等比数列说课稿[1]
- 格式:doc
- 大小:83.00 KB
- 文档页数:6
等比数列的说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是等比数列。
下面我将从教材分析、学情分析、教学目标、教学重难点、教学方法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析等比数列是高中数学数列这一章节的重要内容,它不仅在数学学科中有着广泛的应用,在实际生活中也有很多体现。
等比数列与等差数列既有相似之处,又有不同特点。
通过对等比数列的学习,可以进一步深化学生对数列的理解和认识,提高学生的逻辑思维能力和数学运算能力。
本节课的教材内容包括等比数列的定义、通项公式以及等比中项等基础知识,同时也为后续学习等比数列的前 n 项和公式打下了坚实的基础。
二、学情分析学生在之前已经学习了等差数列,对数列的基本概念和研究方法有了一定的了解,具备了一定的观察、分析和归纳能力。
但是,等比数列的概念和性质相对较为抽象,学生在理解和应用上可能会存在一定的困难。
因此,在教学过程中,要注重引导学生通过具体的实例来理解等比数列的概念,通过逐步推导来掌握通项公式等重要内容。
三、教学目标1、知识与技能目标理解等比数列的定义,能够准确判断一个数列是否为等比数列。
掌握等比数列的通项公式,并能熟练运用公式解决相关问题。
了解等比中项的概念,会求两个数的等比中项。
2、过程与方法目标通过对等比数列概念的探究,培养学生观察、分析、归纳和推理的能力。
通过通项公式的推导,让学生体会从特殊到一般的数学思想方法。
3、情感态度与价值观目标让学生感受数学的严谨性和逻辑性,培养学生勇于探索、敢于创新的精神。
引导学生体会数学与实际生活的紧密联系,提高学生学习数学的兴趣。
四、教学重难点1、教学重点等比数列的定义和通项公式。
2、教学难点等比数列通项公式的推导以及等比数列性质的应用。
五、教学方法为了实现教学目标,突出重点,突破难点,我将采用以下教学方法:1、讲授法通过讲解等比数列的概念、通项公式等基础知识,让学生对本节课的内容有一个系统的认识。
等比数列的概念说课稿等比数列的概念说课稿(通用5篇)在教学工作者开展教学活动前,总归要编写说课稿,说课稿有助于学生理解并掌握系统的知识。
写说课稿需要注意哪些格式呢?下面是小编收集整理的等比数列的概念说课稿(通用5篇),希望能够帮助到大家。
等比数列的概念说课稿1今天我说的课题是《等比数列及其通项公式》。
主要研究两类问题:一、等比数列内容的介绍及通项公式的推导。
二、激发学生的探索精神,培养独立思考和善于总结的优良习惯,达到新课程标准中提出的“关注学生体验、感悟和实践活动的要求”。
下面我就五个方面阐述这节课。
一、教材分析:本节授课内容为等比数列的定义及其通项公式的推导。
1、教材的地位和作用:等比数列是数列的重要组成部分,掌握了它及其通项公式,有利于进一步研究等比数列的性质及前n项和的推导以及应用,从而极大提高学生利用数列知识解决实际问题的能力。
同时,这节课的内容和教学过程对进一步培养学生观察、分析和归纳问题的能力具有重要的意义。
2、教材的处理:结合教参与学生的学习能力,我将《等比数列及其通项公式》安排了2节课时。
本节课是第一课时。
根据目前高一学生的状况以及以往的经验,发现虽然这节课的内容比较简单,但由于老师的讲解过多,导致学生丢失了很多重要的知识。
为了激发学生的学习热情,实施趣味教学,我利用一个初中自然学科中的“细胞分裂”的问题以及课本第109页的一个典故引出等比数列的定义及其通项公式。
之后,再由浅入深,由低到高地设置了三个层次的问题,逐步加深学生对等比数列及其通项公式的记忆和理解。
