3-2对偶问题的基本定理与性质_2
- 格式:pdf
- 大小:202.58 KB
- 文档页数:13
运筹学课程讲义第一部分线性规划第一章线性规划的基本性质1.1 线性规划的数学模型一、线性规划问题的特点胜利家具厂生产桌子和椅子两种家具。
桌子售价50 元/个,椅子售价30 元/个。
生产桌子和椅子需木工和油漆工两种工种。
生产一个桌子需要木工4 小时,油漆工2小时。
生产一个椅子需要木工3 小时,油漆工1 小时。
该厂每月可用木工工时为120 小时,油漆工工时为50 小时。
问该厂如何组织生产才能使每月的销售收入最大?max z 50x1 30x24x1 3x2 1202x1 x2 50x1,x2 0 例:某工厂生产某一种型号的机床。
每台机床上需要 2.9m、2.1m、1.5m的轴,分别为1根、2根和1根。
这些轴需用同一种圆钢制作,圆钢的长度为74m。
如果要生产100台机床,问应如何安排下料,才能用料最省?二、数学模型的标准型1. 繁写形式2. 缩写形式3. 向量形式4. 矩阵形式若原模型中变量 x j 有上下界,如何化为非负变量?三、 任一模型如何化为标准型?1. 若原模型要求目标函数实现最大化,如何将其化为最小化问题?2. 若原模型中约束条件为不等式,如何化为等式?3. 若原模型中变量 x k 是自由变量,如何化为非负变量?1. 2 图解法该法简单直观,平面作图适于求解二维问题。
使用该法求解线性规划问题时,不必把原模型化为标准型。
一、 图解法步骤1. 由全部约束条件作图求出可行域2. 作出一条目标函数的等值线3. 平移目标函数等值线,作图求解最优点,再算出最优值 max z 5x 1 6x 2 7x 3x 1 5x 23x 3 15 5x 1 6x 210x 3 20 x 1 x 2 x 3 5x 1 0,x 2 0,x 3无约束令 x 1' x 1,x 3 x 3' x 3'',x 3' ,x 3'' 0, Z 1Z ' 1 1 min z ' 5x 1' 6x 2 7x 3' 7x 3'' 0x 5 Mx 6 1 x 1' 5x 2 1 11 3x 3' 3x 3'' x 4 x 6 15 1 5x 1' 6x 2 10x 3' 10x 3'' x 5 20 1 x ' x 1 ' II '' 54.Mx 7 x 1, x 2 , x 3, x 3, x 4 , x 5 ,x 6, x 7 0从图解法看线性规划问题解的几种情况1. 有唯一最优解2. 有无穷多组最优解3. 无可行解4. 无有限最优解(无界解)min z 6x1 4x?2x〔X2 13 最优解(1,0),最优值33x14x2 22x1, x20直观结论:1)线性规划问题的可行域为凸集,特殊情况下为无界域(但有有限个顶点)或空集;2)线性规划问题若有最优解,一定可以在其可行域的顶点上得到。
第二章线性规划的对偶理论与灵敏度分析一、学习目的与要求 1、掌握对偶理论及其性质 2、掌握对偶单纯形法3、熟悉灵敏度分析的概念和内容4、掌握限制常数与价值系数、约束条件系数的变化对原最优解的影响5、掌握增加新变量和增加新的约束条件对原最优解的影响,并求出相应因素的灵敏度范围6、了解参数线性规划的解法 二、课时 6学时第一节 线性规划的对偶问题一、对偶问题的提出定义:一个线性规划问题常伴随着与之配对的、两者有密切联系的另一个线性规划问题,我们将其中一个称为原问题,另一个就称为对偶问题,在求出一个问题的解时,也同时给出了另一问题的解。
应用:在某些情况下,解对偶问题比解原问题更加容易;对偶变量有重要的经济解释(影子价格);作为灵敏度分析的工具;对偶单纯形法(从一个非可行基出发,得到线性规划问题的最优解);避免使用人工变量(人工变量带来很多麻烦,两阶段法则增加一倍的计算量)。
例:某家具厂木器车间生产木门与木窗;两种产品。
加工木门收入为56元/扇,加工木窗收入为30元/扇。
生产一扇木门需要木工4小时,油漆工2小时;生产一扇木窗需要木工3小时,油漆工1小时;该车间每日可用木工总共时为120小时,油漆工总工时为50小时。
问:(1)该车间应如何安排生产才能使每日收入最大?(2)假若有一个个体经营者,手中有一批木器家具生产订单。
他想利用该木器车间的木工与油漆工来加工完成他的订单。
