精品教案:1.4.2有理数的除法(第1课时)
- 格式:docx
- 大小:59.78 KB
- 文档页数:7
1.4.2 有理数的除法课程目标:一、知识与技能目标1、在理解有理数除法意义的基础上,掌握有理数除法法则,并初步了解有理数法则的合理性及倒数的意义.2、能够熟练地进行有理数的乘、除混合运算.二、过程与方法目标教材通过除法意义计算一个实例,得出法则可以利用乘法来进行的结论,得出除法与乘法类似的法则,最后通过几个例题的教学说明有理数除法的另一种形式,也指出有理数除法与分数互换的关系.三、情感态度与价值观目标1、通过有理数除法法则的导出及运用,让学生体会转化思想.2、通过学习有理数除法法则,感知数学具有普遍联系性,相互转化性.教学重点:学习有理数除法法则中学生对商的符号的确定.教学难点:乘除混合运算中的运算顺序和运算技巧的应用.教学准备教学过程:一、创设情境,导入新课师:在小学,我们学过除法,如8÷4=8×41=2.那么8÷(-4)又会等于多少呢?这就是我们要研究的问题.板书:1.4.2 有理数的除法二、师生互动,课堂探究(一)提出问题,引发讨论怎样计算8÷(-4)呢?要求一个数,使它与-4相乘得8.∵(-2)×(-4)=8 ∴8÷(-4)=-2 ①又∵8×(-41)=-2 ②∴8÷(-4)=8×(-41) ③③式表明,一个数除以-4可以转化为乘-41来进行,即一个数除以-4,等于乘-4的倒数-41.(二)导入知识,解释疑难在尝试:(-8)÷(-4)=? (-8)×(-41)=?1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a÷b =a·b 1(b≠0)提出问题:(1)两数相除,商的符号如何确定?商的绝对值呢?(2)0不能做除数,0作被除数时商是多少?从有理数除法法则得出另一种说法:2、两数相除,同号得正,异号得负,并把绝对值相除.0除以如何一个不等于0的数,都得0.说明:两数相除,在能整除的情况下,可用法则2,在确定符号后往往采用直接除;在不能整除的情况下,特别是当除数是分数时,可用法则1,把除法转化为乘法比较方便.3、例题分析:例1:计算:(1)(-36)÷9 (2)(-2512)÷(-53)解:(1)用法则2 (2)用法则1例2:化简下列分数:(1)312- (2)1245-- 解:(1)312- =(-12)÷3=-4 (2)1245--=(-45)÷(-12)=415例3:计算:(1)(-75125)÷(-5) (2)-2.5÷85×(-41)解:(1)利用乘法分配律 原式=75125×51=125×51+75×51=25+71=7125 (2)原式=25×58×41=1例4:计算(1)(-29)÷3×31 (2)(-43)×(-211)÷(-412)(3)-6÷(-0.25)×1411 (4)(-3)÷[(-52)÷(-41)]解:(1)原式=-29×31×31=-929(2)原式=-43×23×49=-21(三)、归纳总结,知识回顾1、除法的两种法则的恰当应用.2、乘除混合运算往往先将除法化为乘法,在确定积的符号,最后求出结果.(四)作业:P38 7 (4)(5)(6)(五)板书设计1.4.2 有理数的除法1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a÷b =a·b 1(b≠0)2、两数相除,同号得正,异号得负,并把绝对值相除.0除以如何一个不等于0的数,都得0.例1:计算:(1)(-36)÷9 (2)(-2512)÷(-53)解:(1)用法则2 (2)用法则1例2:化简下列分数:(1)312(2)1245--。
1.4.2 有理数的除法(一)- 人教版七年级数学上册教案教学目标•了解有理数的除法概念和性质。
•能够进行简单的有理数的除法运算。
•掌握有理数的除法规则。
教学重点•有理数的除法概念和性质。
•有理数的除法运算步骤和规则。
教学难点•理解和应用有理数的除法性质和规则。
