向量组的线性相关性
- 格式:pdf
- 大小:324.20 KB
- 文档页数:8
向量组的线性相关性与线性无关性在线性代数中,向量组是指由一组向量所组成的集合。
而向量组的线性相关性与线性无关性则是研究向量组内向量之间的关系,是线性代数中的重要概念之一。
一、线性相关性线性相关性是指存在一组不全为零的实数或复数使得向量组中的向量可以通过线性组合得到零向量。
换句话说,如果存在不全为零的实数或复数c1,c2,...,cn,使得c1v1 + c2v2 + ... + cnvn = 0,则称向量组v1,v2,...,vn是线性相关的。
举个例子来说,考虑一个二维向量组{(1, 2), (2, 4)},我们可以发现这两个向量是线性相关的,因为存在一个实数c,使得c(1, 2) + (2, 4) = (0, 0)。
实际上,这两个向量是共线的,它们的方向相同,只是长度不同。
二、线性无关性线性无关性是指向量组中的任意向量不能由其他向量线性表示出来。
换句话说,如果对于向量组v1,v2,...,vn中的任意一个向量vi,都不存在一组实数或复数c1,c2,...,cn(其中ci≠0),使得c1v1 + c2v2 + ... + cnvn = vi,则称向量组v1,v2,...,vn是线性无关的。
继续以上面的例子来说,考虑一个三维向量组{(1, 2), (2, 4), (3, 6)},我们可以发现这三个向量是线性相关的。
实际上,第三个向量可以由前两个向量线性表示出来:(3, 6) = 3(1, 2) + 0(2, 4)。
因此,这三个向量是线性相关的。
三、线性相关性与线性无关性的关系线性相关性与线性无关性是相互对立的概念。
如果一个向量组是线性相关的,那么它就不是线性无关的;反之亦然。
换句话说,线性相关性与线性无关性是两个互斥的概念。
在实际应用中,我们经常需要判断一个向量组的线性相关性或线性无关性。
这对于解方程组、求解特征值等问题都有着重要的意义。
四、判断线性相关性与线性无关性的方法判断一个向量组的线性相关性或线性无关性有多种方法,其中最常用的方法是通过求解线性方程组来判断。
第四章 向量组的线性相关性§1 n 维向量概念一、向量的概念定义1 n 个有次序的数12,,,n a a a 所组成的数组称为n 维向量,这n 个数称为该向量的n 个分量,第i 个数i a 称为第i 个分量.注1分量全为实数的向量称为实向量.分量不全为实数的向量称为复向量. 注2 n 维向量可以写成一行的形式()12,,,n a a a a =,出可以写成一列的形式12n a a a a ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭,前者称为行向量,而后者称为列向量.行向量可看作是一个1n ⨯矩阵,故又称行矩阵;而列向量可看作一个1n ⨯矩阵,故又称作列矩阵.因此它们之间的运算就是矩阵之间的运算,从而符合矩阵运算的一切性质.向量之间的运算只涉及到线性运算和转置运算.为叙述方便,特别约定:在不特别声明时说到的向量均为列向量,行向量视为列向量的转置.注3 用小写黑体字母,,,a b αβ 等表示列向量,用,,,T T T T a b αβ表示行向量. 例1 设123(1,1,0),(0,1,1),(3,4,0)T T T v v v ===,求12v v -及12332v v v +-.解 12v v -(1,1,0)(0,1,1)T T =-(10,11,01)T =---(1,0,1)T =-12332v v v +-3(1,1,0)2(0,1,1)(3,4,0)T T T =+-(31203,31214,30210)T =⨯+⨯-⨯+⨯-⨯+⨯-(0,1,2)T =定义 设v 为n 维向量的集合,如果集合v 非空,且集合v 对于加法与数乘两种运算封闭(即若α∈v,β∈v ,有α+β∈v ;若α∈v, k ∈R ,有k α∈v ),称v 为向量空间。
§2 向量组的线性相关性一、向量组的线性组合 定义3 给定向量组A :12,,,m a a a ,对于任何一组实数12,,,m k k k ,称向量1122m m a a a k k k +++ 为向量组A 的一个线性组合,12,,,m k k k 称为这个线性组合的系数.定义4 给定向量组A :12,,,m a a a 和向量b ,若存在一组实数12,,,m λλλ,使得1122m m a a a b λλλ=+++则称向量b 是向量组A 的一个线性组合,或称向量b 可由向量组A 线性表示.注1任一个n 维向量12n a a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭都可由n 维单位向量组12,,,n e e e 线性表示:1122n n a a a a e e e =+++ .注2向量b 可由向量组A :12,,,n a a a 线性表示(充要条件)⇔方程组1122n n a a a x x x b +++=有解m n A x b ⨯⇔=有解()(,)R A R A b ⇔=注3 由于线性方程组的解分为:无解,有唯一解,有无穷多解三种情况,所以向量β由向量12,,,n a a a 线性表示的情形也分为三种:不能线性表示,唯一线性表示,无穷多种线性表示,且线性表示式中的系数就是对应线性方程组的解。
