信号与系统 第10讲
- 格式:ppt
- 大小:223.50 KB
- 文档页数:7
第10章Z变换习题10.1 试对下列和式,为保证收敛确定在r=|z|上的限制:解:(a)为了保证收敛,需满足即使和式收敛的z均满足,亦即有又因在和式中含有一个正幂项z,故z≠∞。
综上所述,使和式收敛的z的模需满足为了保证收敛,需,即满足|2z|<1,从而知使和式收敛的z的模需满足为了保证收敛,需,即|z|>1;为了保证收敛,需,即|z|>1综上所述,使和式收敛的z的模需满足r>1。
对于上式右端第二项,要保证其收敛,需,即|z|<2。
对于上式右端第三项,要保证其收敛,需,即|z|<2。
对于上式右端第四项,要保证其收敛,需,即。
对于上式右端第五项,要保证其收敛,需,即。
综上所述,要使和式收敛,z的模需满足。
10.2 设信号x[n]为利用式(10-3)求该信号的z变换,并标出对应的收敛域。
解:为使该级数收敛,需,即,于是可得10.3 设信号x[n]为已知它的z变换x(z)的收敛域是试确定在复数α和整数n0上的限制。
解:令x[n]=x1[n]+x2[n],其中x1[n]=(-1)n u[n],x2=αn u[-n-n0]于是有则X(z)=X1(z)+X2(z),1<|z|<|α|由于已知X(z)的收敛域为1<|z|<2,所以α应满足|α|=2,而n0可为任意整数。
10.4 考虑下面信号:对x(z)确定它的极点和收敛域。
解:因为,要使x(z)收敛,显然应有及,即X(z)的ROC为由于故X(z)的两个极点分别为,它们是互为共轭自两个复数极点。
10.5 对下列信号z变换的每个代数表示式,确定在有限z平面内的零点个数和在无限远点的零点个数。
解:(a)由于X(z)的分母多项式的阶数比分子多项式的阶数高1阶,所以X(z)在有限z平面上零点的个数为1(即X(z)的有限零点个数为1),同样在无穷远处的零点个数也为1。
由于x(z)的分母多项式与分子多项式有相同的阶数,所以X(z)仅有2个有限零点,而在无穷远处无零点。
由于X(z)的分母多项式的阶数比分子多项式的阶数高2阶,所以X(z)有1个有限零点,而在无穷远处有2个零点。
1.信号、信息、系统信号是随时间变化的物理量,消息是带传送的一种以收发双方事先约定的方式组成的符号,如语言、文字;信息是所接收到的未知内容的消息,即传输的信号是带有信息的。
信号是消息的表现形式,消息是信号的具体内容。
系统:若干相互关联的事物组合而成,具有特定功能的整体2.奇异信号函数本身有不连续点或其导数或积分有不连续点的叫做奇异函数,单位冲击单位阶跃3.能量信号和功率信号能量信号:信号能量非零有限,平均功率为0,。
持续时间有限的确定信号功率信号:信号能量无限,平均功率非零有限。
直流,周期,随机信号4.因果信号和非因果信号因果:仅在自变量正半轴区间,取非零值,物理可实现5.系统的特性记忆/无记忆:对自变量的每一个值,系统的输出仅取决于该时刻的输入,则为无记忆。
可逆性:不同输入,导致不同输出,则为可逆系统因果性:因果系统任何时刻的输出只取决于现在的输入和过去的输入。
t<0,h(t)=0稳定性:输入有界输出有界时不变特性:系统特性不随时间改变线性:叠加性,齐次性6.线性时不变系统线性:齐次性、可加性时不变:输出仅与输入有关,与状态无关7.起始状态、初始状态起始状态:零输入状态,指系统在激励信号加入前的状态初始状态:指系统在激励信号加入之后的状态起始状态是系统中储能元件储能的反映8.零输入响应、零状态响应零输入响应:系统输入为0,由起始状态所产生的响应,或者将之等效为电压源或者电流源即等效输入信号所产生的。
零状态响应:系统起始无储能,系统响应只由外加信号产生,线性性质:系统的响应是二者响应之和。
9.冲击响应、阶跃响应冲击响应与阶跃响应都属于零状态响应。
冲击响应:是系统在单位冲击信号激励下的响应,可以确定系统的因果性和稳定性。