教学准备•教材《人教版七年级数学上册》•教学投影仪•讲解板书教学步骤Step 1 引入•教师可以通过一个简单的问题引入本课的内容。
比如:小明手中有8个苹果,他想平均分给4个朋友。
每个朋友能分到几个苹果?•让学生思考一下,然后进行回答。
•引导学生认识到,这里的问题实际上就是一个有理数的除法。
Step 2 概念讲解•教师引导学生思考有理数的除法概念,比如:什么是有理数的除法?有理数的除法有哪些性质?•教师做板书:有理数的除法是指求两个有理数的商的运算。
有理数的除法有以下性质:1.除法的结果是一个有理数。
2.除数不为零,被除数为零时,结果为零。
3.除法满足交换律和分配律。
Step 3 例题讲解•教师出示一道有理数的除法例题,如:计算21 ÷ 3,并解释解题步骤。
•教师做板书:7 3 7 ÷ 3-6 ×10-910-910•教师引导学生按照下列步骤进行有理数的除法运算:1.整理被除数、除数和商的排列顺序。
2.用被除数除以除数得到商的整数部分。
3.将商的整数部分与除数相乘得到乘积。
4.用被除数减去乘积得到差。
5.将差与除数继续进行除法运算,重复以上步骤,直到差小于除数的绝对值。
Step 4 练习•教师出示几道有理数的除法练习题,让学生们自主完成,并在黑板上进行逐步解答。
•随堂讲解并纠正学生可能出现的错误。
Step 5 拓展•教师找出现实生活中有关有理数除法的例子,让学生们思考并讲解。
•鼓励学生们自己寻找更多的例子,并分享给全班。
Step 6 总结•教师对本节课的内容进行总结,并强调有理数的除法性质和规则。
•教师引导学生根据所学内容,总结有理数的除法运算步骤和规则。
人教版七年级数学上册:1.4.2《有理数的除法》教学设计1一. 教材分析《有理数的除法》是人教版七年级数学上册第一章第四节的一部分,主要内容包括有理数的除法运算和除法法则。
本节课的内容是学生在学习了有理数的加减乘法的基础上进行学习的,是对前面所学知识的进一步拓展和延伸。
教材通过具体的例子和练习题,使学生掌握有理数除法的基本运算方法,并能够灵活运用。
二. 学情分析七年级的学生已经掌握了有理数的加减乘法运算,具备了一定的数学基础。
但是,对于有理数的除法,学生可能还存在一些困惑和疑问。
因此,在教学过程中,教师需要结合学生的实际情况,通过具体的例子和练习题,引导学生理解和掌握有理数的除法运算。
三. 教学目标1.理解有理数除法的概念和意义。
2.掌握有理数除法的运算方法。
3.能够正确进行有理数除法的计算。
4.能够运用有理数除法解决实际问题。
四. 教学重难点1.教学重点:有理数除法的运算方法。
2.教学难点:理解有理数除法的概念和意义,以及如何运用有理数除法解决实际问题。
五. 教学方法采用讲授法和练习法进行教学。
通过讲解和示范,使学生理解和掌握有理数除法的运算方法。
通过练习题的训练,使学生巩固所学知识,并能够灵活运用。
六. 教学准备1.教材和教学参考书。
2.投影仪和幻灯片。
3.练习题和答案。
七. 教学过程1.导入(5分钟)通过提问的方式,引导学生回顾已学的有理数的加减乘法运算,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过讲解和示范,向学生介绍有理数的除法运算,让学生理解有理数除法的概念和意义,并掌握有理数除法的运算方法。
3.操练(10分钟)学生根据教师所给的例子,进行有理数除法的计算。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)学生独立完成教师布置的练习题,教师检查学生的答案,并及时给予指导和纠正。
5.拓展(10分钟)教师通过给出一些实际问题,让学生运用有理数除法进行解决。
教师引导学生思考和讨论,拓展学生的思维。