由此,我对教材的引入、例题、练习做了适当的补充和修改。
3、教学重点与难点及解决办法:根据学生现状、教学要求及教材内容,确立本节课的教学重点为:等比数列的定义及通项公式。
解决的办法是:归纳类比;叠乘法。
根据学生的实际情况——运用所学的知识分析、解决问题的能力校差,我把这节课的难点定为:等比数列的定义及通项公式的深刻理解。
要突破这个难点,关键在于紧扣定义,类比等差数列的相关知识,来发现解决问题的方法。
课题第3.4 等比数列(第一课时)(一)教材分析一、本节教材的地位和作用《数列》是高中代数部分的重要内容。
它既联系着函数和方程的有关知识,又为解决数列的研究性课题和高中三年级进一步学习数列的极限打下基础,更是高等数学的基础知识,具有承上启下的重要作用,因此也是高考的热点内容之一。
《等比数列》作为《数列》这一章中两个最重要的数列之一,它的研究和解决集中体现了研究《数列》问题的思想和方法。
对提高学生用函数的观点和方程的思想解决问题的能力以及提高学生分析、猜想、概括、总结、归纳的综合思维能力有着重要的作用,同时,也能大大培养学生的探索精神和参与意识,有助于将课堂教学向以学生为主体,教师为主导的方向推进。
二、教学内容:本节内容是新课教学,重点在于等比数列定义的得出和其通项公式的推导过程。
提炼“归纳法”与“累乘法”等两种求数列通项公式的方法,并能以方程的思想做指导运用等比数列的通项公式解决一些问题。
三、教学目标:知识目标:1、理解和掌握等比数列的定义;2、理解和掌握等比数列的通项公式及其推导过程和方法;3、运用等比数列的通项公式解决一些简单的问题。
能力目标:通过对等比数列定义和通项公式的探求,引导学生运用观察、类比、分析、归纳的推理方法,提高学生的逻辑思维能力,培养学生良好的思维品质。
教育目标:1、培养学生的发现意识;2、提高学生的创新意识;3、提高学生的逻辑推理能力;4、增强学生的应用意识。
教学目标确立的依据:1、数列的概念、通项公式是本章重点之一,因此作为等比数列的起始课,理所应当将等比数列的定义、通项公式、等比数列的判定和通项公式的简单运用作为教学的知识目标。
2、在全面推进素质教育的今天,从提高学生数学素质和能力出发,将目标2、目标3确定为能力目标和教育目标是必需的,同时,也是基于新教纲中关于逻辑思维能力的提高和良好个性品质培养的要求。
四、教学重点和难点:本节重点是等比数列定义、通项公式的探求及运用。
等比数列的性质说课稿一、说教材本文“等比数列的性质”在数学课程中扮演着重要的角色,是数列学习的一个重要环节。
等比数列作为数列的一种特殊形式,不仅在数学理论中具有举足轻重的地位,而且在实际生活和工作中也具有广泛的应用。
本节内容旨在让学生掌握等比数列的基本性质,并能够运用这些性质解决实际问题。
本文主要内容围绕等比数列的定义、通项公式以及性质进行展开。
首先,通过引入等比数列的概念,让学生了解等比数列的基本构成。
接着,推导出等比数列的通项公式,为后续性质的学习打下基础。
最后,着重讲解等比数列的三个重要性质:性质一,任意两项的比值相等;性质二,任意两项的乘积等于其相邻两项的乘积;性质三,等比数列的项可以分为奇数项和偶数项,且这两组项分别构成新的等比数列。
二、说教学目标学习本课,学生需要达到以下教学目标:1. 知识与技能目标:理解等比数列的定义,掌握等比数列的通项公式,能够运用等比数列的性质解决实际问题。
2. 过程与方法目标:通过自主探究、合作交流,培养学生的逻辑思维能力和解决问题的能力。
3. 情感态度与价值观目标:激发学生学习数学的兴趣,提高学生对数学美的鉴赏能力,培养学生严谨、踏实的科学态度。
三、说教学重难点本节课的教学重难点如下:1. 理解等比数列的定义,掌握等比数列的通项公式。
