有理数的除法第一课时
- 格式:pdf
- 大小:1.99 MB
- 文档页数:18
1.4.2 有理数的除法<第一课时)教案目标1.知识与技能①了解有理数除法的定义.②经历有理数除法法则的过程,会进行有理数的除法运算.③会化简分数.2.过程与方法①通过有理数除法法则的导出及运用,让学生体会转化思想.②培养学生运用数学思想指导数学思维活动的能力.3.情感、态度与价值观在独立思考的基础上,积极参与对数学问题的讨论,能从交流中获益.教案重点难点重点:正确应用法则进行有理数的除法运算.难点:怎样根据不同的情况来选取适当的方法求商.教与学互动设计<一)创设情境,导入新课我们在前几节课和大家一起学习了有理数的乘法.并且还由乘法而认识了有理数的倒数问题.那大家知道乘法的逆运算是什么?该如何计算和应用.这就是本节课我们学习的内容.b5E2RGbCAP <二)合作交流,解读探究试一试 <-10)÷2=?交流因为除法是乘法的逆运算,也就是求一个数“?”,使<?)×2=-10显然有<-5)×2=-10,所以<-10)÷2=-5我们还知道:<-10)×=-5由上式表明除法可转为乘法.即:<-10)÷2=<-10)×再试一试:<-12)÷<-3)=?总结除以一个数,等于乘以这个数的倒数<除数不能为0).•用字母表示成a÷b=a×,<b≠0).<三)应用迁移,巩固提高例1:计算:<1)<-36)÷9 <2)<-63)÷<-9) <3)<-)÷<4)0÷3 <5)1÷<-7) <6)<-6.5)÷0.13<7)<-)÷<-) <8)0÷<-5)提出问题:在大家的计算过程中,应用除法法则的同时,有没有新的发现?学生活动:分组讨论.总结两数相除,同号得正,异号得负,并把绝对值相除.0•除以任何一个不等于0的数,都得0.点拨这个运算方法的得出为计算有理数除法又添了一种方法.我们要根据具体情况灵活选用方法.大家试来比较一下,以上各题分别用哪种运算法则更简便.p1EanqFDPw讨论 <1)、<2)、<5)、<6)用确定符号,并把绝对值相除.<3)、<7)用除以一个数,等于乘以这个数的倒数.引导小学里我们都知道,除号与分数线可相互转换.如=-12÷3.•利用这个关系,我们可以将分数进行化简.DXDiTa9E3d例2 化简下列分数<1) <2) <3) <4)学生活动:口答.备选例题<2006·福州)+<ab≠0)的所有可能的值有<C)A.1个 B.2个 C.3个 D.4个RTCrpUDGiT点拨本题含有绝对值符号,故要考虑a、b的正负情况.当a>0时,=1;当a<0时,=-1.答案 C例3 试着用计算器计算<1)-0.056÷1.4=-0.04 。
第一章有理数2.2有理数的乘除法2.2.2 有理数的除法第1课时有理数的除法一、教学目标【知识与技能】掌握有理数除法法则,会进行有理数的除法运算以及分数的化简.【过程与方法】通过学习有理数除法法则,体会转化思想,会将乘除混合运算统一为乘法运算.【情感态度与价值观】培养学生勇于探索积极思考的良好学习习惯.二、课型新授课三、课时第1课时四、教学重难点【教学重点】正确应用法则进行有理数的除法运算.【教学难点】灵活运用有理数除法的两种法则.五、课前准备教师:课件、直尺、倒数图片等。
学生:三角尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课根据实验测定,高度每增加1km,气温大概下降6℃.某登山运动员攀登某高峰的途中发回信息,报告他所在高度的温度是-15℃,当时地面气温为3℃.请问你能确定登山运动员所在的位置高度吗?(出示课件2)(二)探索新知1.师生互动,探究有理数的除法法则教师问1:小明从家里到学校,每分钟走50米,共走了20分钟,问小明家离学校有多远?学生回答:50×20=100.教师问2:放学时,小明仍然以每分钟50米的速度回家,应该走多少分钟?学生回答:100 ÷50=20.教师问3:从上面这个例子你可以发现,有理数除法与有理数乘法之间满足怎样的关系?学生回答:有理数除法与有理数乘法互为逆运算.教师问4:引入负数后,如何计算有理数的除法呢?