经济博弈论 第二章扩展式博弈
- 格式:pptx
- 大小:1.05 MB
- 文档页数:49
问题1:博弈方2就如何分10000元钱进行讨价还价。
假设确定了以下原则:双方提出自己要求的数额1s 和2s ,10000021≤≤s s ,。
如果设博弈方1和,1000021≤+s s ,则两博弈方的要求都得到满足,即分得1s 和2s ;但如果1000021>+s s ,则该笔钱就被没收。
问该博弈的纯策略纳什均衡是什么?如果你是其中一个博弈方,你会选择什么数额,为什么?解:112111210000()010000s s s u s s s ≤-⎧=⎨>-⎩,那么,1210000s s =-221222110000()010000s ss u s s s ≤-⎧=⎨>-⎩那么,2110000s s =-它们是同一条直线,1210000s s +=上的任意点12(,)s s ,都是本博弈的纯策略的Nash 均衡。
假如我是其中一个博弈方,我将选择15000s =元,因为(5000,5000)是比较公平和容易接受的。
它又是一个聚点均衡。
问题2:设古诺模型中有n 家厂商。
i q 为厂商i 的产量,n q q q Q +++= 21为市场总产量。
P 为市场出清价格,且已知Q a Q P P -==)((当a Q <时,否则0=P )。
假设厂商i 生产产量i q 的总成本为ii i i cq q C C ==)(,也就是说没有固定成本且各厂的边际成本都相同,为常数)(a c c <。
假设各厂同时选择产量,该模型的纳什均衡是什么?当趋向于无穷大时博弈分析是否仍然有效?解:1()ni i i j i j pq cq a c q q π==-=--∑,1,2,,i n =令20ii j j ii a c q q q π≠∂=---=∂∑,1,2,,i n =解得:***121na c q q q n -====+,2***121na c n πππ-⎛⎫==== ⎪+⎝⎭当n 趋向于无穷大时,这是一个完全竞争市场,上述博弈分析方法其实已经失效。
《博弈论:原理、模型与教程》第二部分完全信息动态博弈第6章扩展式博弈(已精细订正!)对博弈问题的规范性描述是科学、系统地分析博弈问题的基础。
前面介绍了一种常用的博弈问题描述方式—战略式博弈,虽然这种博弈模型结构简单,只要给出博弈问题的三个基本构成要素(即参与人、参与人的战略集及参与人的支付),就可完成对博弈问题的建模。
但是,由于战略式博弈假设每个参与人仅选择一次行动或行动计划(战略),并且参与人同时进行选择,因此从本质上来讲战略式博弈是一种静态模型,一般适用于描述不需要考虑博弈进程的完全信息静态博弈问题。
虽然战略式博弈也可以对动态博弈问题进行建模,但是从所得到的模型中只能看到博弈的结果,而无法直观地了解到博弈问题的动态特性。
本章将介绍一种新的博弈问题描述方式—扩展式博弈。
从扩展式博弈模型中,不仅可以看到博弈的结果,而且还能直观地看到博弈的进程。
在介绍扩展式博弈构成的基础上,还将对扩展式博弈的战略和解进行讨论。
6.1 扩展式博弈(文字描述、博弈树描述)所谓扩展式博弈(extensive form game),是博弈问题的一种规范性描述。
与战略式博弈侧重博弈结果的描述相比,扩展式博弈更注重对参与人在博弈过程中所遇到决策问题的序列结构的详细分析。
一般而言,要了解一个博弈问题的具体进程,就必须弄清楚以下两个问题:(1)每个参与人在什么时候行动(决策、选择);(2)每个参与人行动时,他所面临决策问题的结构,包括参与人行动时可供他选择的行动方案及所了解的信息(集)。
[注:行文中频繁出现的“行动”一词,有两义:其一,动词的“行动”,指选择、决策。
其二,名词的“行动”,指策略、战略、谋略、行动方案、方案。
]上述两个问题构成了参与人在博弈过程中所遇到决策问题的序列结构。
对于一个博弈问题,如果能够说清楚博弈过程中参与人的决策问题的序列结构,那么就意味着知道了博弈问题的具体进程。
定义6 – 1 扩展式博弈包括以下要素: (1)参与人集合{1,2,...,}n Γ=;(2)参与人的行动顺序,即每个参与人在何时行动;(3)每个参与人行动时面临的决策问题,包括参与人行动时可供他选择的行动方案及他所了解的信息(集); (4)参与人的支付函数,即博弈结束时每个参与人得到的博弈结果。