2. 掌握等比数列的性质,并能够运用这些性质解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
在教授本节课时,教师需要重点关注学生对等比数列性质的理解和应用,以及培养学生的数学思维能力。
同时,针对不同学生的学习情况,采取有针对性的教学方法,确保每个学生都能掌握本节课的知识点。
四、说教法在教学“等比数列的性质”这一课时,我计划采用以下几种教学方法,旨在提高教学效果,激发学生的学习兴趣,并培养学生的独立思考和解决问题的能力。
1. 启发法:- 我将通过一系列引导性问题,逐步启发学生思考等比数列的本质特征,例如:“什么是等比数列?”“等比数列中的每一项与前一项有什么关系?”通过这些问题,引导学生自主探索等比数列的定义和性质。
2.4 等比数列(第一课时)一、教材分析1.教材的地位与作用等比数列是人教A版必修五第二章第四节的内容,共分两个课时,本节是第一课时.作为本章的重要数列之一,它的主要内容包括等比数列的定义,等比数列的通项公式及其推导,以及等比数列通项公式的应用.在此之前,学生已经学习过等差数列等相关知识和类比、函数方程等思想方法,对这些知识也有了直观的认识.在这个基础上,从实例出发,通过类比等差数列得出等比数列的相关概念也就水到渠成.等比数列的研究和解决集中体现了研究数列问题的思想和方法,对提高学生猜想、分析、归纳、证明等综合思维能力有着重要的作用.学习等比数列,为学习等比数列前n项和做了相应知识的储备,并为今后学习基本不等式及其与数列的联系作铺垫,此外,它还为高中三年级进一步学习数列的极限打下基础,具有承上启下的重要作用.2.知识结构等比数列是一个简单常见的数列,本节课是第一课时,而等比数列的应用是第二课时.研究本节课内容可与等差数列进行类比,首先归纳出等比数列的定义及公比的概念,明确等比数列的限定条件,之后推导出通项公式,类比得出通项公式的一般形式(推广),进而研究其图象,再通过类比得出等比中项的定义,最后运用通项公式及其变形、推广等解决实际问题.3.教学目标通过上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,确定本节课教学目标如下:i.知识与技能(1)掌握等比数列的定义,了解公比的概念,明确等比数列的限定条件,会根据定义判断等比数列,以及了解等比中项的概念;(2)理解等比数列通项公式的推导方法,掌握其通项公式,会灵活运用通项公式求等比数列的首项、公比、项数等;(3)会运用通项公式解决某些实际问题.ii.过程与方法(1)在学习知识的过程中,结合例题与练习,进一步熟练理解及掌握等比数列的定义;(2)通过探索等比数列的通项公式及其推导过程与应用,学会观察、猜想、分析、归纳、证明等能力,并能在具体的问题情境中,发现并灵活运用数列的等比关系;(3)通过体会等比数列与等差数列等数学知识之间的联系,学会运用类比、函数方程等思想方法.iii.情感态度与价值观(1)联系生活实例,充分感受等比数列是反映现实生活的模型及其应用的广泛性,体会等比数列是来源于生活实践,并应用于生活实践的,从而提高学习兴趣;(2)在等比数列的探索和证明过程中,体会由特殊到一般的认识事物的规律,养成既善于大胆猜想又严谨求实的科学的态度.4.教学重、难点:根据学生现状及教材内容,确立本节课的教学重难点如下: 重点:等比数列的定义,等比数列的通项公式.难点:等比数列通项公式的推导,灵活运用通项公式解决实际问题.①因为等比数列的定义是基础,而等比数列的性质等相关内容都是根据定义与通项公式得出的,由此,等比数列的定义及通项公式的重要性就不言而喻,所以我把等比数列的定义与通项公式定为本节课的教学重点.