他就要考虑付给该车间每个工时的价格。
他可以构造一个数学模型来研究如何定价才能既使木器车间觉得有利可图而愿意为他加工这批订单、又使自己所付的工时费用最少。
解(1):设该车间每日安排生产木门x1扇,木窗x2扇,则数学模型为⎪⎩⎪⎨⎧≥≤+≤++=-0502120343056max 21212121x x x x x x x zX*=(15,20)’ Z*=1440元解(2):设y 1为付给木工每个工时的价格,y 2为付给油工每个工时的价格⎪⎩⎪⎨⎧≥≥+≥++=-0303562450120min 21212121y y y y y y y wY*=(2,24)’ W*=1440元将上述问题1与问题2称为一对对偶问题,两者之间存在着紧密的联系与区别:它们都使用了木器生产车间相同的数据,只是数据在模型中所处的位置不同,反映所要表达的含义也不同。
(1)对称性:对偶问题的对偶是原问题MaxZ CX AX b X =⎧≤⎨≥⎩MinS Yb YA C Y =⎧≥⎨≥⎩--,--,0MinS Yb YA C Y =≤≥证明:变换对偶问题模型ax 0M S YbYA C Y =−⎧−≤−⎨≥⎩MinZ CX AX b X =−⎧−≥−⎨≥⎩MaxZ CX AX b X =⎧≤⎨≥⎩2.3 对偶问题的性质b Y X C ≤(2)弱对偶性:若是原问题的可行解,是对偶问题的可行解,则存在有XY 证明:MaxZ CXAX b X =⎧≤⎨≥⎩MinS Yb YA C Y =⎧≥⎨≥⎩因是原问题的可行解,是对偶问题的可行解,所以有:XY ;Y AX Yb Y AX C X≤≥b Y X C ≤•弱对偶性的图形解释MinS=b Y最优目标MaxZ=XC(3)可行解是最优解的性质:若是原、对的可行解,当Y Xˆ,ˆ b Y X C ˆˆ= 则:是最优解Y X ˆ,ˆ b Y MinS =最优XC MaxZ =b Y XC ˆˆ=(4)对偶定理若原问题有最优解,那么对偶问题也有最优解,且原问题与对偶问题最优目标函数值相等。
1ˆ−=B C Y B01≤−−A B C C B()()XA B C C b B C X B C C X N B C C X B B C C b B C X B C C X N B C C b B C X C X C X B C NX B C b B C X C X C X C X X X C C C CX Z X B NX B b B X b X X X I N B AX B B S B S N B N B B B B SB S N B N B SS N N S B N B B S S N N B B S N B S N B SN B S N B )()()()()()(111111111111111−−−−−−−−−−−−−−−−+=−+−+−+=−+−+=++−−=++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==−−==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=01≤−−A B C C B•检验数的推导:(5)互补松弛性:若分别是原问题和对偶问题的可行解,那么当且仅当为最优解Y Xˆ,ˆ 0ˆ0ˆ==X Y X Y S S和Y X ˆ,ˆ 11ˆˆˆ0,0ˆˆˆ,0,0若则有即若即则有==>==<>=∑∑ni ijj i si j nijj i si i j yaxb x ax b xy⚫对偶变量的经济含义----影子价格资源的单位改变量引起目标函数值(Z )的改变量,通常称为影子价格(shadow price )或边际价格(marginalprice )。
对偶问题的基本定理
对偶问题的基本定理是优化理论中的一个重要结论,它描述了原问题与对偶问题之间的关系。
对于线性规划问题,它的对偶问题是将原问题的约束条件和目标函数进行转置后得到的问题。
基本定理指出,原问题和对偶问题的最优解总是相等的,并且如果一个问题有最优解,那么它的对偶问题也一定有最优解。
这个定理在优化算法的设计中有着广泛的应用,例如可以通过求解对偶问题来加速原问题的求解,或者利用对偶问题的解来获得原问题的有用信息等。
- 1 -。