向量组线性相关性向量组线性相关性是数学中一个重要的概念,它可以在许多应用中使用,包括统计和线性代数。
它表明了两个变量是如何相互影响的,并且可以用来解释不同情况下变量之间的线性关系。
因此,了解这个概念对推断变量之间的关系非常重要。
在这篇文章中,我们将详细讨论向量组线性相关性的定义、特性和应用。
首先,我们将介绍什么是向量组,包括它的结构、特性和如何表示。
接下来,我们将讨论线性相关性的定义,它的两个重要特性,即相关系数和回归线。
最后,我们将讨论向量组线性相关性的应用,特别是在统计学中,它可以用来推断和预测数据集之间的关系。
首先,让我们来看看什么是向量组。
它是一组由单位矢量组成的数值,它们被称为标量。
向量组由坐标轴上的点组成,这些点的特性取决于它们的大小和关系。
例如,在二维空间中,每一个矢量都可以用它的横坐标和纵坐标来表示,这两个坐标是矢量的分量。
此外,矢量的大小是按照它们两个坐标的积来表示的,这个大小可以用简单的乘法计算,也可以用更复杂的三角函数计算。
其次,我们来讨论线性相关性。
线性相关性是指在两个变量之间存在线性关系的能力。
它可以用相关系数来表示。
相关系数是一个指标,表示两个变量的相关性。
它的值介于-1和1之间,-1表示完全负相关,1表示完全正相关,0表示无关。
因此,通过计算相关系数,可以了解两个变量之间的线性关系。
此外,另一个重要的线性相关性特性是回归线。
回归线是一条拟合两个变量之间线性关系的直线,它可以用来推测两个变量之间的关系。
通过画出回归线,可以更清楚地了解两个变量之间的关系,例如它们之间是线性相关还是非线性相关。
最后,我们来看看向量组线性相关性的应用。
它主要应用于统计学,用来推断和预测数据集之间的关系。
它也可以用来了解变量之间的线性依赖性,以及变量的趋势及其变化。
此外,它还可以用来帮助预测未来,因为它可以用来推断不同数据集之间的相关性。
总之,向量组线性相关性是一个非常重要的概念,它可以帮助我们了解变量之间的关系,推断不同数据集之间的关系,以及预测未来。
判断向量组线性相关的方法
判断向量组线性相关的方法有:
1. 行列式判断法:将向量按列排成矩阵A,计算矩阵A的行
列式值det(A),若det(A)=0,则向量组线性相关;若det(A)≠0,则向量组线性无关。
2. 线性组合法:对向量组中的向量进行线性组合,若存在不全为零的系数使得线性组合等于零向量,则向量组线性相关;若只有全为零的系数才能使线性组合等于零向量,则向量组线性无关。
3. 列向量线性相关性判断法:将向量排成矩阵A,对矩阵A
进行行变换,化为梯形矩阵或行简化阶梯形矩阵。
在梯形矩阵或行简化阶梯形矩阵中,如果存在一个主元所在的列,列中存在非零元素,则向量组线性相关;如果不存在这样的列,则向量组线性无关。
4. 秩判断法:将向量组按列排成矩阵A,计算矩阵A的秩
rank(A),如果rank(A)小于向量的个数,则向量组线性相关;
如果rank(A)等于向量的个数,则向量组线性无关。
线性代数的重要题型三:向量组的线性相关性的证明向量组的线性相关性是考试的重点,经常是以解答题和客观题的形式来考查.2008年和2009年连续两年以证明题的形式考查了向量组的线性相关性。
向量组线性相关性的证明主要用到的方法是定义和秩.一、定义法.利用定义法证明向量组1,,s αα的线性相关性,应先设11s s k k ++=0αα,再根据已知条件通过恒等变形(重组、同乘)转化为齐次线性方程组,讨论1,,s k k 是否全为0,从而得到结论.对于向量组1,,s αα,若存在不全为0的数1,,s k k 使上式成立,则1,,s αα线性相关;若上式当且仅当10s k k ===时才成立,则1,,s αα线性无关. 二、秩.(1)1,,s αα线性相关⇔1(,,)s r s <αα; 1,,s αα线性无关⇔1(,,)s r s =αα. 