第二章扩展式博弈
- 格式:ppt
- 大小:2.73 MB
- 文档页数:4
博弈论的extensive form博弈论是研究具有相互冲突和合作元素的情境下的决策制定的数学理论。
在博弈论中,一个游戏(博弈)可以被表示为扩展式(extensive form)或标准式(normal form)。
扩展式博弈也被称为树形结构,它详细地描述了游戏的所有可能的决策过程和时间顺序。
在扩展式博弈中,每个玩家根据游戏的历史(从根节点到当前决策点的路径)做出选择。
这种表示方法允许捕捉到玩家之间的行动顺序和信息传递,非常适合描述具有时间序列和信息不完全的动态决策过程。
扩展式博弈的主要组成部分包括:1. 历史(History):历史是一个有序集合,表示从博弈的开始到当前决策点所采取的行动序列。
在扩展式博弈的树形结构中,历史从根节点开始,每个节点代表一个决策点,节点之间的路径代表了行动的历史。
2. 玩家函数(Player Function):玩家函数P(h) 定义了在历史h 之后做出决策的玩家。
在扩展式博弈中,玩家函数确保了在每一个决策点,只有一个玩家负责做出选择。
3. 纯策略(Pure Strategy):纯策略是玩家在每个决策点上可能采取的行动集合。
一个玩家在扩展式博弈中的纯策略可以被表示为一个函数,该函数将历史映射到一个具体的选择上。
4. 博弈长度(Length of the Game):博弈长度l(G) 是指从根节点到叶节点的最长路径长度,它代表了博弈的持续时间。
扩展式博弈的优点在于它能够精确地描述玩家之间的决策顺序和信息结构,但它也有可能变得非常复杂,尤其是在参与者数量多或者决策序列长的情况下。
尽管如此,扩展式博弈是分析具有时序特征和信息不完全的决策问题的有力工具,特别是在经济学、政治学、心理学和人工智能等领域。
博弈扩展式表述转化为策略式表述有时为了理论研究,借助策略式表述博弈的结果分析扩展式博弈,需要将扩展式博弈转化为策略式表述博弈。
扩展式博弈的策略定义是:参与人在其每一个信息集上都要给出一个行动方案。
扩展式博弈分析的重要工作内容就是确定每个参与人在其每个信息集上如何进行行动选择。
策略一般地,若参与人i 的信息集集合为H i ,信息集i ∈H i 上的行动集为A i (i ),该行动集上的行动为a i (i )∈A i (i ),则参与人i 的策略则可表示为h i k i ∈ Hi {a i (i )}若参与人在每个信息集上的行动可以随机化,则称该策略为行为策略(behavioral strategy ),可记为h i k i ∈ Hi {i (i )},其中,i (i )∈(A i (i ))策略——一个例子请写出右图所示的博弈树双方各自的策略。
1有2个信息集,第一个信息集有三个行动,第二个信息集有2个行动。
因此共有六个策略。
可记参与人1的策略集为S 1={Aa ,Ab ,Ba ,Bb ,Ca ,Cb }。
这样表示的含义,以策略Bb 为例,表示的是参与人1在第一个信息集选行动B ,第二个信息集选行动b 。
同理,参与人2有两个信息集的策略集可以表示为S 2={lL ,lR ,rL ,rR }支付函数的确定确定了一个策略组合,就确定了相关路径。
通过对相关路径结果的分析,就可以确定参与人在该策略组合下的支付值。
以Aa VS lL 为例,这个策略组合确定的路径为所以在策略组合{Aa , lL }对应的支付向量为(4,1)参与人1的策略集为S 1={Aa ,Ab ,Ba ,Bb ,Ca ,Cb },参与人2的策略集为S 2={lL ,lR ,rL ,rR }支付函数的确定分析策略组合{Ca , lL }对应的博弈路径。
参与人在博弈开始首先选择行动C ,然后到达虚拟参与人结点Chance 。
在Chance 点,两条路径出现的概率分别为1/4和3/4,对应的支付向量分别为(0, 0)和(8, 8)。
博弈模型扩展式-回复什么是博弈模型扩展式?博弈模型扩展式是指在传统的博弈模型基础上,通过增加相关规则、参与者或策略等因素,对博弈模型进行扩展和延伸的一种理论框架。
扩展式的博弈模型可以更好地描述现实世界中的复杂决策场景,使得博弈论在经济学、管理学、政治学等领域的应用更为广泛。
一、基础的博弈模型在介绍博弈模型扩展式之前,我们先简要回顾一下基础的博弈模型。
基础的博弈模型主要由参与者、策略和收益函数构成。
参与者根据收益函数和其他参与者的策略来选择自己的策略,并且最终根据收益函数来分配收益。
传统的博弈模型包括纳什均衡、博弈矩阵和博弈树等。
但是这些模型在描述现实中一些复杂情况时存在局限性。
二、增加的参与者在博弈模型中,我们可以通过增加参与者的数量来扩展博弈模型。
通常,博弈模型中的参与者被视为独立决策实体,他们根据自己的利益来选择策略。
然而,在现实生活中,存在许多博弈模型中没有考虑到的共同利益或合作关系。
因此,将更多的参与者纳入博弈模型可以更好地反映出现实情况中的决策情景。
例如,在环境保护领域的博弈中,传统模型只考虑了公司在追求利润最大化的同时对环境的影响。
然而,在现实中,政府和非政府组织等参与者对环境保护同样关注。
因此,我们可以通过增加政府和非政府组织等参与者,构建一个多参与者博弈模型,以更好地分析环境保护政策的制定和实施。
三、引入动态策略除了增加参与者,我们还可以通过引入动态策略来扩展博弈模型。
在传统的博弈模型中,参与者只能在某个时刻选择自己的策略,并且这个选择是一次性的,不可更改的。
然而,在现实生活中,很多决策是连续的,参与者可以根据其他参与者的策略变化来调整自己的策略。
例如,在股市投资中,投资者的决策往往是连续的,他们会根据市场走势和其他投资者的行为来调整自己的投资策略。
因此,我们可以通过引入动态策略,构建一个连续时间博弈模型,以更好地分析股市中的投资决策。
四、考虑不完全信息博弈模型扩展式还可以考虑参与者之间的信息不对称问题。
扩展式博弈
扩展式博弈用来描述谁在何时行动在该时点上它能做什么,它行动时知道哪些信息,以及与参与人行动相联系的最终支付。
对于扩展式博弈,一般采用博弈树的方式进行描述,博弈树的构成要素主要有结、枝、路径、信息集。
教材414页的扩展式博弈中,B有四种策略:
(1)策略(L,L):代表无论A选择L还是选择S,B都会选择L;(即如果A选择L,B会选择L;当A选择S,B也会选择L;)
(2)策略(L,S):代表如果A选择L,B会选择L;当A选择S,B会选择S;
(3)策略(S,L):代表如果A选择L,B会选择S;当A选择S,B也会选择L;
(4)策略(S,S):代表无论A选择L还是选择S,B都会选择S;(即如果A选择L,B会选择S;当A选择S,B也会选择S;)
表15.4中的支付组合都是从413页图15.3中得到的。
此内容可以参阅张维迎《博弈论与信息经济学》89-90、95-96页。