线性代数 向量组的线性相关性
- 格式:doc
- 大小:262.50 KB
- 文档页数:5
分布图示★ 线性相关与线性无关★ 例1★ 例2★ 证明线性无关的一种方法线性相关性的判定★ 定理1 ★ 定理2 ★ 例3 ★ 例4 ★ 例5 ★ 例6★ 定理3 ★ 定理4 ★ 定理5★ 例7★ 内容小结 ★ 课堂练习★ 习题3-3内容要点一、线性相关性概念定义1 给定向量组,,,,:21s A αααΛ 如果存在不全为零的数,,,,21s k k k Λ 使,02211=+++s s k k k αααΛ (1)则称向量组A 线性相关, 否则称为线性无关.注: ① 当且仅当021====s k k k Λ时,(1)式成立, 向量组s ααα,,,21Λ线性无关; ② 包含零向量的任何向量组是线性相关的;③ 向量组只含有一个向量α时,则(1)0≠α的充分必要条件是α是线性无关的; (2)0=α的充分必要条件是α是线性相关的;④ 仅含两个向量的向量组线性相关的充分必要条件是这两个向量的对应分量成比例;反之,仅含两个向量的向量组线性无关的充分必要条件是这两个向量的对应分量不成比例. ⑤ 两个向量线性相关的几何意义是这两个向量共线, 三个向量线性相关的几何意义是这三个向量共面.二、线性相关性的判定定理1 向量组)2(,,,21≥s s αααΛ线性相关的充必要条件是向量组中至少有一个向量可由其余1-s 个向量线性表示.定理 2 设有列向量组),,,2,1(,21s j a a a nj j j j ΛM =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=α 则向量组s ααα,,,21Λ线性相关的充要条件是: 是矩阵),,,(21s A αααΛ=的秩小于向量的个数s .推论 1 n 个n 维列向量组n ααα,,,21Λ线性无关(线性相关)的充要条件是: 矩阵),,,(21n A αααΛ= 的秩等于(小于)向量的个数n .推论2 n 个n 维列向量组n ααα,,,21Λ线性无关(线性相关)的充要条件是:矩阵),,,(21n A αααΛ= 的行列式不等于(等于)零.注: 上述结论对于矩阵的行向量组也同样成立.推论3 当向量组中所含向量的个数大于向量的维数时, 此向量组必线性相关. 定理3 如果向量组中有一部分向量(部分组)线性相关,则整个向量组线性相关. 推论4 线性无关的向量组中的任何一部分组皆线性无关.定理4 若向量组βαα,,,1s Λ线性相关, 而向量组s ααα,,,21Λ线性无关, 则向量β可由s ααα,,,21Λ线性表示且表示法唯一.定理5 设有两向量组,,,,:;,,,:2121t s B A βββαααΛΛ向量组B 能由向量组A 线性表示, 若t s <, 则向量组B 线性相关.推论5 向量组B 能由向量组A 线性表示, 若向量组B 线性无关, 则.t s ≥推论6 设向量组A 与B 可以相互线性表示, 若A 与B 都是线性无关的, 则.t s =例题选讲例1 设有3个向量(列向量):,421,221,101221⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=ααα不难验证,02321=-+ααα 因此321,,ααα是3个线性相关的3维向量.例2 设有二个2维向量:,10,0121⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=e e 如果他们线性相关, 那么存在不全为零的数,,21λλ 使,02211=+e e λλ也就是 ,0100121=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛λλ 即 .0002121=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛λλλλ于是,0,021==λλ 这同21,λλ不全为零的假定是矛盾的. 因此1e ,2e 是线性无关的二个向量.例3 (E01) n 维向量组T n T T )1,,0,0(,,)0,1,0(,)0,,0,1(21ΛΛΛΛ===εεε称为n 维单位坐标向量组, 讨论其线性相关性.解 n 维单位坐标向量组构成的矩阵)(21n E εεε,,,Λ=⎪⎪⎪⎪⎪⎭⎫⎝⎛=100010001ΛΛΛΛΛΛΛ 是n 阶单位矩阵.由,01≠=E 知.n E r =即E r 等于向量组中向量的个数, 故由推论2知此向量是线性无关的.例 4 (E02) 已知,1111⎪⎪⎪⎭⎫ ⎝⎛=a ,5202⎪⎪⎪⎭⎫ ⎝⎛=a ⎪⎪⎪⎭⎫⎝⎛=7423a , 试讨论向量组321,,a a a 及21,a a 的线性相关性.解 对矩阵)(321a a a A ,,=施行初等行变换成行阶梯形矩,可同时看出矩阵A 及),(21αα=B 的秩,利用定理2即可得出结论.),,,321(ααα=⎪⎪⎪⎭⎫ ⎝⎛7514212011213r r r r --→⎪⎪⎪⎭⎫ ⎝⎛550220201−−→−-2125r r ,000220201⎪⎪⎪⎭⎫⎝⎛ 易见,,2)(=A r ,2)(=B r 故向量组,,,321ααα线性相关. 向量组21a a ,线性无关.