特别地,n 个n 维向量12,,,n a a a 的线性相关⇔12,,,0a a a n =;n 个n 维向量12,,,n a a a 的线性无关⇔12,,,0a a a n ≠.(2)利用“三秩相等”,经常将向量组的秩转化为矩阵的秩.用秩的时候经常用到下面几个定理:①()(),()()r r r r ≤≤AB A AB B .②若m n r =n ⨯A (),则()()r r =AB B .③若m n n s ⨯⨯=A B O ,则()()r r n +≤A B .【例1】设A 是n 阶矩阵,123,,ααα是n 维列向量,且1≠0α,112123233,23,23,==+=+A ααA αααA ααα证明123,,ααα线性无关.【分析】对112233k k k ++=0ααα,如何证明系数1230k k k ===呢?先仔细分析已知条件,112123233,23,23,==+=+A ααA αααA ααα其实就是12132(3),(3)2,(3)2,-=-=-=0A E αA E ααA E αα这启发我们应用3-A E 左乘112233k k k ++=0ααα来作恒等变形.【证明】设 112233k k k ++=0ααα, ① 用3-A E 左乘①式,有112233(3)(3)(3),k k k -+-+-=0A E αA E αA E α即 213222k k +=0αα. ②再用3-A E 左乘②式,可得21322(3)2(3),k k -+-=0A E αA E α即314k =0α.由1≠0α,故必有30k =;将其代入②式得212k =0α,故有20k =;再将其代入①式得11k =0α,故有10k =,所以123,,ααα线性无关.【评注】用定义法证明向量组的线性相关性时,需要作恒等变形,最常用的两种变形方法是拆项重组和同乘(等式两端同乘以同一个矩阵).【例2】已知四维列向量123,,ααα线性无关,(1,2,3,4)i i =β为非零向量,且与123,,ααα均正交,求向量组1234,,,ββββ的秩.【解析】123,,ααα均正交,即0(,1,2,3,4)αβT j i i j ==.以123,,T T T ααα为行向量作为矩阵123A αααT T T =⎛⎫ ⎪ ⎪ ⎪⎝⎭,1234,,,ββββ为列向量作为矩阵()1234,,,B ββββ=,则AB O =.利用矩阵秩的性质得到()+()4A B r r ≤.123,,ααα线性无关,则()3A r =,从而()1B r ≤(1,2,3,4)i i =β为非零向量,则()1B r ≥,得到()=1B r ,即1234(,,,)1r =ββββ.。
判断向量组线性相关的方法判断向量组线性相关的方法是线性代数中的一个重要概念,它对于研究向量空间的性质和解决实际问题都具有重要意义。
在实际应用中,我们经常需要判断给定的向量组是否线性相关,这就需要运用相应的方法进行分析。
接下来,我们将介绍几种常见的方法来判断向量组的线性相关性。
一、行列式法。
对于给定的向量组${\alpha}_1, {\alpha}_2, \cdots, {\alpha}_n$,我们可以将它们按列排成一个矩阵$A=[{\alpha}_1, {\alpha}_2, \cdots, {\alpha}_n]$。
然后,我们计算矩阵$A$的行列式$|A|$,如果$|A|=0$,则向量组线性相关;如果$|A|\neq0$,则向量组线性无关。
二、线性方程组法。
另一种判断向量组线性相关的方法是通过解线性方程组来进行分析。
对于向量组${\alpha}_1, {\alpha}_2, \cdots, {\alpha}_n$,我们可以构造一个线性方程组$X{\alpha}_1+Y{\alpha}_2+\cdots+Z{\alpha}_n=0$,其中$X,Y,\cdots,Z$为未知数。
然后,我们求解该线性方程组,如果存在不全为零的解,则向量组线性相关;如果只有零解,则向量组线性无关。
三、秩的方法。
我们还可以通过矩阵的秩来判断向量组的线性相关性。
对于给定的向量组${\alpha}_1, {\alpha}_2, \cdots, {\alpha}_n$,我们将它们按列排成一个矩阵$A=[{\alpha}_1, {\alpha}_2, \cdots, {\alpha}_n]$,然后计算矩阵$A$的秩$r$。
如果$r<n$,则向量组线性相关;如果$r=n$,则向量组线性无关。
四、线性相关性的性质。
除了以上方法外,我们还可以利用线性相关性的性质来判断向量组的线性相关性。
例如,如果向量组中存在一个向量是其他向量的线性组合,则该向量组线性相关;如果向量组中的向量个数大于向量的维数,则向量组线性相关。