②虽然在等差数列的学习中,学生已接触过不完全归纳法,但他们对不完全归纳法仍然较为不熟悉,而对于叠乘法,学生第一次接触,更是不熟悉,因而在推导过程中,需要学生有一定的观察、分析、猜想、探索、归纳等能力;此外,在不完全归纳法和叠乘法的推导证明过程中,推导证明出的通项公式的适用范围是+∈≥N n n ,2,因而当1=n 时,以上推导证明出的通项公式是否成立还须补充说明,这对于学生来说并不是一个简单易解的问题,所以通项公式的推导是难点.③由于对等比数列的综合研究离不开通项公式,它在实际生活中的应用广泛,且与函数、三角、几何、不等式等都有广泛的联系,也因此对等比数列通项公式的研究难度就加深,学生要灵活运用它来解决问题实非易事,所以通项公式的灵活运用也是本节课的难点. 二、教法分析为了更有效地突出重点,突破难点,本节课我以等比数列定义和通项公式为主线,采用启发式、合作式、探究式及讲练结合的课堂教学方法.启发式、合作式、探究式课堂教学即在教学过程中,启发引导学生以独立自主和合作交流为前提,以“等比数列定义及通项公式”为基本探究内容,通过观察问题得出猜想,进而对其进行探究分析,最后得出证明,从而在学习过程中不断强化本节课所学知识.而参照学生现有的的知识和能力,通过提问题及例题讲解与练习巩固的结合,可以激发学生的求知欲,使学生主动参与数学实践活动,并在原有知识水平的基础上,在教师的指导下发现、分析并解决问题.三、学法指导采取个人独立思考、小组合作探究等方式,引导学生对问题进行观察、猜想、分析、类比、归纳与证明,让学生自己发现等比数列的内容与特性,通过提问、讲解及练习的方式培养数学逻辑思维,使数学思想方法的培养落到实处;此外,在引导学生分析问题时,留给学生思考的余地,鼓励学生大胆质疑,动手实践,把需要解决的问题弄清楚.四、教学过程教学过程分为以下八个小环节,各部分时间安排如下:(一)创设问题情境(2分钟)“兴趣是最好的老师.”本节课由必修五第二章第四节的四个具体的实例引入:细胞分裂模型、庄子的“一尺之锤”、计算机病毒与银行利息问题.这四个实例,既让学生感受到等比数列是现实生活中大量存在的数列模型,也让学生经历了从实际问题抽象出数列模型(即新课导入环节中的四个数列)的过程.设计意图在于,培养学生从实际问题中抽象出数列模型的能力及运用数学知识解决实际问题的能力.此外,通过设置问题情境,激发学生的学习动机与探索热情.然后教师可以启发引导学生积极思考,发现问题,并以数列的形式写出上述问题的结果,为之后新课的引入做了铺垫. (二)新课导入(3分钟)本环节由教师引导学生观察通过以上四个问题得出的四个数列:并提出问题:以上数列有什么共同特点?之后启发引导学生观察数列,积极思考,发现这些数列的共同特点,即数列的后一项与前一项的比都等于同一个常数,最后由教师总结学生的结论,并进行分析.引导过程如下:2482412==== ,2141812141121==== , 2020202020120232==== ,0198.10198.1100000198.1100000198.1100000198.110000232==⨯⨯=⨯⨯ . 设计意图一:通过这样的形式,学生利用已有的知识经验及教师的引导,对等比数列有了一个模糊的印象,为学习本节内容创造了一定的条件.设计意图二:由实际问题迁移到数学问题,引出本节课的学习重点.(三)形成概念 (10分钟)1、由以上数列的共同特点,形成等比数列定义:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列. 