例5 判断下列向量组是否线性相关:.11134,1112,5121321⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=ααα解 对矩阵)(321ααα,,施以初等行变换化为阶梯形矩阵:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---1115111312421 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----990330550421⎪⎪⎪⎪⎪⎭⎫⎝⎛000000110421秩,,,32)(321<=ααα所以向量组321ααα,,线性相关.例6 证明:若向量组γβα,,线性无关, 则向量组,βα+,γβ+αγ+亦线性无关. 证 设有一组数,,,321k k k 使0)()()(321=+++++αγγββαk k k (1)成立,整理得0)()()(322131=+++++γβαk k k k k k 由γβα,,线性无关,故⎪⎩⎪⎨⎧=+=+=+000322131k k k k k k (2) 因为110011101,02≠=故方程组(2)仅有零解.即只有0321===k k k 时(1)式才成立.因而向量组,βα+,γβ+αγ+线性无关.例7 (E03) 设向量组321,,a a a 线性相关, 向量组432,,a a a 线性无关, 证明 (1) 1a 能由32,a a 线性表示; (2) 4a 不能由321,,a a a 线性表示.证明(1)因432ααα,,线性无关,故32,αα线性无关,而321ααα,,线性相关,从而1α能由32αα,线性表示;(2)用反证法. 假设4α能由321ααα,,线性表示,而由(1)知1α能由32αα,线性表示,因此4α能由32αα,表示,这与432ααα,,线性无关矛盾.证毕.课堂练习1. 试证明:(1) 一个向量α线性相关的充要条件是0=α; (2) 一个向量α线性无关的充分条件是0≠α;(3) 两个向量βα,线性相关的充要条件是βαk =或者αβk =(两式不一定同时成立)。
第四章 向量组的线性相关性§4.1 向量及其运算1.向量:个数构成的有序数组, 记作n n a a a ,,,21L ),,,(21n a a a L =α, 称为维行向量.n –– 称为向量i a α的第i 个分量R ∈i a –– 称α为实向量(下面主要讨论实向量) 零向量 )0,,0,0(L =θ;负向量 ),,,()(21n a a a −−−=−L α 2.线性运算:),,,(21n a a a L =α, ),,,(21n b b b L =β相等:若, 称),,2,1(n i b a i i L ==βα=.加法:=+βα),,,(2211n n b a b a b a +++L数乘:),,,(21n ka ka ka k L =α减法:=−βα=−+)(βα),,,(2211n n b a b a b a −−−L 3.算律:),,,(21n a a a L =α,),,,(21n b b b L =β,),,,(21n c c c L =γ(1) αββα+=+ (5) αα=1(2) )()(γβαγβα++=++ (6) αα)()(l k l k =(3) αθα=+ (7) βαβαk k k +=+)((4) θαα=−+)( (8) αααl k l k +=+)(4.列向量:个数构成的有序数组, 记作, n n a a a ,,,21L ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n a a a M 21α或者, 称为维列向量.T 21),,,(n a a a L =αn 零向量: 负向量: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000M θ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−=−n a a a M 21)(α 5.内积:设实向量),,,(21n a a a L =α, ),,,(21n b b b L =β, 称 实数n n b a b a b a +++=L 2211],[βα为α与β的内积. 算律:),,,(21n a a a L =α,),,,(21n b b b L =β,),,,(21n c c c L =γ(1) ],[],[αββα=(2) ],[],[βαβαk k = (为常数)k (3) ],[],[],[γβγαγβα+=+(4) θα≠时, 0],[>αα;θα=时, 0],[=αα. (5)],[],[],[2ββααβα⋅≤证(5) R ∈∀t , 由0],[≥++βαβαt t 可得0],[],[2],[2≥++t t βββααα ⇒≤0Δ0],[],[4],[42≤⋅−ββααβα],[],[],[2ββααβα⋅≤⇒6.范数:设实向量α, 称实数],[ααα=为α的范数.性质:(1) θα≠时, 0>α;θα=时, 0=α.(2) αα⋅=k k )R (∈∀k(3) βαβα+≤+(4) βαβα−≤−证(3) ],[],[2],[],[2βββαααβαβαβα++=++=+()2222βαββαα+=++≤7.夹角:设实向量θα≠,θβ≠, 称 βαβαϕ],[arccos= )π0(≤≤ϕ为α与β之间的夹角. 正交:若0],[=βα, 称α与β正交, 记作βα⊥.(1) θα≠,θβ≠时, βα⊥2π=⇔ϕ; (2) θα=或θβ=时, βα⊥有意义, 而ϕ无意义.