,
消去参数m,得2 x y 6 0,
圆心在定直线2 x y 6 0上.
Q 直线l经过点(1,1),对任意实数m, 定直线l被圆C (半径为3)截得的弦长为 定值,则圆心C到直线l的距离为定值. 直线l //圆心C所在直线. 设l方程为2 x y c 0, 将(1,1)代入, 得c 1,故直线l方程为2 x y 1 0.
问题转化为求点D到点O 距离的最大值.
AB 2 3, AC 2,结合垂径定理和勾股 定理可得CD 1.故动点D在 以C(3, 0)为圆心,1为半径的 圆( x 3)2 y2 1上运动. 则ODmax OC 1 4,
uuur uuur OA OB 的最大值为8.
变式:在平面直角坐标系xoy中,圆C的 方程为( x 1)2 y2 4, P为圆C上一点, 若存在一个定圆M,过P作圆M的两条 切线PA,PB,切点分别为A, B,当P 在圆C上运动时,使得APB恒为600, 则圆M的方程为_____________
联立解得
x y
0或 0
பைடு நூலகம்
x y
4 5, 2 5
怎样验证
故猜想定点为(0, 0),( 4 , 2),下面验证: 55
将点(0, 0),( 4 , 2)代入 55
x2 y2 2mx (m 2) y 2m 0都符合,
所以圆过两个定点(0, 0),( 4 , 2). 55
法2.将已知圆方程关于参数m整理 恒等式
右侧,圆M被y轴截得的弦长为 3r.若对 任意正常数r , 定直线l与圆M 相切,则定直 线l的方程为___________________
解析:设圆心M (a, b), 利用M 在线段AB的 垂直平分线上,从而 MA = MB ,结合M 在