这个常数叫做等比数列的公比,公比通常用字母q 表示.2、再以提问的形式引发学生动脑,让学生回顾之前的四个问题及四个数列的引导过程,得出等比数列定义的数学语言描述,即 ).0,0(1≠≠=+q a q a a n nn 设计意图:使学生对数学语言有了更进一步的认识,同时养成勤动脑勤思考的好习惯.3、思考题(引出等比数列定义的限定条件)如果),(1为常数q N n q a a n n ++∈=,那么数列{}n a 是否为等比数列?师生互动:以教师提问,学生小组讨论的方式,提高学生的独立思考与合作交流能力. 设计意图:通过辨析,明确了等比数列定义的限定条件,即0,0≠≠q a n ,使学生对等比数列完整的定义有了初步的认识与了解.4、基本练习判断下列数列是否为等比数列,若是,请给出它们的公比;若不是,请说明理由.在讲述完等比数列定义后,我给出以上几道判断题,让学生进行基本练习.教学互动:教师提问,学生回答.设计意图:1.加深、强化学生对定义的理解与掌握;2.复习回顾了之前所学的各种数列:无穷数列、有穷数列、递增数列、递减数列、摆动数列、常数列、等差数列等,如①②③④是无穷数列,⑤是有穷数列;①④是递增数列,⑤是递减数列,②是摆动数列,③是常数列,①②③⑤是等比数列,充分体现了温故而知新的思想;3.在判断出是否为等比数列后,让学生求出各等比数列的公比,学生可以更深刻地意识到1>q ,0<q ,1=q ,10<<q 均成立,即限定条件为0≠q .(四)循序渐进 (12分钟)I. 等比数列通项公式在理解等比数列定义的基础上提出:已知等比数列的首项1a 和公比q ,怎样写出它的通项公式?1、回忆等差数列通项公式和类比方法:等差数列通项公式 )()1(1+∈-+=N n d n a a n ;类比方法 和 → 积 → 乘方,差→ 商→ 开方(运算升级).2、由教师引导,让学生通过类比的思想方法,猜想出等比数列的通项公式:)(11+-∈⋅=N n q a a n n .3、推导与证明:(1)不完全归纳法;q a a 12=;2123q a q a a ==;312234q a q a q a a ===……).2(111≥===--n q a q a a n n n观察发现,当1=n 时,也可写成上述形式,即.011q a a =所以,对于第一项还应补充说明.此推导过程由教师引导,让学生回顾等差数列一节中的不完全归纳法的推导过程,然后以小组形式完成不完全归纳法的推导过程.由于在等差数列一节中,学生已了解到不完全归纳法推导的不严密性,因而引入另一种严密的证明方法.(2)叠乘法).2(,,,,1342312≥====-n q a a q a a q a a q a a n nn-1 相乘().211≥=-n q a a n n考虑n=1时, 上式也成立.().1+∈=N n a a n师生互动:教师提出问题,既然不完全归纳法的推导不够严密,那么还有什么方法可以严密地证明出通项公式呢.引起学生反思,之后教师启发引导,师生共同完成通项公式的严密证明过程,最后教师给出此种证明方法的名称——叠乘法.设计意图:通过师生互相合作共同完成的方式,既培养了学生的协作意识,又化解了教学难点,同时加深学生对通项公式的理解,并对叠乘法有较深的印象.(3)思考拓展题:除了以上两种方法,是否还有其它的推导证明方法?设计意图:拓宽学生的知识面,养成自主思考的习惯.为了引出本节课的其它知识点,我给出以下四个问题:II. 通项公式的推广(一般形式)问题1:等比数列通项公式是否有更一般的形式?如果首项1a 未知,如何求.n a 结合类比,引出:通过类比等差数列通项公式的推广()d m n a a m n -+=,得出等比数列通项公式的推广.m n m n qa a -= 问题2:怎么证明m n m n q a a -=? 由于刚刚已复习过类比,所以问题1以教师提问,学生回答的形式,让学生独立解决,培养学生的归纳能力与独立意识;问题2则是留给学生课后自己完成,培养其逻辑推理证明能力.