第一章 有理数1.4.2 有理数的除法第1课时 有理数的除法1.了解有理数除法的定义.2.经历有理数除法法则的探索过程,会进行有理数的除法运算.3.会化简分数.重点正确运用法则进行有理数的除法运算.难点怎样根据不同的情况来选取适当的方法求商.一、复习导入1.有理数的乘法法则;2.有理数乘法的运算律:乘法交换律,乘法结合律,乘法分配律;3.倒数的意义.学生回答以上问题.二、推进新课(一)有理数除法法则的推导师提出问题:1.怎样计算8÷(-4)呢?2.小学学过的除法的意义是什么?学生进行讨论、思考、交流,然后师生共同得出法则.除以一个不等于0的数,等于乘这个数的倒数.可以表示为:a ÷b =a·1b(b ≠0) 师指出,将除法转化为乘法以后类似的除法法则我们有:两数相除,同号得正,异号得负,并把绝对值相除,零除以任何一个不等于0的数,都得0.教师点评:(1)法则所揭示的内容告诉我们,有理数除法与小学时学的除法一样,它是乘法的逆运算,是借助“倒数”为媒介,将除法运算转化为乘法运算进行(强调,因为0没有倒数,所以除数不能为0);(2)法则揭示有理数除法的运算步骤:第一步,确定商的符号;第二步,求出商的绝对值.(二)有理数除法法则的运用教师出示教材例5.计算:(1)(-36)÷9;(2)(-1225)÷(-35). 师生共同完成,教师注意强调法则:两数相除,先确定商的符号,再确定商的绝对值. 教师出示教材例6.化简下列分数:(1)-123;(2)-45-12. 教师点拨:(1)符号法则;(2)一般来说,在能整除的情况下,往往采用法则的后一种形式,在确定符号后,直接除.在不能整除的情况下,则往往将除数换成倒数,转化为乘法.教师出示教材例7.计算:(1)(-12557)÷(-5); (2)-2.5÷58×(-14). 教师分析,学生口述完成.三、课堂练习教材第36页上方练习四、课堂小结小结:谈谈本节课的收获.五、布置作业教材习题1.4第4~6题.学生深刻理解除法是乘法的逆运算,对学好本节内容有比较好的作用。
第一章 有理数1.4 有理数的乘除法1.4.2 有理数的除法第1课时 有理数的除法法则学习目标:1.认识有理数的除法,经历除法的运算过程.2.理解除法法则,体验除法与乘法的转化关系.3.掌握有理数的除法及乘除混合运算.重点:有理数的除法法则及运算. 难点:准确、熟练地运用除法法则.一、知识链接 1.填一填:2.有理数的乘法法则:两数相乘,同号________,异号_______,并把_________相乘. 一个数同0相乘,仍得________. 3.进行有理数乘法运算的步骤: (1)确定_____________; (2)计算____________. 二、新知预习1.根据除法是乘法的逆运算填空: (+2)×(+3)=+6(+6)÷(+2)=_________,对162+⨯=__________. (-2)×(-3)=+6(+6)÷(-2)=_________, 比 16()2+⨯-=__________. 2.对比观察上述式子,你有什么发现?【自主归纳】 有理数的除法法则:除以一个数(不等于0)等于乘这个数的____________. 3.根据有理数的乘法法则和除法法则,讨论:(1)同号两数相除,商的符号怎样确定,结果等于什么?(2(3)0除以任何一个不等于0【自主归纳】两数相除,同号得任何不等于0的数都得______.三、自学自测计算:(1) (-8)÷(-4);(3)213532⎛⎫⎛⎫-÷⎪ ⎪⎝⎭⎝⎭;四、我的疑惑一、要点探究探究点1问题1:(-4)×6×(-3/5)×-8÷8÷(-4)= 8-36÷ 6=-12/25 ÷ (-3/5)= (-12/25) -72 ÷9= -72问题2:问题3:(1)-54 ÷(-9);(2)-27 ÷ 3(3)0 ÷(-7); (4)-24÷(-6).思考:从上面我们能发现商的符号有什么规律?有理数除法法则(二):两数相除,同号得 ,异号得 ,并把绝对值 . 0除以任何一个不等于0的数,都得 . 思考:到现在为止我们有了两个除法法则,那么两个法则是不是都可以用于解决两数相除呢?归纳:两个法则都可以用来求两个有理数相除.如果两数相除,能够整除的就选择法则二,不能够整除的就选择用法则一.例1 计算(1)(-36)÷ 9; (2)(-2512)÷(-53).