第6章 扩展式博弈
- 格式:pdf
- 大小:500.20 KB
- 文档页数:62
7.3扩展式博弈扩展式博弈定义7.13扩展式博弈一个扩展式博弈Γ由下列要素组成由下列要素组成::1、 有限的有限的参与人集合参与人集合N ;2、 行动集A ,它包括所有可能的行动它包括所有可能的行动,,不必是有限的不必是有限的3、 结或者或者历史的集合历史的集合X .(1) 初始结X ∈0x ,或空的历史或空的历史。
博弈从初始结开始开始。
(2) 对于一些有限多的行动A a i ∈,每个}{\0x x X ∈采取的形式为),...,,(21k a a a x =,这里a 1,a 2…表示第一步表示第一步、、第二步第二步。
的行动的行动。
(3) 如果对于一些K>1,K>1, }{\),...,,(021x X a a a k ∈,那么那么,,}{\),...,,(0121x X a a a k ∈−一个结或一段历史只是对在博弈中迄今已被采取的行动的一个完全的描述的行动的一个完全的描述。
}),({)(X a x A a x A ∈∈≡表示在历史}{\0x X x ∈之后轮到参与人行动时的该参与人可选择的行动集后轮到参与人行动时的该参与人可选择的行动集。
4、 一个行动集A x A ⊆)(0以及在A(x 0)上的一个概率分布π被用于描述博弈中自然的行被用于描述博弈中自然的行动动。
自然总是首先行动的首先行动的,,并且只行动一次并且只行动一次,,以概率π随机的在A(x 0)中选择一个行动。
因此,}{\),...,,(021x X a a a k ∈意味着对于i=1且只有i=1i=1,,)(0x A a i ∈。
5、 终点结集合A a X a x X x E ∈∉∈≡对于一切,),({},。
每个终点结描述了由开始至结束的博弈的一个特殊的完全演变特殊的完全演变。
6、 一个函数N x E X →}){(\:0U ι,表明在属于X 的每一个决策结上那个将轮到的采取行动的每一个决策结上那个将轮到的采取行动的参与参与人。