(可提示学生,运用通项公式及方程思想来进行证明即可得出.)III. 通项公式的图象问题3:如何根据以下两个等比数列的通项公式画出图象:12-=n n a ,1)21(-=n n a ,你能观察出它们的图象特征吗,请给出说明. 师生互动:先给学生充分的时间,让学生自己在下面动手画图象,之后教师借助于多媒体,利用多媒体直观、形象的特点,用几何画板作出以上两个数列的图象.再让学生观察图象,进而发现通项公式与函数的关系,即表示数列{}11-n qa 中的各项的点是函数11-=x q a y 的图象上的孤立点.设计意图:启发学生用函数观点认识通项公式,由通项公式的结构特征画等比数列的图象;让学生明白等比数列是一类特殊的函数,是建立在定义域为正整数集上的函数.IV. 等比中项回顾:在等差数列一节中,除了定义、通项公式,我们还学了什么?(等差中项) 问题4:你能否通过类比等差中项猜想出等比中项?结合类比,引出:等比中项定义,即如果在a 与b 中间插入一个数G ,使b G a ,,成等比数列,那么G 叫做a 与b 的等比中项. 同样,引导学生得出数学语言描述,即.2ab G Gb a G =⇔= 设计意图:通过类比,既学习了等比中项新知识,又温习了等差中项;二者进行比较,进一步加深对这两个概念的认识.设计意图:以问题的形式引发学生主动思考,更好地掌握通项公式的推广、图象及等比中项,从而将本节课的所有知识点更好地掌握下来.(五)例题讲解 (10分钟)为巩固强化学生所学,我给出以下两道例题:1、探索解题的基本思想与方法步骤例1 若一个等比数列的第3项和第4项分别是12和18,求它的第1项和第2项.法一:利用方程思想进行求解:⎩⎨⎧==.18,123121q a q a 法二:利用公式变形来解题:.3434a a q =- 设计意图:培养学生一题多解的能力,加强学生的数学思想方法的意识,使学生学会灵活运用通项公式及方程思想来解决问题.例2 在等比数列{}n a 中,;,31,27)1(63a q a 求== .,27,3)2(342q a a a 与求若== 方法:(1)运用通项公式的推广解题:.336q a a ⋅=(2)运用等比中项解题:.4223a a a ⋅=设计意图:使学生学会运用通项公式的推广和等比中项进行解题.2、归纳解题的思想方法:(1)运用方程知三求一的思想(已知方程四个量n a n q a ,,,1中的任三个,可求出第四个量).(2)先化简变形,后代值计算.(3)若已知,,,n q a m 而1a 未知,则可以直接运用通项公式的推广公式解题.(4)若已知等比数列的第1-m 项和第1+m 项,要求第m 项,可以由等比中项立即得出. 设计意图:这一环节是帮助学生巩固所学,使学生通过例题,增强对通项公式及其推广、变形和等比中项的理解与运用,提高解决问题的能力.(六)练习巩固 (5分钟)1、 已知一个等比数列的第5项是94,公比是31-,求它的第1项. 考查内容:等比数列的通项公式,即直接运用通项公式1515-=q a a 来解题即可求出1a .2、 已知一个等比数列的第2项是10,第3项是20,求它的第1项与第4项.考查内容:等比数列通项公式,通项公式的推广,等比中项.需要强调的是,本题采用等比中项解题是最迅速最简便的方法.设计意图:讲解例题后,趁热打铁,让学生自己动手做题,既培养学以致用能力,又在例题的基础上进一步强化与巩固本节课所学重点知识.本环节以学生独立完成为主,教师个别指导为辅.(七)课堂小结 (3分钟)在这一环节,教师和学生一起回顾本节课所学内容,并总结如下:1.本节课研究了等比数列的定义,得到了通项公式(重点内容);2.