倒易空间和波矢空间
- 格式:docx
- 大小:11.47 KB
- 文档页数:2
倒易点阵将空间点阵(真点阵或实点阵)经过倒易变换,就得到倒易点阵。
倒易点阵的外形也很象点阵,但其上的节点是对应着真点阵的一组晶面。
倒易点阵的空间称为倒易空间。
倒易点阵与正点阵的关系真点阵中的一组晶面(hk l),在倒易空间中将用一个点Phkl表示(如图所示),点子与晶面有倒易关系,关系为:点子取在(hkl)的法面上,且Phkl点到倒易点阵原点的距离与(hkl)面间距反比.从原点到Ph kl点矢量Hhkl称为倒易矢量,其大小Hhk l=k/dh kl式中k 为比例常数,在多数场合下取作1,但很多时候亦可令之等于X射线的波长.倒易点阵的性质1.倒易矢量r垂直于正点阵的H KL晶面2.倒易矢量长度r等于HKL晶面的面间距d HKL的倒数倒易点阵将空间点阵(真点阵或实点阵)经过倒易变换,就得到倒易点阵。
倒易点阵的外形也很象点阵,但其上的节点是对应着真点阵的一组晶面。
倒易点阵的空间称为倒易空间。
倒易点阵与正点阵的关系真点阵中的一组晶面(hk l),在倒易空间中将用一个点Phkl表示(如图所示),点子与晶面有倒易关系,关系为:点子取在(hkl)的法面上,且Phkl点到倒易点阵原点的距离与(hkl)面间距反比.从原点到Ph kl点矢量Hhkl称为倒易矢量,其大小Hhk l=k/dh kl式中k 为比例常数,在多数场合下取作1,但很多时候亦可令之等于X射线的波长.倒易点阵的性质1.倒易矢量r垂直于正点阵的H KL晶面2.倒易矢量长度r等于HKL晶面的面间距d HKL的倒数布里渊区就是由晶体倒格矢中垂面在倒易空间中分割出来的一个个区域。
所以会有第一布里渊区,直至第n布里渊区。
其物理意义在于每个布里渊区代表了一个能带,布里渊区边界就是能带边界。
固体的能带理论中,各种电子态按照它们波矢的分类。
在波矢空间中取某一倒易阵点为原点,作所有倒易点阵矢量的垂直平分面,这些面波矢空间划分为一系列的区域:其中最靠近原点的一组面所围的闭合区称为第一布里渊区;在第一布里渊区之外,由于一组平面所包围的波矢区叫第二布里渊区;依次类推可得第三、四、…等布里渊区。
倒易空间、波矢与衍射条件2009-10-09 13:07倒易空间、波矢与衍射条件1. 傅立叶展开与倒易空间我们知道,晶体具有周期性的结构,由此使得其许多性质在某些方向上也具有周期性,例如原子核的位置的周期性排列产生了周期性的离子实势场。
因此,如果要研究晶体中的电子的运动,就必须要研究这种周期性的离子实势场。
所以,我们首先要处理的就是周期性函数。
而傅立叶(Fourier, 1768~1830)在他的1807年的论文《固体中的热传导》中所提出傅立叶级数方法就是处理周期性函数的强大工具。
值得一提的是,这个方法在当时曾引起争议,Lagrange、Laplace 一直持保留态度。
后来经过Poisson、Cauchy,直至Dirichlet的努力,傅立叶的方法才最终令人信服地被人接受。
对于一个三维周期性函数u(r)(周期为T=n1a1+ n2a2+ n3a3),即:u(r) = u(r + T)这里,r是实数自变量,可以用来表示三维实空间的坐标。
那么如果将u(r)展开成傅立叶级数,其形式为:u(r) = S G u G exp(i G·r)其中,G是与实空间中的周期性矢量T相关联的一组矢量,它是如下定义的:构成T的三个基矢量a1、a2和a3张成了三维实空间,与此做类比,我们定义与实空间互为“倒易”(reciprocal)的空间,它由三个倒易基矢量b1、b2和b3张成的,即G=k1b1+ k2b2+ k3b3。
而倒易基矢量由如下倒易关系给出:b1 = 2π (a2×a3/ a1·a2×a3)b2 = 2π(a3×a1/ a2·a3×a1)b3 = 2π(a1×a2/ a3·a1×a2)之所以如此定义,是因为这样就能使互为倒易的两组基矢量之间满足如下的漂亮关系:a i·b j= 2πδij这是很好理解的,因为在b1、b2和b3的定义式中(a1·a2×a3)就是基矢量a1、a2和a3围成的平行六面体的体积,而(a2×a3)就是这个平行六面体的底面积,因此(a2×a3/ a1·a2×a3)就是这个平行六面体垂直于a2和a3所在平面的高的倒数,可见,b1的方向沿着这条高,其长度为这条高的倒数乘以2π。
