4向量组的线性相关性
- 格式:ppt
- 大小:2.20 MB
- 文档页数:77
第四章向量组的线性相尖性441基础练习1.设有斤维向量组e,,•••、%与几,02,...,仇若存在两组不全为零的数人、入,…,九和k], kzM使(人+灯⑦+—(心+k丿a卄(石一k) 0汁…+(入一n『#m=0则( )(A)(X、,吆…,J和0户卩2,…,“也都线性相矢(B)(ZI,么2,…,么加和0F“2,..., 0加都线性无矢(C)么汁伤,…,时门曲g—fip…,久线性无矢(D)e+伤,…,皤//”,5_卩[,…,线性相尖2.设如如一os与为,卩2,…,久为两个料维向量组,且R@\, a2, -,a s) = /?(/?… /?2,= r,则( )(A)当s = t吋,两向量组等价;(B)两向量组等价;(C)幻…,冬,卩7几)二”(D)当向量组如S被向量组伤,卩2,…,戸,线性表示时,两个向量组等价.3.设/是4阶方阵,且同=0,则/中( )(A)必有一列元素全为零;(B)必有两列元素成比例;(C)必有一列向量是其余列向量的线性组合;(D)任一列向量是其余列向量的线性组合.4.设力是矩阵,〃是矩阵,贝%)(A)当m > n时,必有14B | HO ;(B)当m > n时,必有(C)当HKD时,必有IMIW;(D)当m < n时,必有IMIP5.设向量组勺,血,他线性无尖,向量几可由勺,么2,么3线性表示,而向量02不能由(A) z a2,k/?7+/?2线性无尖;(B)血竝,冬,k/?7+y?2线性相矢;(C) a J9购么3, 0/+k“2线性无尖;(D)么勿,/ 线性相尖.6.设有向量组勺=(1,- 1,2,4), « = 0,3,1,2), «=(3,0,7,14),勺=(1,-2,2,0)与冬=(2丄5,10), 则向量组的极大线性无尖组是( )(A) °人3 ;(B) ar a2,弘;(C) ap a?, a.门(D) z av a4, as.7.设有向量组a=(a,0,c)fa=(b,c,0),a5=(0,a,b)线性无尖,则a,也c必须满足矢系式.& 向量组a=(l,2,3,4), (i2=(2,3,4,5), a3=(3,4,5,6),恥=(4,5,6,7)的秩等于 ___________________ . 9•已知向量组a =(1,2,-1,1),血=(2,0,0),购=(0,-4,5,-2)的秩为2,则.r 1 2 -2-10 •设矩阵/=2 1 2,向量a=(a,l,l),,已知/la与么线性无矢,则心_________________30 411•向量空间r二(x,2x,y)lx,yG R }的维数是______________________________ ,它的基a= _________ ,a2 = __________ .向量么=(3,6,-4)在基勺下的坐标是________________ . 12 ・设有向量组a, =(2,4,7); a2 =(3,2,5);^=(5,6,Q; “ = (1,3,5),当上为何值时,“能由舛42 线性表示?13.设有向量组a, =(2,1,5,3);血=(1,-1,2,1);佝=(0,3,1,1);恥=(1,2,3,2);少=(-1,1,-2,-8)求向量组的秩和它的一个极大线性无尖组•14.设有向量组© =(1,1,1);血=(1,1,-1);试把P表为a, ,a2用3的线性组合.X,-2X2+X3+X4 • X5 二02XI+x 厂Xq-Xd+Xq 二015 •求方程组12 3 4 5的基础解系和通解.X(+7X2 ・ 5%3 ・5x4+5x5 二03x r X2-2X3+X4-X5 二0*X!-2X2+3X3-4X4=4x?-x.+xd =316•求方程组 2 3 4的通解.XI • 3X2-3X4 二1-7X2+3X3+X4 二-34.4.2提高练习1 .已知a, =(1,0,2,5/, a? =(1,1,3,5/, =Q,」a + 2,l)r他二(l,2,4,a+ 8 几0 = (1,10 +3,5)T(1)a,b为何值时,0不能表示为a…a2,a3,a4的线性组合;(2)a, b为何值时,“有⑦皿2,偽皿4的唯一线性表示,并写出该表达式.2.设向量线性相矢,而其屮任何卩1个向量线性无矢,证明存在不全为零的数《,©, • • •& 便滋+••• + ©%=()・3•设ai9a29a3线性无尖,证明 /?( =a)-2a2 +2a3,/?2 二加-a A py = 2a)-a2 +3a3 线性无尖•4.验证向量a. =(l,-l,0)r,a2 =(2丄3/,=(3,1,2/是疋的一个基,并分别将向量件二(5Q7)丁,仏二(一9,一&・13卩用这个基表示.5.