注意在研究内容与方法上要与等差数列相类比(思想方法);3.用函数观点与方程思想认识通项公式,并加以应用(思想方法).之后结合以下表格,以PPT 展示给学生看,让学生对表格进行填写,帮助学生形成本节课的知识框架.注:表格黑色部分原本为空,是在学生完成后所给出的答案.设计意图:通过小结,使学生对本节课的知识形成脉络,再现本节课所要达到的教学目标.(八)作业布置(1分钟,采取分层作业布置的方式)必做题:习题2.4 A 组第1,7,8题及B 组第1题.补充题:已知在等比数列{}n a 中,65=a ,42=a ,要求用本节课所学知识求出8a 的值. 思考题:1.对于上述补充题,有没有更加简便的计算方法?2.如果{}n a 、{}n b 是项数相同的等比数列,那么{}n n b a ⋅是等比数列吗? 设计意图:①必做题:第1题的前3个小题分别考查通项公式的推广、运用通项公式求首项与公比、等比中项,第4小题则是综合运用,相对复杂一些.(1)347q a a =,这与例2的(1)题是一样的解法;(2)与例1同,运用方程思想或公式变形解题;(3)与例2的(2)题同,运用等比中项解题;(4)可直接运用方程思想解题,也可运用公式变形及推广等内容来解题.第7题考查的完全是等比中项的内容;第8题考查等比数列的定义;B 组第1题则是通项公式推广的证明,也就是之前留给学生完成的作业.②补充题:意在巩固学生对通项公式的灵活运用及考查其掌握程度.③思考题:题1是对补充题的再深入,对于题1所要求的简便方法,部分学生可能不用教就能自己发现852,,a a a 之间的特殊关系,即它们也成一个等比数列,且公比为3q ;题2考查的是等比数列的性质,这将在下一节课中学到.总结:①必做题和补充题的设置,目的在于使学生将本节课所学到的知识运用到解题中去,更好地掌握基础知识,学以致用.②思考题的设置,将学生在本节课学到的知识内容与下节课所要学的等比数列第二课时巧妙地联系衔接起来,容易激起学生的兴趣,从而主动预习下一节课内容.这使学有余力的学生在掌握基础知识的基础上能够有所提高.③有层次性地布置作业,充分培养学生各方面的能力,体现新课标的理念.五、板书设计我将未被幻灯片投影幕布遮住的部分分成两部分,并设计如下:板书设计的目的:高度浓缩本节课教学内容,加深学生对等比数列相关知识的理解与记忆;突出重点与难点,形成知识结构,且循序渐进,层层深入,有助于学生对本节课所学的等比数列进行梳理,形成清晰的脉络.六、教学评价1.评价教学目标达成度通过具体实例,创设问题情境,引入新课,学生经历了从实际问题抽象出数学模型的过程,并体会由特殊到一般的思想方法;以“定义—通项公式—公式推广—图象—等比中项”为知识脉络,渗透“类比、方程思想、函数观点”等思想方法,以学生为主体,重视知识的形成过程,重视学生学习方法、实践能力等的培养,以启发性强的提问层层深入,通过合作探究等方式完成前半节课的学习.教学目标达成度也与预期效果较为接近.2.评价学生的学习过程与教学效果本节课在创设情境、知识讲解、例题设置等多环节中,以学生为主体,教师作为引导者,激发学生学习的主动性,使他们由被动学习逐渐地变为主动学习,由自己学习到合作学习,由接受性学习变为探究性学习,较为积极地参与到学习过程中.后半节课中,有针对性地给出两道典型例题,涉及本节课几乎所有知识点;在讲解例题过程中,注意与学生互动,并观察学生的掌握程度;在讲解完例题后,大部分学生都能独立自主地完成练习,有需要的进行个别指导.通过精心设计问题,启发学生思考,促进学生知识的构建,并留给学生充分思考的时间,营造民主、平等的课堂学习氛围.在此期间,教师进一步观察学生对数学学习的态度变化,从而适当加以改变调整,提高其学习效果.。
等比数列(第1课时)说课稿各位评委、各位专家:大家好!我叫王丹,来自。