单位化:若θα≠, 称ααα10=为与α同方向的单位向量.§4.2 向量组的线性相关性1.线性组合:对n 维向量α及m αα,,1L , 若有数组使m k k ,,1L 得m m k k ααα++=L 11, 称α为m αα,,1L 的线性组合,或称α可由m αα,,1L 线性表示.例1 , , , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=1011β⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1112β⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=1133β⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1354β 判断4β可否由321,,βββ线性表示?解 设3322114ββββk k k ++=,比较两端的对应分量可得, 求得一组解为.故 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−321111110311k k k ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=135⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡120321k k k 3214120ββββ++=, 即4β可由321,,βββ线性表示.[注] 取另一组解时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡032321k k k 3214032ββββ++=. 2.线性相关:对n 维向量组m αα,,1L , 若有数组不全m k k ,,1L 为0, 使得 θαα=++m m k k L 11, 则称向量组m αα,,1L 线性相关;否则,称为线性无关.线性无关:对维向量组n m αα,,1L , 仅当数组全m k k ,,1L 为0时, 才有 θαα=++m m k k L 11, 称向量组m αα,,1L 线性无关;否则,称为线性相关.[注] 对于单个向量α:若θα=, 则α线性相关;若θα≠, 则α线性无关.例2 判断例1中向量组4321,,,ββββ的线性相关性. 解 设θββββ=+++44332211k k k k , 比较对应分量可得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−0001111311053114321k k k k 即0=Ax .因为未知量的个数是4, 而4rank <A , 所以0=Ax 有非零解, 由定义知4321,,,ββββ线性相关.例3 已知向量组321,,ααα线性无关, 证明向量组211ααβ+=, 322ααβ+=, 133ααβ+= 线性无关.证 设 θβββ=++332211k k k , 则有θααα=+++++332221131)()()(k k k k k k 因为321,,ααα线性无关, 所以⎪⎩⎪⎨⎧=+=+=+000322131k k k k k k , 即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000110011101321k k k 系数行列式 02110011101≠=, 该齐次方程组只有零解.故321,,βββ线性无关.例4 判断向量组 )0,,0,0,1(1L =e , )0,,0,1,0(2L =e , … ,)1,0,,0,0(L =n e 的线性相关性.解 设 θ=+++n n e k e k e k L 2211, 则有⇒=θ),,,(21n k k k L 只有0,,0,021===n k k k L 故线性无关.n e e e ,,,21L 例5 设向量组m ααα,,,21L 两两正交且非零, 证明该向量组线性无关.证 设 θααα=+++m m k k k L 2211, 两端与i α作内积可得 ],[],[],[],[11i i m m i i i i k k k αθαααααα=++++L L 当j i ≠时, 0],[=j i αα, 于是有⇒=0],[i i i k αα只有0=i k )(θα≠i Q上式对于m i ,,2,1L =都成立, 故m ααα,,,21L 线性无关.3.判定定理定理1 向量组)2(,,,21≥m m αααL 线性相关⇔其中至少有一个向量可由其余1−m 个向量线性表示.证 必要性.已知m ααα,,,21L 线性相关, 则存在m k k k ,,,21L 不全为零, 使得 θααα=+++m m k k k L 2211.不妨 设, 则有 01≠k m m k k k k ααα)()(12121−++−=L . 充分性.不妨设m m k k ααα++=L 221, 则有θααα=+++−m m k k L 221)1(因为不全为零, 所以m k k ,,,)1(2L −m ααα,,,21L 线性相关.定理2 若向量组m ααα,,,21L 线性无关, βααα,,,,21m L 线性相关, 则β可由m ααα,,,21L 线性表示, 且表示式唯一.证 因为βαα,,,1m L 线性相关, 所以存在数组不k k k m ,,,1L 全为零, 使得 θβαα=+++k k k m m L 11.