冲击响应等于阶跃响应的导数,阶跃响应等于冲击响应的积分。
求法:先写出系统的微分方程,在求齐次解,再根据特征方程得到通解,根据初始条件得到系数。
10.卷积积分意义定义:在连续时间系统中,利用卷积的方法求系统的零状态响应。
第1章绪论
1.1复习笔记
本章作为《信号与系统》的开篇章节,是整个信号与系统学习的基础。
本章介绍了有关信号与系统的基本概念和术语,给出几种典型的信号和系统的表现形式,讲述了各信号与系统的特点以及信号之间的运算和转换。
通过本章学习,读者应掌握:如何判断信号类型、不同信号之间的运算、信号的分解以及系统类型的判断。
一、信号概述
1.信号的概念及分类(见表1-1-1)
表1-1-1信号的概念及分类
2.典型的连续信号(见表1-1-2)
表1-1-2典型的信号及表示形式
3.信号的运算(见表1-1-3)
表1-1-3信号的运算
4.阶跃函数和冲激函数
阶跃信号和冲激信号是信号与系统中最基础的两种信号,许多复杂信号皆可由二者或二者的线性组合表示。
具体见表1-1-4及表1-1-5。
(1)单位阶跃信号u(t)
表1-1-4单位阶跃信号u(t)
(2)单位冲激信号δ(t)
表1-1-5单位冲激信号δ(t)表示形式及性质
5.信号的分解
一个一般信号根据不同类型可分解为以下几种分量,具体见表1-1-6。
表1-1-6信号的分解
二、系统
1.系统概念及分类(见表1-1-7)
表1-1-7系统的概念及分类
系统模型如下:
输入信号经过不同系统可得到不同输出信号,具体见表1-1-8。
表1-1-8不同系统特性
1.2课后习题详解
1-1分别判断图1-2-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?
(a)
(b)
(c)
(d)
(e)
(f)。
上讲回顾由零极点图对傅里叶变换进行几何求值分析一阶、二阶系统Z变换的性质(表10.1)常用Z变换对(表10.2)信号与系统课程组© 20142大纲310.1 Z 变换定义10.2 Z 变换的收敛域10.3 Z 逆变换10.4 由零极点图对傅里叶变换进行几何求值10.5 Z 变换的性质10.6 常用Z 变换对10.7 用Z 变换分析与表征LTI 系统10.8 系统函数的代数属性与方框图表示10.9 单边z 变换信号与系统课程组10.7 利用z 变换分析和表征LTI 系统•系统函数)()(z X n x )(n h [])()(n h ZT z H =)()()()()()(z H z X z X n h n x n y =∗= : 称为系统函数/ 传递函数410.7 利用z 变换分析和表征LTI 系统5这就是LTI 系统的傅里叶分析。
即是系统的频率响应。
如果 的ROC 包括单位圆,则 和 的ROC 必定包括单位圆,以 代入,即有()()()ωωωj j j e H e X e Y ⋅= LTI 系统的性质直接与 在z 平面的特性(零极点及收敛域)相联系!信号与系统课程组•10.7.1 因果性(Causality )–一个具有有理系统函数 的DT LTI 系统是因果的,当且仅当:•(a) 收敛域必须位于最外层极点的外边,且无限远点必须在收敛域内;且•(b) 若 表示成z 的多项式之比,其分子多项式的阶次不大于分母的阶次。
)(216)(317)(n u n u n x nn ⎪⎭⎫⎝⎛−⎪⎭⎫⎝⎛=NN N N MM M M z a z a z a z a a z b z b z b z b b z D z N z X ++++++++++==−−−−112210112210)()()( NM ≤710.7 利用z 变换分析和表征LTI 系统信号与系统课程组•10.7.2 稳定性(Stability )–一个DT LTI 系统,当且仅当它的系统函数 的收敛域包括单位圆 1时,该系统稳定。