已知H的两个基T3<3<5><A:a)=1/<2 二11;B卩严3,02 =-1'03 二4<2<2><2<3,J2求基力到基〃的过渡矩阵C6•设由向量么〕二(0丄2),血二(1,3,5),么3二(2丄0)生成的向量空间为V】,由向量几二(1,2,3),仏二(一1,0,1)生成的向量空间为V2,试证匕二V2・7•设/?”的3个基分别为1)求由基(2)到基(1)的过渡矩阵;2)求向S.a 二e 【+e2"・e3在基(2)下的坐标; 3) 求向量fl = 3ej+ 2es -3A4在基(1)下的坐标;4) 求由基(2)到基(3)的过渡矩阵.8.设加个n 维向量a 〕9ay«”线性无矢,P 为n 阶方阵‘证明:向量组Pa?Pa2, - .Pan1,<o>v9、6具有相同的秩,且“3可由向量组(2)线「7(3): VI(--I疋2 =1 0 <0 • •<i>r-P了-1 1 、6 二 ?.1<o><0,[1 1 ?也二 311d 丿线性无尖的充耍条件是IPL0.na29•已知向量组(1):fi 二T0]],“2= ri 丿< 1、n3向量组(2) : a2,亿>二佝二严)A \/(?)作性表不,求* b 的值.,03=10•已知3阶方阵力与3维向量X,使得向量组X9AX9A2X线性无尖,且满足A3X =3A X-2A2X ;1)记P二(x, Axjxj.求3 阶方阵B使A = PBP-;2)计算行列式・A%! + 兀 2 + 兀 3= 1问2取何值时,(1) o 可由勺,J 么3线性表示,且表达式唯一? (2) "可由勺,《2,冬线性表示,但表达式不唯一? (3) “不能由勺,色线性表示?x ( +X2+&3 =413. k 为何值时,线性方程组w -x, + kx 2 + x 3 = A:2X]_ 勺 + 2 兀 3 =-4有唯一解、无解、有无穷个解?在有解时求出其全部解. 14. 己知二(1,0,2,3),力二(1丄3,5),«3二(1,一 1 卫 + 2,1),如二(124卫 + &),,(1 丄/? +3,5).(1)心b 为何值时,“不能表示为勺,j s 他的线性组合?(2)么/?为何值时,“可表示为么” J 5么4的线性组合?并写出该表示式.11 •讨论并求解方程组<%! + AX2 +X3 = A.12•设有3维列向量a =x]+兀 2+ 7C 3 = Q215. 已知下列线性方程组 兀1+兀〉一2兀4 = 一6(1){4 西-X2 -X3-X4 = 1; 3兀L 兀2_兀3 = 3 ⑴求出方程组⑴的通解;(2)当⑵中的参数明/为何值时‘方程组⑴与(2)同解?X] + inx? -XS -XA --5 72X1 —七一2 兀二—1 121第四章参考解答4.4.1基础练习:1. (D )提示:由题设知,入 5+0) + 希 a+02 + - • • + An J&+Q + kg-卩)+・・・=o又知人,易,…,无,k 、,心…,红不全为零,均+伤,a 2+#2,臥盘,a 厂卩p 卩卫…,亦仇线性相尖.2. (D )提示:设向量组A :弘幻 …,匕:向量组B : P],'T(因向量组/可被向量组B 表示),则用為?仞二/? (C )o L所以%® r 故选(D )3. (C )提示:因仏2,则R (/) v4, /经初等列变换化为阶梯阵〃,〃必有零列,该列就是其余列的线性组合.4. (B )提示:也习 时,R (4) <n<m,又R (4B )vR 么),则«BX m ,为降阶方阵,所以AB=O.«/'a /A =orf4-k(A ir/+A 2 厂2+7丿Ta 、 M =B «3«3g+02_A_又勺,j 冬线性无尖,且肉不能由勺,叫冬线性表示,则R勺,J 他,妙+几线性无尖•这个结论肯定了(A )而排除了(B ),对条件(C ),取R 二0即与5. (A )提示:由可由勺,5幺3线性表示知件二人勺+入么仝+入冬,那么 (4)二R0?>4,即题设矛盾,可排除•对于(D),取21时与(A)中炉1相同,已知(A)正确,从而否定(D)・6.(B)1. abcO ・提示:ar n 冬线性无尖。
第四章 向量一 内容概要1 向量的概念:(1)定义;(2)与矩阵之间的关系;(3)向量的相等;2 向量的运算:(1)向量的和、差;(2)向量的数乘;(3)向量的线性运算;3 向量组的线性关系(1)线性组合:对于给定的向量组βααα,21s ,,, ;如果存在一组数s k k ,,1 使得:s s k k k αααβ+++= 2211则称向量s 21αααβ,,,是向量组 的一个线性组合,或称β可以由向量组:,21s ααα,,, 线性表示;(2)线性相关、线性无关的定义设,21s ααα,,, 是一组n 维向量(当然是同型),如果存在一组不全为0的数s k k ,,1 使得:02211=+++s s k k k ααα则称向量组,21s ααα,,, 线性相关 指出,这里一定要注意关键词:(1)它是不全为0的数s k k ,,1 ;(2)存在;至于这一组数具体是什么样的一组数无关紧要。
