G k(s)
, 例 4 6 s1 s 0 P ' ) 0.3333 (s 0 s(s 1)(s 2)
2
Kg
P(s 0 )
已 求 : P(s) 3s 6s 2, P(-1) -1 0,P(0) 2 0,故 实 轴 [ 1,0]段 必 有 分 离 点 . 另 在 [ 1,0]区 段 : P (s) 6s 6 0,
§4-2 绘制根轨迹的基本法则 (一、二、三、四)
CASE.SCUT
五.实轴上的根轨迹:实轴根轨迹区 θ 180 (2k 1) , 段其右方实数极点个数、实数零 nm n m 点个数总和应为奇数; ( p j ) ( zi ) 六.根轨迹的渐近线: j 1 i 1 当n>m,Kg→∞时,有n-m条根轨迹 σ a nm 分支沿着与正实轴夾角θ, 截距为式中k 0,1,2, ,n m 1 σa的一组渐近线趋于无穷远处:
2.幅值条件 求K g
: s 2的K g
(s p )
j
n
(s z )
i i1
j1 m
s 2 p1 s 2 p 2 0.5 j 0 0.5 j 1 1.118 1.118 1.25
利用MATLAB进行控制 系统分析 四绘制根轨迹图 例4-27.exp412140.m num=1;den=[1 5 8 6 0];
s平面上满足相角条件 方程的一切点, 都是 对应不同K g 值的闭环特征根, 即根轨迹, 所以 相角条件是确定根轨迹的充要条件。
•
CASE.SCUT §4-1-4幅值条件方程和相角条件方程的应用 例4-2,例4-3
1.相角条件 求根轨迹