例2 化简下列各式: (1)312-;(2)1245--探究点2:有理数的乘除混合运算 例3 计算 (1)(-12575)÷(-5);(2)-2.5÷85×(-41).方法归纳:(1)有理数除法化为有理数乘法以后,可以利用有理数乘法的运算律简化运算;(2)乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算).1.(1)(-24)÷4; (2) (-18)÷(-9); (3) 10÷(-5).2.计算:(1)(-24)÷[(-32)×49];(2)(-81)÷214×49÷(-16).二、课堂小结 一、有理数除法法则: 1.a ÷b =a ×b1(b ≠0)。
课题:1.4.2 有理数的除法(第1课时)一、教学目标1.知道倒数的意义,会求整数、分数、小数的倒数.2.知道有理数除法法则,会进行有理数的除法运算.二、教学重点和难点1.重点:进行有理数的除法运算.2.难点:求小数、带分数的倒数.三、教学过程(一)创设情境,导入新课师:前面几节课我们学习了有理数的乘法,这节课我们学习有理数的除法.(板书课题:1.2.4有理数的除法)在学习有理数的除法前,我们先来学习倒数的概念.(板书:1.倒数)(二)尝试指导,讲授新课1.填空:(1)4×=1;(2)×(-57)=1;(3)×1a=1;(4)0×=1.(师出示1题,生口答(1)(2)题,师将答案填入)师:(指准(1)题)4与14两数的乘积等于1,4与14有什么关系?生:……师:4与14有倒数关系.师:(指准(2)题)-75与-57两数乘积等于1,-75与-57有什么关系?生:倒数关系.师:乘积是1的两个数互为倒数.(板书:乘积是1的两个数互为倒数)师:(指准(1)题)4与14乘积为1,4与14互为倒数,也就是说:14是4的倒数,4是14的倒数.师:(指准(3)题)什么与1a的乘积等于1?生:a.(师填入a)师:a的倒数是什么?生:1a.(师板书:a的倒数是1a)师:(指(4)题)0与什么数的乘积等于1?(稍停)生:没有这样的数.师:0与任何数相乘,都得0.可见0与任何数相乘不会等于1,这说明0没有倒数.(板书:0没有倒数)师:怎么求一个数的倒数呢?请看倒1.例1 求下列各数的倒数:-47,74,223,0.3,-1.25,-5.师:(板书:解:-47的倒数是)-47是一个真分数,这个真分数的倒数等于什么?生:-74.(板书:-74)师:(指准-47与-74)求一个真分数的倒数,颠倒分子分母所得到的数,就是所求的倒数.师:(板书:74的倒数是)74是一个假分数,这个假分数的倒数等于什么?生:47.(师板书:47)师:(指准74与47)求假分数的倒数与求真分数的倒数的方法是一样的,颠倒分子分母后所得到的数,就是所求的倒数.师:(板书:22 3的倒数是,0.3的倒数是)223是一个带分数,0.3是一个小数,它们的倒数怎么求呢?生:……师:先把带分数、小数化成假分数或真分数,然后颠倒分子分母.223化成假分数等于83,所以223的倒数是38.(板书:38)0.3化成真分数等于310,所以0.3的倒数是103.(板书:103)(求-1.25,-5的倒数,先让生尝试,师再板演)师:通过求上面这些数的倒数,我们可以归纳一下求倒数的方法,哪位同学会归纳?生:……(多让几位同学归纳)师:求一个数的倒数,如果是真分数或假分数,颠倒分子分母;如果不是真分数或假分数,先要把这个数化为真分数或假分数,再颠倒分子分母.(三)试探练习,回授调节2.填空:(1)23的倒数是;(2)-7的倒数是;(3)-1的倒数是;(4)115的倒数是;(5)0.6的倒数是;(6)-2.75的倒数是 .(四)尝试指导,讲授新课师:现在我们会求一个数的倒数了,下面我们学习有理数的除法.(板书:2.有理数的除法)师:怎么做有理数的除法?(板书:8÷14=)在小学里,我们学过8÷14,怎么计算8÷14?生:……师:8÷14=8×4.(板书:8×4,并指准式子)除以14等于乘以14的倒数,结果为32.(板书:=32)师:(板书:8÷(-14)=)同样的方法可以计算8÷(-14),哪位同学能说出下一步?