自动控制原理第四
- 格式:ppt
- 大小:1.07 MB
- 文档页数:4
第四章根轨迹法4-1 根轨迹法的基本概念4-2 常规根轨迹的绘制法则4-3 广义根轨迹4-1 根轨迹法的基本概念一、根轨迹的概念根轨迹:系统中某个参数从零到无穷变化时,系统闭环特征根在s平面上移动的轨迹。
根指的是闭环特征根(闭环极点)。
根轨迹法是根据开环传递函数与闭环传递函数的关系,通过开环传递函数直接分析闭环特征根及系统性能的图解法。
K =0 s 1=0 s 2=-40 < K <1s 1 s 2为不等的负实根K =1s 1=-2 s 2=-21 < K < ∞s 1s2 实部均为-2由根轨迹可知:1)当K =0时,s 1=0,s 2=-1,这两点恰是开环传递函数的极点,同时也是闭环特征方程的极点.2)当0<K < 1 时,s 1,2都是负实根,随着k 的增长,s 1从s 平面的原点向左移,s 2从-1点向右移。
3) 当K = 1时, s 1,2= -2,两根重合在一起,此时系统恰好处在临界阻尼状态。
4) 1 <K <∞,s 1,2为共轭复根,它们的实部恒等于-2,虚部随着K 的增大而增大,系统此时为欠阻尼状态。
★在s平面上,用箭头标明K增大时,闭环特征根移动的方向,以数值表明某极点处的增益大小。
有了根轨迹图就可以分析系统的各种性能:(1)稳定性:根轨迹均在s的左半平面,则系统对所有K>0都是稳定的。
(2)稳态性能:如图有一个开环极点(也是闭环极点)s=0。
说明属于I型系统,阶跃作用下的稳态误差为0。
在速度信号V0t作用下,稳态误差为V0/K,在加速度信号作用下,稳态误差为∞。
(3)动态性能:过阻尼临界阻尼欠阻尼K越大,阻尼比ξ越小,超调量σ%越大。
由此可知:1、利用根轨迹可以直观的分析K的变化对系统性能的影响。
2、根据性能指标的要求可以很快确定出系统闭环特征根的位置;从而确定出可变参数的大小,便于对系统进行设计。
由以上分析知:根轨迹与系统性能之间有着密切的联系,但是,高阶方程很难求解,用直接解闭环特征根的办法来绘制根轨迹是很麻烦的。
第4章 根 轨 迹 法根轨迹法是分析和设计线性控制系统的图解方法,使用简便,在控制工程上得到了广泛应用。
本章首先介绍根轨迹的基本概念,然后重点介绍根轨迹绘制的基本法则,在此基础上,进一步讨论广义根轨迹的问题,最后介绍控制系统的根轨迹分析方法。
4.1 根轨迹的基本概念4.1.1 根轨迹概念所谓根轨迹,就是系统开环传递函数的某一参数从零变化到无穷时,闭环特征根在s 平面上变化的轨迹。
例如某控制系统的结构图如图4.1所示。
图4.1 控制系统其开环传递函数为()K (0.51)KG s s s =+其闭环传递函数为22()22Ks s s KΦ=++式中:K 为系统开环增益。
于是闭环特征方程可写为2220s s k ++=对上式求解得闭环特征根为1,21s =−令开环增益K 从零变化到无穷,利用上式求出闭环特征根的全部数值,将这些值标注在s 平面上,并连成光滑的粗实线,如图4.2所示,该粗实线就称为系统的根轨迹。
箭头表示随K 值增加根轨迹的变化趋势。
这种通过求解特征方程来绘制根轨迹的方法,称之为解析法。
画出根轨迹的目的是利用根轨迹分析系统的各种性能。
通过第3章的学习知道,系统第4章 根轨迹法·101··101·特征根的分布与系统的稳定性、暂态性能密切相关,而根轨迹正是直观反应了特征根在复平面的位置以及变化情况,所以利用根轨迹很容易了解系统的稳定性和暂态性能。
又因为根轨迹上的任何一点都有与之对应的开环增益值,而开环增益与稳态误差成反比,因而通过根轨迹也可以确定出系统的稳态精度。
可以看出,根轨迹与系统性能之间有着比较密切的联系。
图4.2 控制系统根轨迹4.1.2 根轨迹方程对于高阶系统,求解特征方程是很困难的,因此采用解析法绘制根轨迹只适用于较简单的低阶系统。
而高阶系统根轨迹的绘制是根据已知的开环零、极点位置,采用图解的方法来实现的。
下面给出图解法绘制根轨迹的根轨迹方程。
第四章 根轨迹法教学时数:10学时 教学目的与要求:1. 正确理解开环零、极点和闭环零、极点以及主导极点、偶极子等概念。
2. 正确理解和熟记根轨迹方程(模方程及相角方程)。
熟练运用模方程计算根轨迹上任一点的根轨迹增益和开环增益。
3. 正确理解根轨迹法则,法则的证明只需一般了解,熟练运用根轨迹法则按步骤绘制反馈系统K 从零变化到正无穷时的闭环根轨迹。
4. 正确理解闭环零极点分布和阶跃响应的定性关系,初步掌握运用根轨迹分析参数对响应的影响。
能熟练运用主导极点、偶极子等概念,将系统近似为一、二阶系统给出定量估算。
5. 了解绘制广义根轨迹的思路、要点和方法。
教学重点:根轨迹与根轨迹方程、绘制根轨迹的基本法则、广义根轨迹、系统闭环零、极点分布与阶跃响应的关系、系统阶跃响应的根轨迹分析。