博弈论策略的扩展式和战略式表述下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!博弈论策略的扩展式与战略式表述:深度解析博弈论,作为经济学、社会学、心理学等领域的核心理论工具,主要研究决策者在相互影响的环境下如何做出选择。
博弈论的extensive form博弈论是研究具有相互冲突和合作元素的情境下的决策制定的数学理论。
在博弈论中,一个游戏(博弈)可以被表示为扩展式(extensive form)或标准式(normal form)。
扩展式博弈也被称为树形结构,它详细地描述了游戏的所有可能的决策过程和时间顺序。
在扩展式博弈中,每个玩家根据游戏的历史(从根节点到当前决策点的路径)做出选择。
这种表示方法允许捕捉到玩家之间的行动顺序和信息传递,非常适合描述具有时间序列和信息不完全的动态决策过程。
扩展式博弈的主要组成部分包括:1. 历史(History):历史是一个有序集合,表示从博弈的开始到当前决策点所采取的行动序列。
在扩展式博弈的树形结构中,历史从根节点开始,每个节点代表一个决策点,节点之间的路径代表了行动的历史。
2. 玩家函数(Player Function):玩家函数P(h) 定义了在历史h 之后做出决策的玩家。
在扩展式博弈中,玩家函数确保了在每一个决策点,只有一个玩家负责做出选择。
3. 纯策略(Pure Strategy):纯策略是玩家在每个决策点上可能采取的行动集合。
一个玩家在扩展式博弈中的纯策略可以被表示为一个函数,该函数将历史映射到一个具体的选择上。
4. 博弈长度(Length of the Game):博弈长度l(G) 是指从根节点到叶节点的最长路径长度,它代表了博弈的持续时间。
扩展式博弈的优点在于它能够精确地描述玩家之间的决策顺序和信息结构,但它也有可能变得非常复杂,尤其是在参与者数量多或者决策序列长的情况下。
尽管如此,扩展式博弈是分析具有时序特征和信息不完全的决策问题的有力工具,特别是在经济学、政治学、心理学和人工智能等领域。
博弈模型扩展式-回复什么是博弈模型扩展式?博弈模型扩展式是指在传统的博弈模型基础上,通过增加相关规则、参与者或策略等因素,对博弈模型进行扩展和延伸的一种理论框架。
扩展式的博弈模型可以更好地描述现实世界中的复杂决策场景,使得博弈论在经济学、管理学、政治学等领域的应用更为广泛。
一、基础的博弈模型在介绍博弈模型扩展式之前,我们先简要回顾一下基础的博弈模型。
基础的博弈模型主要由参与者、策略和收益函数构成。
参与者根据收益函数和其他参与者的策略来选择自己的策略,并且最终根据收益函数来分配收益。
传统的博弈模型包括纳什均衡、博弈矩阵和博弈树等。
但是这些模型在描述现实中一些复杂情况时存在局限性。
二、增加的参与者在博弈模型中,我们可以通过增加参与者的数量来扩展博弈模型。
通常,博弈模型中的参与者被视为独立决策实体,他们根据自己的利益来选择策略。
然而,在现实生活中,存在许多博弈模型中没有考虑到的共同利益或合作关系。
因此,将更多的参与者纳入博弈模型可以更好地反映出现实情况中的决策情景。
例如,在环境保护领域的博弈中,传统模型只考虑了公司在追求利润最大化的同时对环境的影响。
然而,在现实中,政府和非政府组织等参与者对环境保护同样关注。
因此,我们可以通过增加政府和非政府组织等参与者,构建一个多参与者博弈模型,以更好地分析环境保护政策的制定和实施。
三、引入动态策略除了增加参与者,我们还可以通过引入动态策略来扩展博弈模型。
在传统的博弈模型中,参与者只能在某个时刻选择自己的策略,并且这个选择是一次性的,不可更改的。
然而,在现实生活中,很多决策是连续的,参与者可以根据其他参与者的策略变化来调整自己的策略。
例如,在股市投资中,投资者的决策往往是连续的,他们会根据市场走势和其他投资者的行为来调整自己的投资策略。
因此,我们可以通过引入动态策略,构建一个连续时间博弈模型,以更好地分析股市中的投资决策。
四、考虑不完全信息博弈模型扩展式还可以考虑参与者之间的信息不对称问题。