生:……师:8÷(-14)=8×(-4).(板书: 8×(-4),并指准式子)除以-14等于乘以-14的倒数,结果为-32.(板书:=-32)师:通过计算这两道题,不难发现,有理数除法是通过转化为乘法来计算的.与有理数减法法则类似,哪位同学会总结有理数除法法则?(板书:有理数除法法则)生:……(多让几位同学发表意见)师:除以一个不等于0的数,等于乘这个数的倒数.(板书:除以一个不等于0的数,等于乘这个数的倒数)请大家把这个法则读两遍.(生读)师:现在请大家思考一个问题:在有理数除法法则中,(指准)为什么不说除以一个数,而说除以一个不等于0的数?生:……师:因为0不能作除数,所以要强调除以一个不等于0的数.例2 计算:(1)(-36)÷9;(2)(-1225)÷(-35).(先让生尝试,师再板演讲解,讲解时要紧扣法则;(1)题不要按教材中的方法讲,要按下面方法讲:(-36)÷9=(-36)×19=-4)(五)试探练习,回授调节3.填空:(1)(-18)÷6=(-18)×=;(2)1÷(-9)=1×=;(3)0÷(-8)=0×=;(4)(-35)÷(-25)=(-35)×= .4.计算:(1)84÷(-7);(2)(-49)÷(-23);(3)(-23)÷113;(4)(-78)÷0.25.(六)归纳小结,布置作业师:本节课我们学习了有理数的除法,有理数除法是通过转化为乘法来计算的.除以一个不等于0的数,等于乘这个数的倒数.四、板书设计。
1.4.2 有理数的除法第1课时 有理数的除法法则1.理解有理数除法的意义,掌握有理数除法法则,会进行有理数除法运算;(重点)2.通过学习有理数除法法则,体会转化思想,会将乘除混合运算统一为乘法运算.(难点)一、情境导入1.计算:(1)25×0.2=________; (2)12×(-3)=________;(3)(-1.2)×(-2)=________;(4)(-125)×0=________. 2.由(-3)×4=________,再由除法是乘法的逆运算,可得(-12)÷(-3)=4,(-12)÷4=______.同理,(-3)×(-4)=________,12÷(-4)=________,12÷(-3)=________. 观察上面的算式及计算结果,你有什么发现?换一些算式再试一试.二、合作探究探究点一:有理数的除法及分数化简【类型一】 直接判定商的符号和绝对值进行除法运算计算:(1)(-15)÷(-3); (2)12÷(-14); (3)(-0.75)÷(0.25).解析:采用有理数的除法:两数相除,同号得正,异号得负,并把绝对值相除解答. 解:(1)(-15)÷(-3)=+(15÷3)=5; (2)12÷(-14)=-(12÷14)=-48; (3)(-0.75)÷(0.25)=-(0.75÷0.25)=-3.方法总结:注意先确定运算的符号.根据“同号得正,异号得负”的法则进行计算.本题属于基础题,考查对有理数的除法运算法则掌握的程度.【类型二】 分数的化简化简下列分数:(1)-21-7=________;(2)-36=________;(3)-6-0.3=________;(4)-28-49=________.解析:(1)-21-7=-7×3-7=3;(2)-36=-3(-3)×(-2)=-12;(3)-6-0.3=(-0.3)×20-0.3=20;(4)-28-49=2849=4×77×7=47. 解:(1)3;(2)-12;(3)20;(4)47. 方法总结:化简分数时要注意分子、分母的符号,同号结果为正,异号结果为负.【类型三】 将除法转化为乘法进行计算计算:(1)(-18)÷(-23); (2)16÷(-43)÷(-98). 解析:本题可采用有理数的除法:除以一个数就等于乘以这个数的倒数解答.解:(1)(-18)÷(-23)=(-18)×(-32)=18×32=27; (2)16÷(-43)÷(-98)=16×(-34)×(-89)=16×34×89=323. 