若, 则 0=k θαα=++m m k k L 11, 从而有0,,01==m k k L 矛盾! 故, 从而有 0≠k m m kk k k ααβ)()(11−++−=L .下面证明表示式唯一:若 m m k k ααβ++=L 11, m m l l ααβ++=L 11 则有 θαα=−++−m m m l k l k )()(111L因为m ααα,,,21L 线性无关, 所以0,,011=−=−m m l k l k L ⇒m m l k l k ==,,11L 即β的表示式唯一.定理3 r αα,,1L 线性相关⇒)(,,,,,11r m m r r >+ααααL L线性相关.证 因为r αα,,1L 线性相关, 所以存在数组不全为r k k ,,1L 零, 使得 θαα=++r r k k L 11, 即θαααα=++++++m r r r k k 00111L L数组不全为零, 故0,,0,,,1L L r k k m r r αααα,,,,,11L L +线性相关.推论1 含零向量的向量组线性相关.推论2 向量组线性无关⇒任意的部分组线性无关.课后作业:习题四 1, 2, 3, 4, 5定理4 设m i a a a in i i i ,,2,1,),,,(21L L ==α⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m A αααM 21⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a a a a a L M M M L L 212222111211 (1) m ααα,,,21L 线性相关m A <⇔rank ;(2) m ααα,,,21L 线性无关m A =⇔rank .证 设 θααα=+++m m k k k L 2211比较等式两端向量的对应分量可得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00021212221212111M M L M M M L L m mn n n m m k k k a a a a a a a a a 即 0T =x A .由定理3.5可得:m ααα,,,21L 线性相关0T =⇔x A 有非零解m A <⇔T rank m A <⇔rankn m 推论1 在定理4中, 当=时, 有(1) n ααα,,,21L 线性相关0det =⇔A ;(2) n ααα,,,21L 线性无关0det ≠⇔A .n m 推论2 在定理4中, 当<时, 有(1) m ααα,,,21L 线性相关A ⇔中所有的阶子式;m 0=m D (2) m ααα,,,21L 线性无关⇔A 中至少有一个阶子式m 0≠m D .推论3 在定理4中, 当时, 必有n m >m ααα,,,21L 线性相关.因为m n A <≤rank , 由定理4(1)即得.推论4 向量组:1T m i a a a ir i i i ,,2,1,),,,(21L L ==α向量组:2T m i a a a a in r i ir i i ,,2,1,),,,,,(1,1L L L ==+β若线性无关, 则线性无关.1T 2T 证 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=×m r m A αααM 21⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=r m m m r r a a a a a a a a a L M M M L L 212222111211 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=×m n m B βββM 21⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=+++n m r m r m m n r r n r r a a a a a a a a a a a a L L M M M M L L L L 1,121,222111,1111 线性无关1T m A =⇒rank是A B 的子矩阵m A B =≥⇒rank rank⇒=⇒m B rank 2T 线性无关定理5 划分, 则有[]n m n m A βββαααL M 2121=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=×(1) 中某个A ⇒≠0r D A 中“所在的”个行向量线性无关;r D r中“所在的”r 个列向量线性无关.A r D (2) 中所有中任意的r 个行向量线性相关; A A D r ⇒=0 中任意的个列向量线性相关.A r 证 只证“行的情形”:(1) 设位于的行, 作矩阵, 则有r D A r i i ,,1L ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=×r i i nr B ααM 1 r i i r B αα,,rank 1L ⇒=线性无关.(2) 任取中个行, 设为行, 作矩阵,A r r i i ,,1L ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=×r i i nr B ααM 1 则有r i i r B αα,,rank 1L ⇒<线性相关.