第一章 半导体中的电子状态1. 如何表示晶胞中的几何元素?规定以阵胞的基矢群为坐标轴,即以阵胞的三个棱为坐标轴,并且以各自的棱长为单位,也称晶轴。
2. 什么是倒易点阵(倒格矢)?为什么要引入倒易点阵的概念?它有哪些基本性质?倒格子:倒格子空间实际上是波矢空间,用它可很方便地将周期性函数展开为傅里叶级数,而傅里叶级数是研究周期性函数的基本数学工具。
3. 波尔的氢原子理论基本假设是什么?(1)原子只能处在一系列不连续的稳定状态。
处在这些稳定状态的原子不辐射。
(2)原子吸收或发射光子的频率必须满足。
(3)电子与核之间的相互作用力主要是库仑力,万有引力相对很小,可忽略不计。
(4)4. 波尔氢原子理论基本结论是什么?(1) 电子轨道方程:0224πεe r mv = (2) 电子第n 个无辐射轨道半径为:2022meh n r n πε= (3) 电子在第n 个无辐射轨道大巷的能量为:222042821hn me mv E n n ε== 5. 晶体中的电子状态与孤立原子中的电子状态有哪些不同?(1)与孤立原子不同,由于电子壳层的交迭,晶体中的电子不再属于某个原子,使得电子在整个晶体中运动,这样的运动称为电子共有化运动,这种运动只能在相似壳间进行,也只有在最外层的电子共有化运动才最为显著。
(2)孤立原子钟的电子运动状态由四个量子数决定,用非连续的能级描述电子的能量状态,在晶体中由于电子共有化运动使能级分裂为而成能带,用准连续的能带来描述电子的运动状态。
6. 硅、锗原子的电子结构特点是什么?硅电子排布:2262233221p s p s s锗电子排布:22106262244333221p s d p s p s s价电子有四个:2个s 电子,2个p 电子。
7. 硅、锗晶体能带是如何形成的?有哪些特点?(1) 当硅、锗组成晶体后,由于轨道杂化的结果,其4个价电子形成sp 3杂化轨道。
(2)Sp 3杂化轨道能级平均分裂成上下两个能带,中间隔一禁带,着两个能带都分别包含2n 个状态,并不和s 能级(n 态)和p 能级(3n 态)相对应。
倒易空间和波矢空间
倒易空间和波矢空间在固体物理学研究中扮演着重要的角色。
本文将分别介绍这两种空间的概念、性质及其在固体物理学中的应用。
一、倒易空间
倒易空间是晶体学中的重要概念,也叫倒格子空间,是由晶体空间分别沿着三个互相垂直的方向所取得的倒格子面组成的三维空间。
倒易空间与实空间是对偶的,其定义如下:
假设有一个空间中的周期晶体,晶格矢量为a1、a2和a3,我们将一个点P通过向该点连接三个不同的坐标轴上的原点,形成一个平行六面体。
在每个棱角上,我们垂直地连接倒晶格点,连接的线称为倒格子矢量,用向量b1、b2和b3表示。
这样就形成了一个由倒格子面组成的空间,这个空间就是倒易空间(或倒格子空间)。
倒易空间与其它物理学中的向量空间不同,因为其中的向量没有固定的起点或终点。
在倒易空间中,每个点表示一个倒格子面,而一个倒格子面的位置就由其倒格子矢量来决定。
倒易空间中的晶体结构即为倒格子结构。
倒易空间具有以下性质:
1. 倒易空间的晶格矢量为倒格子的倒数。
2. 在倒易空间中,原点为所有倒格子的交点,称之为倒空间原点。
3. 倒易空间是无限大的,且存在与实空间一样的点群和空间群对称性。
4. 不同晶体的倒易空间不同,同样的晶体在不同条件下有不同的倒易空间表现形式。
倒易空间在固体物理学中有广泛应用。
例如,通过研究倒易空间中的电子能带结构,可以了解晶体材料的导体性、半导体性等性质;倒易空间中的布拉格平面可以对X射线衍射、中子衍射等进行定量描述,在这些领域具有重要的应用价值。
二、波矢空间
波矢空间是描述在动量空间内的物理现象的空间。
波矢空间和倒易空间十分相似,只是在它们的定义和性质上存在微小差异。
假设有一个动量空间,其中的波矢k可以用三个互相垂直的分量(kx, ky, kz)表示。
图中所示为二维情况下的波矢空间。
波矢空间的物理意义为动量的取值范围。
在波矢空间中,物理量的取值可能会形成一些稀疏的分布,这些分布就被称为分支,对应实空间中的布里渊区。
波矢空间中的分支结构可以用来帮助解释一些固体物理系统,例如铁磁性和超导现象。
同时,通过移动波矢,也能够产生一些有趣的物理行为,例如布拉格反射和光学衍射等。
因此,波矢空间也成为了重要的研究工具。
总之,倒易空间和波矢空间在固体物理学中都扮演着非常重要的角色,能够帮助研究者更好地理解材料的性质和物理行为,为未来的研究提供了坚实的理论基础。