方法总结:此题考查了有理数的除法运算,有理数的除法运算通常利用除以一个数等于乘以这个数的倒数化为乘法运算来求.【类型四】 根据a b ,a +b 的符号,判断a 和b 的符号如果a +b <0,ab >0,那么这两个数( )A .都是正数B .符号无法确定C .一正一负D .都是负数解析:∵a b>0,根据“两数相除,同号得正”可知,a 、b 同号,又∵a +b <0,∴可以判断a 、b 均为负数.故选D.方法总结:此题考查了有理数乘法和加法法则,将二者综合考查是考试中常见的题型,此题的侧重点在于考查学生的逻辑推理能力.探究点二:有理数的乘除混合运算计算:(1)-2.5÷58×(-14); (2)(-47)÷(-314)×(-112). 解析:(1)把小数化成分数,同时把除法变成乘法,再根据有理数的乘法法则进行计算即可.(2)首先把乘除混合运算统一成乘法,再确定积的符号,然后把绝对值相乘,进行计算即可.解:(1)原式=-52×85×(-14)=52×85×14=1; (2)原式=(-47)×(-143)×(-32)=-(47×143×32)=-4.方法总结:解题的关键是掌握运算方法,先统一成乘法,再计算.三、板书设计有理数除法法则:1.任何数除以一个不为0的数,等于乘以这个数的倒数,即a ÷b =a ×1b(b ≠0). 2.(1)两个数相除,同号为正,异号得负,并把绝对值相除.(2)0除以任何一个不为0的数,都得0.让学生深刻理解除法是乘法的逆运算,对学好本节内容有比较好的作用.教学设计是可以采用课本的引例做为探究除法法则的导入.让学生自己探索并总结除法法则,同时也让学生对比乘法法则和除法法则,加深印象.教学时应该使学生掌握除法的两种运算方法:1.在除式的项和数字不复杂的情况下直接运用除法法则求解;2.在多个有理数进行除法运算或者是乘、除混合运算时应该把除法转化为乘法,然后统一用乘法的运算律解决问题.。
1.4.2 有理数的除法(第1课时)
教学目标
1.认识有理数的除法,经历除法的运算过程.
2.理解除法法则,体验(体会)除法与乘法的转化关系.
掌握有理数的除法及乘除混合运算.
3.增强数学应用意识,提高学习数学的兴趣.
教学重点难点
重点:有理数除法的法则及应用,求一个有理数的倒数.
难点:在进行有理数除法运算时,能根据题目特点,恰当地选择有理数的除法法则.
课前准备
多媒体课件
教学过程
导入新课
导入一:问题展示
1.有理数的乘法法则是: .
举例说明.
2.多个有理数的乘法:
(1)几个不等于0的有理数相乘,积的符号由决定,当时积为正;当时积为负.
2 / 2
(2)几个有理数相乘,,积就为零.
3.写出下列各数的倒数:
-4的倒数:,3的倒数:,-2的倒数: .
导入二:课件展示
某班有4名同学参加数学测试,以80分为标准,超过的分数记为正数,不足的分数记为负数,记录结果如下:+15,-10,-9,-4,则这4名同学的平均成绩是超过80分还是不足80分?
列式为:(15-10-9-4)÷4.
如何计算呢?
探究新知
问题1 计算:8÷(-4).
教师:怎样计算8÷(-4)呢?
学生:根据除法是乘法的逆运算,就是求一个数,使它与-4相乘得8.因为(-2)×(-4)=8,所以8÷(-4)=-2.
(假如学生回答不上来,教师可以适当提示)
教师:-4的倒数是几?
.
学生:-4的倒数是-1
4
教师:大家还记得小学里学习的分数的除法法则吗?
学生:除以一个不等于0的数,等于乘上这个数的倒数.
教师:那8÷(-4)还可以怎样计算?
2 / 2
2 / 2
学生:把8÷(-4)转化为8× (−14) .
问题2 (教师用多媒体课件展示问题,学生分小组合作完成)
15÷(-3)= ,
(-18)÷2= ,
(-8)÷(-2)= ,
(−52) ÷ (−14) = ,
0÷ (−112) = .
教师:哪位同学汇报一下算式的结果?
学生:15÷(-3)=-5,(-18)÷2=-9,
(-8)÷(-2)=4, (−52) ÷ (−14) =10,
0÷ (−112) =0.
教师:谁来说一说你们计算时是怎样想的?