[注] 称m ααα,,,21L 为的行向量组A 称n βββ,,,21L 为的列向量组A §4.3 向量组的秩与最大无关组1.向量组的秩:设向量组为T , 若(1) 在T 中有r 个向量r ααα,,,21L 线性无关;(2) 在T 中任意个向量线性相关.1+r (如果有个向量的话)1+r 称r ααα,,,21L 为向量组T 的一个最大线性无关组,称为向量组T 的秩, 记作 秩r r T =)(.[注](1) 向量组中的向量都是零向量时, 其秩为0.(2) 秩r T =)(时, T 中任意个线性无关的向量都是T 的r 一个最大无关组.例如, , , , 的秩为2. ⎥⎦⎤⎢⎣⎡=011α⎥⎦⎤⎢⎣⎡=102α⎥⎦⎤⎢⎣⎡=113α⎥⎦⎤⎢⎣⎡=224α 21,αα线性无关21,αα⇒是一个最大无关组31,αα线性无关31,αα⇒是一个最大无关组定理6 设, 则1rank ≥=×r A n m (1) 的行向量组(列向量组)的秩为;A r (2) 中某个中所在的r 个行向量(列向量)A A D r ⇒≠0r D 是的行向量组(列向量组)的最大无关组.A 证 只证“行的情形”:A r A ⇒=rank 中某个0≠r D , 而中所有 A 01=+r D 定理5中所在的r 个行向量线性无关A ⇒r D 中任意的A 1+r 个行向量线性相关由定义:的行向量组的秩为, 且中所在的r 个行向A r A r D 是的行向量组的最大无关组.A 例6 向量组T :, , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=2011β⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0232β⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−=1123β, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=5324β求T 的一个最大无关组.解 构造矩阵[]4321ββββ=A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−=510231202231 求得⇒=2rank A 秩2)(=T矩阵中位于1,2行1,2列的二阶子式A 022031≠= 故21,ββ是T 的一个最大无关组.[注] T 为行向量组时, 可以按行构造矩阵.A 定理7n m n m B A ××,(1) 若, 则“的列”线性相关(线性无关)B A 行→A k c c ,,1L 的充要条件是“B 的列”线性相关(线性无关); k c c ,,1L (2) 若, 则“的行”线性相关(线性无关)B A 列→A k r r ,,1L 的充要条件是“B 的行”线性相关(线性无关). k r r ,,1L 证 (1) 划分[]n n m A αααL 21=×, []n n m B βββL 21=× 由可得 B A 行→[][]k k c c c c ββααL L 11行→ 故方程组 []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0011M M L k c c x x k αα 与方程组 []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0011M M L k c c x x k ββ 同解.于是有 k c c αα,,1L 线性相关011=+ 存在不全为0, 使得⇔k x x ,,1L +k c k c x x αL α 存在不全为0, 使得⇔k x x ,,1L 011=++k c k c x x ββL ⇔k c c ββ,,1L 线性相关同理可证(2).[注] 通常习惯于用初等行变换将矩阵化为阶梯形矩阵A B ,当阶梯形矩阵B 的秩为时, r B 的非零行中第一个非零元素所在的个列向量是线性无关的.r 例如:求例6中向量组T 的一个最大无关组.构造矩阵[]4321ββββ=A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−=510231202231⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−→936031202231行B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→000031202231行 ⇒==2rank rank B A 秩2)(=TB 的1,2列线性无关的1,2列线性无关A ⇒21,ββ⇒是T 的一个最大无关组 例7 向量组T :,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=31111α⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−=15312α,, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+−=21233c α⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−=c 10624α 求向量组T 的一个最大无关组.