它们连接起来.【课外拓展】1.联欢会上,小红按照4个红气球,3个黄气球,2•个绿气球的顺序把气球串起来装饰会场,第52个气球的颜色是2.已知 a b c <0,a <c ,ac <0,则下列结论中正确的是( )A. a >0, b >0 ,c <0B. a <0 ,b <0,c >0C. a <0 ,b >0, c >0D. a >0,b <0,c <03.绝对值不大于5的所有整数的积等于 .4.n 个不等于0的有理数的积是负数,那么负因数的个数是( )A. n 个B.奇数个C.偶数个D.1个5.若2006个有理数相乘,其积为0,则这2004个数中( )A .最多有一个数为0B .至少有一个数为0C .恰好有一个数为0D .均为06.计算下列各式:11⨯= ;1111⨯= ;111111⨯= ;11111111⨯= ;(1)你发现了什么规律? (2)你能直接写出11111111111111⨯的结果吗?【趣味数学】以前有一个农民,他有17只羊,临终前,他嘱咐把羊分给三个儿子,他说:“大儿子分一半,二儿子分13,小儿子分14 ,但是不允许把羊杀死或者卖掉”.三个儿子感到很为难,不知怎么分,你能他们分吗?一家公司为了开发某种产品,需要每年向银行存款或取款,到今年,•存取款结果正好为零.如果把向银行的存款数(万元)记为正数,那么向银行的取款数(万元)就应当记为负数;如果把现在起向后的时间(年)记为正数,那么把现在起向前的时间(年)记为负数,在这个问题中,(1)(-100)÷4的实际意义是___________;(2)(-100)÷(-4)的实际意义是_____________.仿照上题,请你举一个实例,使问题的数量为:(1)16÷(-2) (2)(-10)÷(-2)设计:韦业纯资料采撷大数学家维纳的故事维纳(1894─1964)是最早在美洲数学界赢得国际荣誉的大数学家,关于他的轶事多极了.维纳早期在英国,后来赴美国麻省理工学院任职,长达25年.他是校园中大名鼎鼎的人物,人人都想与他套近乎.有一次一个学生问维纳怎样求解一个具体问题,维纳思考片刻就写出了答案.实际上这位学生并不想知道答案,只是问他“方法”.维纳说:“可是,就没有别的方法了吗?”思考片刻,他微笑着随即写出了另一种解法.维纳最有名的故事是有关搬家的事.一次维纳乔迁,妻子熟悉维纳的个性,搬家前一天晚上再三提醒他.她还找了一张便条,上面写着新居的地址,并用新居的房门钥匙换下旧房的钥匙.第二天维纳带着纸条和钥匙上班去了.白天恰有一人问他一个数学问题,维纳把答案写在那张纸条的背面递给人家.晚上维纳习惯性地回到旧居.他很吃惊,家里没人.从窗子望进去,家具也不见了.掏出钥匙开门,发现根本对不上.于是他使劲拍了几下门,随后在院子里踱步.突然发现街上跑来一个小女孩.维纳对她讲:“小姑娘,我真不走运.我找不到家了,我的钥匙插不进去.”小女孩说道:“爸爸,没错,妈妈让我来找你.”有一次维纳的一个学生看见维纳正在邮局寄东西,很想介绍一番.在麻省理工学院真正能与维纳直接说上几句话、握握手,还是十分难得的.但这位学生不知道怎样接近他才好.这时,只见维纳来来回回踱着步,陷于沉思之中.这位学生更担心了,生怕打断了先生的思维,而损失了某个深刻的数学思想.但最终还是鼓足勇气,靠近这个伟人:“早上好,维纳教授!”维纳猛地一抬头,拍了一下前额,说道:“对,维纳!”原来维纳正欲往邮签上写寄件人姓名,但忘记了自己的名字…….