反之 则称向量组,21s ααα,,, 线性无关,即若要 02211=+++s s k k k ααα成立,必有021====s k k k ,则称向量组,21s ααα,,, 线性无关。
(3)向量组的线性相关性与方程组之间的关系向量组,21s ααα,,, 线性关系式02211=+++s s k k k ααα 具体表示出来实际上就是一个方程组:⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111s ms m m ss s s x a x a x a x a x a x a x a x a x a其中:()m j a a a Tmj j j j ,,2,1,,,21 ==,α因此,通俗的话来说,向量组s 21,ααα ,,线性相关的充要条件是:上述方程组有非0解。
这是判断一个向量组s ααα,,, 21是否线性相关最常用的方法。
(2)向量有解的关系线性表示与方程组,,,可被向量组βαααβ=AX n 21 设()()j Tm n b b b A αβααα,,,,,,,,2121 ==的意义同上,则方程组β=AX 可表示成:βααα=+++n n x x x 2211,或⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111 因此向量线性表示,,,可被向量组n 21αααβ 的充要条件是方程组β=AX 有解。
第四章 向量组的线性相关性§1 n 维向量概念一、向量的概念定义1 n 个有次序的数12,,,n a a a 所组成的数组称为n 维向量,这n 个数称为该向量的n 个分量,第i 个数i a 称为第i 个分量.注1分量全为实数的向量称为实向量.分量不全为实数的向量称为复向量. 注2 n 维向量可以写成一行的形式()12,,,n a a a a =,出可以写成一列的形式12n a a a a ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭,前者称为行向量,而后者称为列向量.行向量可看作是一个1n ⨯矩阵,故又称行矩阵;而列向量可看作一个1n ⨯矩阵,故又称作列矩阵.因此它们之间的运算就是矩阵之间的运算,从而符合矩阵运算的一切性质.向量之间的运算只涉及到线性运算和转置运算.为叙述方便,特别约定:在不特别声明时说到的向量均为列向量,行向量视为列向量的转置.注3 用小写黑体字母,,,a b αβ 等表示列向量,用,,,T T T T a b αβ表示行向量. 例1 设123(1,1,0),(0,1,1),(3,4,0)T T T v v v ===,求12v v -及12332v v v +-.解 12v v -(1,1,0)(0,1,1)T T =-(10,11,01)T =---(1,0,1)T =-12332v v v +-3(1,1,0)2(0,1,1)(3,4,0)T T T =+-(31203,31214,30210)T =⨯+⨯-⨯+⨯-⨯+⨯-(0,1,2)T =定义 设v 为n 维向量的集合,如果集合v 非空,且集合v 对于加法与数乘两种运算封闭(即若α∈v,β∈v ,有α+β∈v ;若α∈v, k ∈R ,有k α∈v ),称v 为向量空间。
§2 向量组的线性相关性一、向量组的线性组合 定义3 给定向量组A :12,,,m a a a ,对于任何一组实数12,,,m k k k ,称向量1122m m a a a k k k +++ 为向量组A 的一个线性组合,12,,,m k k k 称为这个线性组合的系数.定义4 给定向量组A :12,,,m a a a 和向量b ,若存在一组实数12,,,m λλλ,使得1122m m a a a b λλλ=+++则称向量b 是向量组A 的一个线性组合,或称向量b 可由向量组A 线性表示.注1任一个n 维向量12n a a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭都可由n 维单位向量组12,,,n e e e 线性表示:1122n n a a a a e e e =+++ .注2向量b 可由向量组A :12,,,n a a a 线性表示(充要条件)⇔方程组1122n n a a a x x x b +++=有解m n A x b ⨯⇔=有解()(,)R A R A b ⇔=注3 由于线性方程组的解分为:无解,有唯一解,有无穷多解三种情况,所以向量β由向量12,,,n a a a 线性表示的情形也分为三种:不能线性表示,唯一线性表示,无穷多种线性表示,且线性表示式中的系数就是对应线性方程组的解。