例如8÷(-4).师生共同讨论后解答如下:根据除法意义,这就是要求一个数,使它与-4相乘得8.因为(-2)×(-4)=8所以 8÷(-4)=-2 ①另外,我们知道,8×(-)=-2 ②由①、②得 8÷(-4)=8×(-)③③式表明,一个数除以-4可以转化为乘以-来进行,即一个数除以-4, 等于乘以-4的倒数-.教师问5:对于其他的数是不是也可以呢?请完成下面的题目:(出示课件6)学生回答:中间组由上到下答案依次为:-2,-6,4,-8;右边组由上到下5答案依次为:-2,-6,4,-8;5教师问6:上面各组数计算结果有什么关系?由此你能得到有理数的除法法则了吗?学生回答:上面各组数计算结果相等,有理数的除法可以转化为乘法进行计算.教师问7:观察下列两组式子,你能找到它们的共同点吗?(出示课件7)学生回答:除以一个数等于乘以它的倒数.教师问8:除数能为0吗?学生回答:不能为0.教师问9:换其他数的除法进行类似讨论,是否仍有除以a(a≠0)可以转化为乘以呢?[例如(-10)÷(-0.4)]学生做题后回答:仍然可以.总结点拨:从而得出有理数除法法则:(出示课件8)除以一个不等于0的数,等于乘以这个数的倒数.这个法则也可以表示成:a÷b=a·(b≠0),其中a、b表示任意有理数(b≠0)例如:教师问10:利用上面的除法法则计算下列各题.(出示课件9)(1)(–54)÷ (–9);(2)(–27) ÷3;(3)0 ÷ (–7);(4)(–24) ÷(–6).学生回答:(1)6;(2)-9;(3)0;(4)4教师问11:从上面我们能发现商的符号有什么规律?学生回答:同号得正,异号得负.总结点拨:(出示课件10)两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.教师问12:到现在为止我们有了两个除法法则,那么两个法则是不是都可以用于解决两数相除呢?(出示课件11)师生共同解答如下:1. 两个法则都可以用来求两个有理数相除.2. 如果两数相除,能够整除的就选择法则二,不能够整除的就选择用法则一.例1:计算:(出示课件12)(1)(–36) ÷ 9;(2)(-1225)÷(-35) .师生共同解答如下:解:(1)(–36) ÷ 9= –(36×19 )= –4;(2)例2:化简下列各式:(出示课件14)(1) ―123 ;(2)―45―12 .师生共同解答如下:解:(1)(2)例3:计算:(出示课件)(1) (2)师生共同解答如下:解:(1)原式=====点拨:如果有带分数,可以将带分数写成整数部分和分数部分的和,利用分配律进行运算,更加简便.(2)原式== 1点拨:将小数化为分数.总结点拨:1. 有理数除法化为有理数乘法以后,可以利用有理数乘法的运算律简化运算.2. 乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算).(三)课堂练习(出示课件19-22)1. (–21) ÷7的结果是( )A.3B.–3 C.13D. –132. 计算:(–12) ÷ 3=_______.3. 填空:(1)若a,b互为相反数,且a ≠ b,则ab=________;(2)当a < 0时,|a|a=_______;(3)若a>b,ab<0,则a,b的符号分别是__________.(4)若–3x=12,则x =_____.4.若|2x+6|+|3―y|=0,则xy=_________.5. (1)计算;(2). 计算;(3)计算参考答案:1.B2.-43.(1)-1;(2)-1;(3)a>0,b<0;(4)-44.-1 解析:由题意得,|2x+6|+|3―y|=0,解得x=-3,y=3,所以xy =―33=-1.5.解:(1)原式==(2)原式==(3)原式==(四)课堂小结今天我们学了哪些内容:除以一个不等于0的数,等于乘以这个数的倒数.两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.(五)课前预习预习下节课(1.4.2)36页到37页的相关内容。