有理数的除法【目标导航】【预习引领】【要点梳理】知识点一:有理数的除法法则答案:正;负;除;0例3计算:答案:⑴原式=-4;⑵原式=36 125;⑶原式=233316-⨯=2316-;⑷原式=23489⨯=2318注:一般被除数的绝对值能整除除数的绝对值时用第二个除法法则较简便. 练习:计算:答案:⑴原式=9;⑵原式=0;⑶原式=-25;⑷原式=1 2例4化简下列分数:答案:⑴原式=-4;⑵原式=3;⑶原式=1 3 -练习:化简下列分数:答案:⑴原式=-3;⑵原式=12;⑶原式=0知识点二: 乘除混合运算例3计算:答案:⑴原式=103237⨯⨯=207;⑵原式=334429-⨯⨯=12-练习:答案:⑴原式=3115⎛⎫÷-⎪⎝⎭=-52;⑵原式=28435-⨯⨯=6415-⑶原式=2144561677-⨯⨯⨯=-24例4答案:C【课堂操练】1.答案:除以一个数等于乘以这个数的相反数2. 答案:正;负;除3.计算:答案:⑴原式=0;⑵原式=89;⑶原式=1;⑷原式=9164.化简:答案:⑴原式=-3;⑵原式=-3;⑶原式=3;⑷原式=-3;⑸-95;⑹-125、答案:±1;没有;6.答案:C;7.答案:C8.计算:答案:⑴原式=99810-÷=-8180;⑵原式=233316-⨯=2316-;⑶原式=2743892⨯=;⑷原式=-2227;⑸原式=-14;⑹原式=374114525325-⨯⨯⨯=-【课后盘点】1. 答案:D2. 答案:D3.答案:A4. 答案:415-5. 答案:D6.答案:±1;0;非负数;1;-17.计算题:答案:⑴原式=6;⑵原式=787278-⨯⨯=-3.5⑶原式=-35;⑷原式=359;⑸原式=15110418103156-⨯⨯⨯=-;⑹原式=-11;⑺原式=4;⑻原式=2⑼原式=747142373627⨯⨯⨯=8.计算题答案:⑴原式=14379838864-⨯⨯=-;⑵原式=7491519547-⨯⨯⨯⨯=-;⑶原式=-1+0-4.2=-5.2;⑷原式=1413()18666÷+-=113186⨯=;⑸原式=511052533-⨯⨯=-;⑹原式=286443515-⨯⨯=-;⑺原式=94572204918⨯⨯⨯=;⑻原式=543752335475-⨯⨯⨯⨯⨯=23-9.计算:答案:⑴原式=125144=;⑵原式=12;⑶原式=551004339-⨯⨯=-;⑷原式=2211477931233-⨯⨯⨯=-;⑸原式=167;⑹原式=8144118992⨯⨯⨯=;⑺原式=1311(4)3(1)12435⎡⎤-÷÷-⨯⎢⎥⎣⎦=927362445⎛⎫÷⨯⨯⎪⎝⎭=9445202273627⨯⨯⨯=;设计:韦业纯10.答案:解:根据题意得0a b+=,1cd=,1x=±,当1x=时,原式=3111--=;当1x=-时,原式=-3113-+=-,所以原式的值为-1或-3。
有理数的乘法与除法
1.有理数乘法
(1)两数相乘同号得正,异号得负,并把绝对值相乘,0同任何数相乘,都得0.
(2)几个不等于0的数相乘,积的符号由负因数的个数决定:当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.
(3)几个数相乘,有一个因数为0,积就为0.
2.倒数乘积为1的两个有理数互为倒数
(1)若a、b互为倒数,则ab=1或a=1/b, ,反之也成立.
(2)0没有倒数,因为不可能有一个数同0相乘的积为1.
(3)乘积为-1的两个数互为负倒数,即若ab=-1,则a、b互为负倒数,反之也成立.