解 对矩阵[]4321αααα=A 进行初等行变换可得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+−−−−−=c c A 2131015162312311⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+−−−−−−−→67401246041202311c c 行 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−−−−−−→2900070041202311c c 行B c =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−−−−−→2000070041202311行 (1) :2≠c 4rank rank ==B AB 的1,2,3,4列线性无关的1,2,3,4列线性无关 A ⇒ 故4321,,,αααα是T 的一个最大无关组;(2) :2=c 3rank rank ==B AB 的1,2,3列线性无关的1,2,3列线性无关 A ⇒ 故321,,ααα是T 的一个最大无关组.[注] 当m ααα,,,21L 为行向量组时, 为列向量组. T T 2T 1,,,mαααL 若矩阵[]T T 2T 1m A αααL = 的列向量组的一个最大无关 组为, 则是行向量组T T ,,1r c c ααL r c c αα,,1L m ααα,,,21L 的 一个最大无关组.课后作业:习题四 7,8 (理解、记忆定理1~7)。
向量组的线性相关性与线性无关性在线性代数中,向量组是指由一组向量所组成的集合。
而向量组的线性相关性与线性无关性则是研究向量组内向量之间的关系,是线性代数中的重要概念之一。
一、线性相关性线性相关性是指存在一组不全为零的实数或复数使得向量组中的向量可以通过线性组合得到零向量。
换句话说,如果存在不全为零的实数或复数c1,c2,...,cn,使得c1v1 + c2v2 + ... + cnvn = 0,则称向量组v1,v2,...,vn是线性相关的。
举个例子来说,考虑一个二维向量组{(1, 2), (2, 4)},我们可以发现这两个向量是线性相关的,因为存在一个实数c,使得c(1, 2) + (2, 4) = (0, 0)。
实际上,这两个向量是共线的,它们的方向相同,只是长度不同。
二、线性无关性线性无关性是指向量组中的任意向量不能由其他向量线性表示出来。
换句话说,如果对于向量组v1,v2,...,vn中的任意一个向量vi,都不存在一组实数或复数c1,c2,...,cn(其中ci≠0),使得c1v1 + c2v2 + ... + cnvn = vi,则称向量组v1,v2,...,vn是线性无关的。
继续以上面的例子来说,考虑一个三维向量组{(1, 2), (2, 4), (3, 6)},我们可以发现这三个向量是线性相关的。
实际上,第三个向量可以由前两个向量线性表示出来:(3, 6) = 3(1, 2) + 0(2, 4)。
因此,这三个向量是线性相关的。
三、线性相关性与线性无关性的关系线性相关性与线性无关性是相互对立的概念。
如果一个向量组是线性相关的,那么它就不是线性无关的;反之亦然。
换句话说,线性相关性与线性无关性是两个互斥的概念。
在实际应用中,我们经常需要判断一个向量组的线性相关性或线性无关性。
这对于解方程组、求解特征值等问题都有着重要的意义。
四、判断线性相关性与线性无关性的方法判断一个向量组的线性相关性或线性无关性有多种方法,其中最常用的方法是通过求解线性方程组来判断。
线性代数的重要题型三:向量组的线性相关性的证明向量组的线性相关性是考试的重点,经常是以解答题和客观题的形式来考查.2008年和2009年连续两年以证明题的形式考查了向量组的线性相关性。
向量组线性相关性的证明主要用到的方法是定义和秩.一、定义法.利用定义法证明向量组1,,s αα的线性相关性,应先设11s s k k ++=0αα,再根据已知条件通过恒等变形(重组、同乘)转化为齐次线性方程组,讨论1,,s k k 是否全为0,从而得到结论.对于向量组1,,s αα,若存在不全为0的数1,,s k k 使上式成立,则1,,s αα线性相关;若上式当且仅当10s k k ===时才成立,则1,,s αα线性无关. 二、秩.(1)1,,s αα线性相关⇔1(,,)s r s <αα; 1,,s αα线性无关⇔1(,,)s r s =αα. 特别地,n 个n 维向量12,,,n a a a 的线性相关⇔12,,,0a a a n =;n 个n 维向量12,,,n a a a 的线性无关⇔12,,,0a a a n ≠.(2)利用“三秩相等”,经常将向量组的秩转化为矩阵的秩.用秩的时候经常用到下面几个定理:①()(),()()r r r r ≤≤AB A AB B .②若m n r =n ⨯A (),则()()r r =AB B .③若m n n s ⨯⨯=A B O ,则()()r r n +≤A B .【例1】设A 是n 阶矩阵,123,,ααα是n 维列向量,且1≠0α,112123233,23,23,==+=+A ααA αααA ααα证明123,,ααα线性无关.【分析】对112233k k k ++=0ααα,如何证明系数1230k k k ===呢?