学生1:根据除法的意义.
学生2:把除法转化为乘法来计算.
教师:计算 (−52) ÷ (−14) 时,用哪种方法计算更简便?
学生:把 (−52) ÷ (−14) 转化为 (−52) ×(-4),这样计算更简便.
教师:从以上的学习中,谁能总结出有理数的除法法则?
学生:除以一个不等于0的数,等于乘这个数的倒数.
(学生说,教师板书)
教师:看来小学学过的除法法则在有理数的除法中同样适用.
问题3 观察(手指5道小题及有理数的除法法则)这五个算式,模仿有理数乘法的法则,有理数除法的法则还可以怎样说?
学生:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.
(学生说,教师板书)
归纳有理数的除法法则:
(1)除以一个不等于0的数,等于;
(2)两数相除,同号得,异号得,并把绝对值相,0除以任何一个不等于0的数,都得 .
(学生归纳,教师用课件展示)
新知应用
例1 (教材第34页例5)
学生做完后,集体核对答案,教师板书计算过程.
教师:有理数除法的法则有两个,结合例5中的两道小题,你能总结出什么规律?学生:一般来说,能整除的情况下,往往采用法则的后一种形式,在确定好符号后,直接除.在不能整除的情况下,则往往将除数换成其倒数,转化为乘法,即采用法则的前一种形式.
让学生做教材第35页练习巩固有理数除法法则.
例2 化简下列分数:
2 / 2
2 / 2
(1)−123;(2)-123;(3)12−3;(4)−45−12;(5)4512. 学生做完例题后,集体对答案,然后教师讲解.
教师:由−123=-4,-123=-4,12−3=-4,
可以知道:−123
=-123=12−3. 观察“-”号的位置,可以得出什么结论?
学生:在分数中,“-”号的位置有三个地方(分子上、分母上、分数线前面)可供选择,不管把“-”号放在三个位置中的哪一个,化简后的分数大小都不变. 教师:−45−12=154,4512=154,由这个结果可以知道什么?
学生:分子与分母中都有负号时,可将负号约去.
教师:这几道小题可以运用小学学过的分数的化简直接约分,而不一定非要写成“a ÷b ”的形式.
例3 (教材第35页例7)
学生做例题,教师巡视.
学生做完后,教师就关键内容进行讲解.
教师: (−12557) ÷ (−5) 中 (−12557) 是带分数,应该怎么办?
学生:先把 (−12557) 化成假分数,然后再计算. 教师:-2.5÷58× (−14) 是有理数的乘除混合运算,谁能说说计算过程?
学生:先把乘除混合运算统一成乘法运算,然后确定积的符号,再通过化简求出结果.
课堂练习
(见导学案“当堂达标”)
参考答案
1.D
2.C
3.B
4.1
5
5. -1
6.(1)-1
6
(2)4
7.分析:因为不知道a,b的正负情况,所以要运用分类讨论的思想,分四种情况讨论.
解:(1)当a>0,b>0时,a
|a|+b
|b|
+ab
|ab|
=1+1+1 =3.
(2)当a>0,b<0时,a
|a|+b
|b|
+ab
|ab|
=1-1-1 =-1.
(3)当a<0,b>0时,a
|a|+b
|b|
+ab
|ab|
=-1+1-1 =-1.
(4)当a<0,b<0时,a
|a|+b
|b|
+ab
|ab|
=-1-1+1
2 / 2
2 / 2
=-1.
所以,式子的值为3或-1.
课堂小结
请同学们带着下列问题回顾本节课的内容:
1.你能说出有理数的除法法则吗?法则的两种形式各适合哪种除法?法则的第一种形式体现了怎样的数学思想?
2.有理数的除法法则的第二种形式与乘法法则有什么异同?
3.有理数的乘除混合运算的基本步骤是什么?
布置作业
教材第38页习题1.4第4,5,6题
板书设计
教学反思
本节课的教学中,先提出如何进行含负数的除法运算后,让学生自己去思索,判断,并与有理数的乘法相联系,让学生体会“除法是乘法的逆运算”,并通过题目练习让学生感受体会总结有理数除法法则,从而突破本节教学的难点.完成本节的教学任务
.。