3.乘法运算律
(1)交换律:两个数相乘,交换因数的位置,积不变,即ab= ba.。
《有理数的除法》教学设计第1课时一.教学目标1.学会利用有理数的除法法则进行简单的运算;2.熟练应用运算律进行运算;3.经历观察、探究等过程,理解有理数的除法运算是乘法运算的逆运算;4.通过利用有理数的运算法则和运算律进行混合运算,培养学生的数学运算能力.二.教学重难点重点:有理数的除法法则;难点:有理数的除法法则.三.教学工具多媒体1(0)b b≠.师指出,将除法转化为乘法以后,两数相除,同号得正,异号得负,并把绝对值相除个不等于0的数,都得教师点评:(1)法则所揭示的内容告诉我们,有理数除法与小学时学的除法一样,它是乘法的逆运算,是借助法运算转化为乘法运算 9 13 9 6 )) 3553)(-))(-)师生共同完成,教师注意强调法则:再确定商的绝对值.教师出示教材例6.化简下列分数:(1)123-3412)=-)(-)=符号法则;(2)一般来说,在能整除的情况下,往往采用法则的后一种形式,在确定符号后,况下,则往往将除数换成倒数,转化为乘法运算51255714⎛⎫⨯- ⎪⎝⎭729 304575-8 232.计算99141580.25.5);)(-)(-);)(-)(-)10311(2)52(3)6415环节五课堂小结【小结】小结:谈谈本节课的收获.回顾本节课所讲的内容通过小结,使学生对本节课的知识有一个系统的回顾,对知识有一个完整的认识.环节六布置作业五、布置作业教材习题1.4第4~6题.课后完成练习通过课后作业,教师能及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.。
有理数的乘法和除法有理数是指可以表示为两个整数的比例的数,包括整数、分数和小数。
在数学中,有理数的乘法和除法是重要的运算方法。
本文将介绍有理数的乘法和除法运算规则,并通过实例来说明。
一、有理数的乘法运算有理数的乘法运算可以通过两个不同符号的数的乘积的符号来确定。
具体规则如下:1. 两个正数相乘,积为正数。
例如:2 × 3 = 6。
2. 两个负数相乘,积为正数。
例如:(-2) × (-3) = 6。
3. 一个正数和一个负数相乘,积为负数。
例如:2 × (-3) = -6。
乘法运算时,可以先忽略符号,然后将绝对值相乘,最后确定结果的符号。
例如:(-2) × 3 = -(2 × 3) = -6。
二、有理数的除法运算有理数的除法运算是通过将除数乘以倒数的方式进行,具体规则如下:1. 两个正数相除,商为正数。
例如:6 ÷ 2 = 3。
2. 两个负数相除,商为正数。
例如:(-6) ÷ (-2) = 3。
3. 正数除以负数,商为负数。
例如:6 ÷ (-2) = -3。
4. 负数除以正数,商为负数。
例如:(-6) ÷ 2 = -3。
除法运算时,可以将除数转化为倒数,然后进行乘法运算。
例如:6 ÷ 2 = 6 × (1/2) = 3。
三、有理数乘法和除法的综合运算有理数的乘除运算可以同时进行,根据运算规则,首先进行乘法运算,然后再进行除法运算。
例如:(-2) × 3 ÷ (-4) = -(2 × 3) ÷ 4 = -6 ÷ 4 = -3/2在进行有理数的乘除运算时,可以先计算乘法部分,再进行除法运算。
首先计算乘法部分的积,然后再进行除法运算。
例如:(-2) × 3 ÷ (-4) = (-2) × 3 = -6-6 ÷ (-4) = 3/2四、实例演示以下是几个实例,通过这些实例来演示有理数的乘法和除法运算:1. 2 × 3 = 62. (-2) × (-3) = 63. 2 × (-3) = -64. (-2) × 3 = -65. 6 ÷ 2 = 36. (-6) ÷ (-2) = 37. 6 ÷ (-2) = -38. (-6) ÷ 2 = -39. (-2) × 3 ÷ (-4) = -3/2通过以上实例,我们可以看到有理数的乘法和除法运算遵循一定的规则,根据符号相乘、绝对值相乘再确定符号的原则进行运算。