先仔细分析已知条件,112123233,23,23,==+=+A ααA αααA ααα其实就是12132(3),(3)2,(3)2,-=-=-=0A E αA E ααA E αα这启发我们应用3-A E 左乘112233k k k ++=0ααα来作恒等变形.【证明】设 112233k k k ++=0ααα, ① 用3-A E 左乘①式,有112233(3)(3)(3),k k k -+-+-=0A E αA E αA E α即 213222k k +=0αα. ②再用3-A E 左乘②式,可得21322(3)2(3),k k -+-=0A E αA E α即314k =0α.由1≠0α,故必有30k =;将其代入②式得212k =0α,故有20k =;再将其代入①式得11k =0α,故有10k =,所以123,,ααα线性无关.【评注】用定义法证明向量组的线性相关性时,需要作恒等变形,最常用的两种变形方法是拆项重组和同乘(等式两端同乘以同一个矩阵).【例2】已知四维列向量123,,ααα线性无关,(1,2,3,4)i i =β为非零向量,且与123,,ααα均正交,求向量组1234,,,ββββ的秩.【解析】123,,ααα均正交,即0(,1,2,3,4)αβT j i i j ==.以123,,T T T ααα为行向量作为矩阵123A αααT T T =⎛⎫ ⎪ ⎪ ⎪⎝⎭,1234,,,ββββ为列向量作为矩阵()1234,,,B ββββ=,则AB O =.利用矩阵秩的性质得到()+()4A B r r ≤.123,,ααα线性无关,则()3A r =,从而()1B r ≤(1,2,3,4)i i =β为非零向量,则()1B r ≥,得到()=1B r ,即1234(,,,)1r =ββββ.。
线性代数向量组的线性相关性第三节 向量组的线性相关性分布图示★ 线性相关与线性无关★ 例1★ 例2★ 证明线性无关的一种方法线性相关性的判定★ 定理1★ 定理2 ★ 例3★ 例4★ 例5★ 例6 ★ 定理3 ★ 定理4 ★ 定理5★ 例7 ★ 内容小结★ 课堂练习★ 习题3-3内容要点一、线性相关性概念定义1 给定向量组,,,,:21s A αααΛ 如果存在不全为零的数,,,,21s k k k Λ 使,02211=+++s s k k k αααΛ (1)则称向量组A 线性相关, 否则称为线性无关.注: ① 当且仅当021====s k k k Λ时,(1)式成立, 向量组s ααα,,,21Λ线性无关;② 包含零向量的任何向量组是线性相关的;③ 向量组只含有一个向量α时,则(1)0≠α的充分必要条件是α是线性无关的; (2)0=α的充分必要条件是α是线性相关的;④ 仅含两个向量的向量组线性相关的充分必要条件是这两个向量的对应分量成比例;反之,仅含两个向量的向量组线性无关的充分必要条件是这两个向量的对应分量不成比例.⑤ 两个向量线性相关的几何意义是这两个向量共线, 三个向量线性相关的几何意义是这三个向量共面.二、线性相关性的判定定理1 向量组)2(,,,21≥s s αααΛ线性相关的充必要条件是向量组中至少有一个向量可由其余1-s 个向量线性表示.定理2 设有列向量组),,,2,1(,21s j a a a nj j j j ΛM =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=α 则向量组s ααα,,,21Λ线性相关的充要条件是: 是矩阵),,,(21s A αααΛ=的秩小于向量的个数s .推论1 n 个n 维列向量组n ααα,,,21Λ线性无关(线性相关)的充要条件是: 矩阵),,,(21n A αααΛ= 的秩等于(小于)向量的个数n .推论2 n 个n 维列向量组n ααα,,,21Λ线性无关(线性相关)的充要条件是:矩阵),,,(21n A αααΛ= 的行列式不等于(等于)零.注: 上述结论对于矩阵的行向量组也同样成立.推论3 当向量组中所含向量的个数大于向量的维数时, 此向量组必线性相关.定理3 如果向量组中有一部分向量(部分组)线性相关,则整个向量组线性相关.推论4 线性无关的向量组中的任何一部分组皆线性无关.定理4 若向量组βαα,,,1s Λ线性相关, 而向量组s ααα,,,21Λ线性无关, 则向量β可由s ααα,,,21Λ线性表示且表示法唯一.定理5 设有两向量组,,,,:;,,,:2121t s B A βββαααΛΛ向量组B 能由向量组A 线性表示, 若t s <, 则向量组B 线性相关.推论5 向量组B 能由向量组A 线性表示, 若向量组B 线性无关, 则.t s ≥ 推论6 设向量组A 与B 可以相互线性表示, 若A 与B 都是线性无关的, 则.t s =例题选讲例1 设有3个向量(列向量):,421,221,101221⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=ααα不难验证,02321=-+ααα 因此321,,ααα是3个线性相关的3维向量.例2 设有二个2维向量:,10,0121⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=e e 如果他们线性相关, 那么存在不全为零的数,,21λλ 使 ,02211=+e e λλ 也就是 ,0100121=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛λλ即 .0002121=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛λλλλ于是,0,021==λλ 这同21,λλ不全为零的假定是矛盾的. 