10.3 格林公式
- 格式:ppt
- 大小:1.18 MB
- 文档页数:37
§10.3 格林公式及其应用一、格林公式一元微积分学中最基本的公式 — 牛顿、莱布尼兹公式'=-⎰F x dx F b F a ab ()()()表明:函数'F x ()在区间[,]a b 上的定积分可通过原函数F x ()在这个区间的两个端点处的值来表示。
无独有偶,在平面区域D 上的二重积分也可以通过沿区域D 的边界曲线L 上的曲线积分来表示,这便是我们要介绍的格林公式。
1、单连通区域的概念设D 为平面区域,如果D 内任一闭曲线所围的部分区域都属于D ,则称D 为平面单连通区域;否则称为复连通区域。
通俗地讲,单连通区域是不含“洞”(包括“点洞”)与“裂缝”的区域。
2、区域的边界曲线的正向规定设L 是平面区域D 的边界曲线,规定L 的正向为:当观察者沿L 的这个方向行走时,D 内位于他附近的那一部分总在他的左边。
简言之:区域的边界曲线之正向应适合条件,人沿曲线走,区域在左手。
3、格林公式【定理】设闭区域D 由分段光滑的曲线L 围成,函数P x y (,)及Q x y (,)在D 上具有一阶连续偏导数,则有()∂∂∂∂Q x Py dxdy Pdx Qdy DL -=+⎰⎰⎰ (1)其中L 是D 的取正向的边界曲线。
公式(1)叫做格林(green)公式。
【证明】先证 -=⎰⎰⎰∂∂Py dxdy Pdx D L假定区域D 的形状如下(用平行于y 轴的直线穿过区域,与区域边界曲线的交点至多两点)易见,图二所表示的区域是图一所表示的区域的一种特殊情况,我们仅对图一所表示的区域D 给予证明即可。
D a x b x y x :,()()≤≤≤≤ϕϕ12[]-=-=-⎰⎰⎰⎰⎰∂∂∂∂ϕϕϕϕP y dxdy dx P y dy P x y dx D a b x x abx x 1212()()()()(,)=--⎰{[,()][,()]}P x x P x x dxabϕϕ21另一方面,据对坐标的曲线积分性质与计算法有Pdx Pdx Pdx Pdx PdxLABBCCEEA⎰⎰⎰⎰⎰=+++弧弧=+++⎰⎰P x x dx P x x dx ab ba[,()][,()]ϕϕ1200=--⎰{[,()][,()]}P x x P x x dxabϕϕ21因此 -=⎰⎰⎰∂∂Py dxdy Pdx D L再假定穿过区域D 内部且平行于x 轴的直线与的D 的边界曲线的交点至多是两点,用类似的方法可证∂∂Qx dxdy Qdx D L ⎰⎰⎰=综合有当区域D 的边界曲线与穿过D 内部且平行于坐标轴( x 轴或y 轴 )的任何直线的交点至多是两点时,我们有-=⎰⎰⎰∂∂P y dxdy Pdx D L , ∂∂Q x dxdy Qdx D L ⎰⎰⎰=同时成立。
§10.3格林公式及其应用10.3.1格林公式1.单连通区域与复连通区域若平面区域D 内任一封闭曲线围成的部分都D 属于,则称为 D 单连通区域,否则称为复连通区域。
例如:圆形区域⎭⎬⎫⎩⎨⎧<+1),(22y x y x 、上半平面{}0),(>y y x 是单连通区域;圆环区域⎭⎬⎫⎩⎨⎧<+<41),(22y x y x 、⎭⎬⎫⎩⎨⎧<+<20),(22y x y x 是复连通区域。
通俗地说,单连通域就是不含有“洞”(包括点“洞” )的区域。
2.区域D 的边界曲线C 的正向规定的 C 正向如下:当观察者沿的 C 此方向行走时,靠近 D 他的部分总在他的左侧。
例如是 D 由边界曲线1C 和2C 所围成的复连通区域,的 1C 正向是逆时针方向,的 2C 正向是顺时针方向。
3.定理1设是 D 以逐段光滑曲线为C 边界的平面闭区域,函数),(y x P 、),(y x Q 在上 D 具有一阶连续偏导数,则有dxdy yPx Q Qdy Pdx DC ⎰⎰⎰∂∂-∂∂=+)(—格林(Green )公式 其中的取正向的边界曲线是D C 。
公式(1)称为格林(Green )公式。
证明:先假设穿过区域内部 D 且平行坐标轴的直线与的 D 边界曲线的 C 交点恰好为两点。
即D 既是型的区域型的又是 Y X 。
设}),()(),{(21b x a x y y x y y x D ≤≤≤≤=,∵yP ∂∂连续, ∴=σ∂∂⎰⎰d y P D⎰⎰∂∂bax y x y dy yPdx )(2)(1dx x y x P x y x P b a)]}( ,[)]( ,[{ 12⎰-=另一方面,有⎰⎰⎰⋂⋂+=BNAAMB C dx y x P ),(dx x y x P dx x y x P abb a)]( ,[ )]( ,[ 2 1⎰⎰+=dx x y x P x y x P ba)]}( ,[)]( ,[{ 21⎰-=,∴σ∂∂-=⎰⎰⎰d yPdx y x P DC),(。