教学难点:根轨迹基本法则及其应用。
闭环控制系统的稳定性和性能指标主要有闭环系统极点在复平面的位置决定,因此,分析或设计系统时确定出闭环极点位置是十分有意义的。
根轨迹法根据反馈控制系统的开、闭环传递函数之间的关系,直接由开环传递函数零、极点求出闭环极点(闭环特征根)。
这给系统的分析与设计带来了极大的方便。
§4-1 根轨迹与根轨迹方程一、根轨迹定义:根轨迹是指系统开环传递函数中某个参数(如开环增益K )从零变到无穷时,闭环特征根在s 平面上移动的轨迹。
当闭环系统为正反馈时,对应的轨迹为零度根轨迹;而负反馈系统的轨迹为180︒根轨迹。
例子 如图所示二阶系统,系统的开环传递函数为:()(0.51)K G s s s =+图4-1 二阶系统结构图开环传递函数有两个极点120,2p p ==-。
没有零点,开环增益为K 。
闭环传递函数为:2()2()()22C s K s R s s s K φ==++闭环特征方程为: 2()220D s s s K =++= 闭环特征根为:1211s s =-+=--从特征根的表达式中看出每个特征根都随K 的变化 而变化。
自动控制原理第四章答案在自动控制原理的学习中,第四章是一个重要的环节,本章主要讲解了控制系统的稳定性。
在这一章节中,我们将学习如何分析控制系统的稳定性,并且掌握相应的解决方法。
接下来,我将为大家详细介绍第四章的内容及答案。
1. 什么是控制系统的稳定性?控制系统的稳定性是指当系统受到干扰时,系统能够保持平衡状态或者在一定的范围内回到平衡状态的能力。
在控制系统中,稳定性是一个非常重要的指标,它直接关系到系统的可靠性和性能。
2. 如何分析控制系统的稳定性?要分析控制系统的稳定性,我们通常采用的方法是利用系统的传递函数进行分析。
通过传递函数的极点和零点,我们可以判断系统的稳定性。
另外,我们还可以利用根轨迹法、Nyquist法、Bode图等方法进行分析。
3. 控制系统的稳定性解决方法有哪些?针对不同的稳定性问题,我们可以采取不同的解决方法。
比如,对于系统的根轨迹出现在右半平面的情况,我们可以采取根轨迹设计法进行修正;对于系统的相位裕度不足的情况,我们可以采取相位裕度补偿的方法进行调整。
4. 控制系统的稳定性分析在工程中的应用。
控制系统的稳定性分析在工程中有着广泛的应用,比如在飞行器、汽车、机器人等自动控制系统中,稳定性分析是至关重要的。
只有保证了系统的稳定性,才能确保系统的可靠性和安全性。
5. 总结。
通过本章的学习,我们对控制系统的稳定性有了更深入的了解。
掌握了稳定性分析的方法和解决方案,我们可以更好地应用于工程实践中,提高系统的性能和可靠性。
希望本文的内容能够帮助大家更好地理解自动控制原理第四章的内容,并且在学习和工程实践中取得更好的成绩。
自动控制原理第四版刘文定介绍《自动控制原理第四版刘文定》是一本经典的自动控制原理教材。
本书由刘文定教授编著,是自动控制领域的权威人物。
本书深入浅出地介绍了自动控制的基本原理和方法,适合作为自动化、电气工程、机械工程等专业的教材。
内容概述本书共分为十个章节,下面简要概括每个章节的内容:第一章:引言本章介绍了自动控制的基本概念和发展历史,以及自动控制在工程和科学研究中的重要性。
同时还介绍了本书的组织结构和学习方法。
第二章:数学建模与系统辨识本章介绍了自动控制系统的数学建模方法,包括微分方程建模、传递函数建模和状态空间建模。
同时还介绍了系统辨识的基本概念和方法。
第三章:传递函数与频域分析本章介绍了传递函数的概念以及传递函数的常见性质。
同时还介绍了频域分析的基本方法,包括频率响应和极坐标图。
第四章:控制系统的稳定性分析本章介绍了控制系统稳定性的概念和判据。
主要包括Routh-Hurwitz稳定性判据、Nyquist稳定性判据和Bode稳定性判据。
第五章:时域分析与设计方法本章介绍了控制系统的时域分析方法,包括单位脉冲响应、单位斜坡响应和阶跃响应。
同时还介绍了控制系统的根轨迹和根轨迹设计方法。
第六章:根轨迹与频率响应方法本章继续介绍了根轨迹方法和频率响应方法。
主要包括极点配置法、根轨迹分析法和频率响应设计法。
第七章:PID控制器本章介绍了最常用和实用的控制器——PID控制器。
内容包括PID控制器的基本原理、参数调节方法和在实际应用中的设计。
第八章:校正器和灵敏度本章介绍了校正器和灵敏度的概念及其在控制系统中的作用。
内容包括校正器的设计方法和对灵敏度的调节。
第九章:状态空间分析与设计本章介绍了状态空间分析和设计方法。
内容包括状态空间模型、状态转移矩阵和状态观测器设计。
第十章:现代控制理论本章介绍了现代控制理论中的一些重要概念和方法,包括模糊控制、自适应控制和神经网络控制等。
总结《自动控制原理第四版刘文定》是一本很好的自动控制原理教材,涵盖了自动控制的基本原理和方法,并介绍了一些现代控制理论的概念。