因此1e ,2e 是线性无关的二个向量.例3 (E01) n 维向量组T n T T )1,,0,0(,,)0,1,0(,)0,,0,1(21ΛΛΛΛ===εεε称为n 维单位坐标向量组, 讨论其线性相关性.解 n 维单位坐标向量组构成的矩阵)(21n E εεε,,,Λ=⎪⎪⎪⎪⎪⎭⎫⎝⎛=100010001ΛΛΛΛΛΛΛ 是n 阶单位矩阵.由,01≠=E 知.n E r =即E r 等于向量组中向量的个数, 故由推论2知此向量是线性无关的.例4 (E02) 已知,1111⎪⎪⎪⎭⎫ ⎝⎛=a ,5202⎪⎪⎪⎭⎫ ⎝⎛=a ⎪⎪⎪⎭⎫⎝⎛=7423a , 试讨论向量组321,,a a a 及21,a a 的线性相关性.解 对矩阵)(321a a a A ,,=施行初等行变换成行阶梯形矩,可同时看出矩阵A 及),(21αα=B 的秩,利用定理2即可得出结论.),,,321(ααα=⎪⎪⎪⎭⎫ ⎝⎛7514212011213r r r r --→⎪⎪⎪⎭⎫ ⎝⎛550220201−−→−-2125r r ,000220201⎪⎪⎪⎭⎫⎝⎛ 易见,,2)(=A r ,2)(=B r 故向量组,,,321ααα线性相关. 向量组21a a ,线性无关.例5 判断下列向量组是否线性相关:.11134,1112,5121321⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=ααα解 对矩阵)(321ααα,,施以初等行变换化为阶梯形矩阵:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---1115111312421 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----990330550421 ⎪⎪⎪⎪⎪⎭⎫⎝⎛000000110421 秩,,,32)(321<=ααα所以向量组321ααα,,线性相关.例6 证明:若向量组γβα,,线性无关, 则向量组,βα+,γβ+αγ+亦线性无关. 证 设有一组数,,,321k k k 使0)()()(321=+++++αγγββαk k k (1)成立,整理得0)()()(322131=+++++γβαk k k k k k 由γβα,,线性无关,故⎪⎩⎪⎨⎧=+=+=+000322131k k k k k k (2) 因为110011101,02≠=故方程组(2)仅有零解.即只有0321===k k k 时(1)式才成立.因而向量组,βα+,γβ+αγ+线性无关.例7 (E03) 设向量组321,,a a a 线性相关, 向量组432,,a a a 线性无关, 证明 (1) 1a 能由32,a a 线性表示; (2) 4a 不能由321,,a a a 线性表示.证明(1)因432ααα,,线性无关,故32,αα线性无关,而321ααα,,线性相关,从而1α能由32αα,线性表示;(2)用反证法. 假设4α能由321ααα,,线性表示,而由(1)知1α能由32αα,线性表示,因此4α能由32αα,表示,这与432ααα,,线性无关矛盾.证毕.课堂练习1. 试证明:(1) 一个向量α线性相关的充要条件是0=α; (2) 一个向量α线性无关的充分条件是0≠α;(3) 两个向量βα,线性相关的充要条件是βαk =或者αβk =(两式不一定同时成立)。
线性代数3.3向量组线性相关性的判别定理线性代数是数学中的一个分支,它研究向量空间和线性映射等代数结构的性质和规律。
在线性代数中,向量组的线性相关性是一项基本概念。
本文将介绍向量组线性相关性的判别定理。
在数学中,如果存在一组非零向量$\boldsymbol{v}_1,\boldsymbol{v}_2,\cdots,\boldsymbol{v}_n$以及一组不全为零的标量$k_1,k_2,\cdots,k_n$,使得向量组的线性相关性判别定理是指,存在一个简单的方法,可以判断一个向量组是否是线性相关的。
推论:零向量不参与线性相关性的判断但是,如果向量组中包含了零向量,那么零向量不参与线性相关性的判断。
因为任何向量与零向量的线性组合都等于零向量,所以如果向量组中包含了零向量,只有当其他向量出现线性相关性时,才能称向量组是线性相关的。
证明:因为$k_1,k_2,\cdots,k_n$中至少有一个不为零,不妨设$k_1$不为零。
则有因此,向量$\boldsymbol{v}_1$可以表示为其余向量的线性组合。
$$\boldsymbol{v}_i=k_1\boldsymbol{v}_1+k_2\boldsymbol{v}_2+\cdots+k_{i-1}\bold symbol{v}_{i-1}+k_{i+1}\boldsymbol{v}_{i+1}+\cdots+k_n\boldsymbol{v}_n$$将上式代入得到总结向量组的线性相关性是线性代数中的一个重要概念,它与矩阵的秩、行列式、特征值等有密切的关联。
在实际应用中,判断向量组的线性相关性是很有用的,例如在计算机图形学、信号处理、机器学习等领域中,经常需要对向量组进行操作和分析。
通过本文所介绍的向量组线性相关性的判别定理,我们可以更方便地应用向量空间理论解决实际问题。