今天我说课的课题是《等比数列(第一课时)》。
下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材内容分析、教法学法分析、教学过程分析和课堂意外预案等几个方面逐一加以分析和说明。
首先,我将从教材内容进行分析。
《等比数列》位于人教版高中数学必修5第二章第4节,本节核心内容是归纳理解等比数列的概念,探索并掌握等比数列的通项公式,利用有关知识解决相应问题。
数列是高中数学的重要内容。
它不仅体现了函数的观点以及方程的思想,又为高中三年级进一步学习数列的极限打下基础,具有承上启下的重要作用。
学习等比数列对提高学生分析、猜想、概括、归纳、类比的综合思维能力有着重要的作用。
鉴于等比数列在教材中的地位及它的广泛应用。
我将等比数列的概念及等比数列的通项公式推导及应用作为本节课的重点。
学习等比数列的概念时,理解“等比”的意义以及在具体问题中抽象出等比数列模型,这往往对学生来说是比较困难的,因此我将“等比”的理解及灵活运用等比数列的定义及通项公式解决相关问题作为本节课的难点。
由于本节课的授课对象是高二学生,他们已经学习了等差数列的相关知识,抽象逻辑思维已基本形成,也具备了从实例中进行抽象概括、类比归纳、迁移、建模等数学能力,这都为本节课的学习打下了知识和能力基础。
根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,我制定如下教学目标:1,通过实例,引导学生理解等比数列的概念;探索并掌握等比数列的通项公式,能在具体的问题情境中,发现数列的等比关系,能运用等比数列的知识解决相关问题。
2,体会类比思想,方程思想以及从特殊到一般的思想,培养学生的观察,归纳能力。
3,通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的精神,严谨的科学态度,体会探究过程中的主体作用及探究问题的方法,经历解决问题的全过程。
《等比数列(第1课时)》1.教学任务分析1.1 学情分析本节课的授课对象是c班学生,数学水平参差不齐,依赖性强,接受水平一般,灵活性不够。
所以本节课采用低起点,由浅到深,由易到难逐步推动,热情地启发学生的思维,让学生在欢愉的气氛中获取知识和使用知识的水平。
1.2 教材分析1.2.1 教材地位和作用本节课是人教版《必修5》第二章第二节第一课时的内容,是在学生已经系统地学习了一种常用数列,即等差数列的概念、通项公式和前n项和公式的基础上,开始学习另一种常用数列。
教材通过日常生活中的实例,讲解等比数列的概念,通过列表,图像,通项公式来表达等比数列,把数列融于函数之中,表达了数列的本质和内涵。
等比数列的定义与通项不但是本章的重点和难点,也是高中阶段培养学生逻辑推理的重要载体之一。
1.2.2 教学目标:知识与技能:理解并掌握等比数列的定义和通项公式,并加以初步应用。
过程与方法:通过概念、公式和例题的教学,渗透类比思想、方程思想、函数思想以及从特殊到—般等数学思想,着重培养学生观察、比较、概括、归纳、演绎等方面的思维水平,并进—步培养运算水平,分析问题和解决问题的水平,增强应用意识。
情感态度与价值观:在传授知识培养水平的同时,培养学生勇于探求,敢于创新的精神,同时协助学生树立克服困难的信心,培养学生良好的学习习惯意志品质。
1.2.3教学重点和难点教学重点:等比数列、等比中项的概念的形成与深化;等比数列通项公式的推导及应用。
教学难点是:等比数列概念深化:表达它是一种特殊函数,等比数列的判定、证明及初步应用。
2.教材教法和学法分析2.1教材的处理考虑到学生的基础较差,故应稀释、放大、拉长等比数列概念的形成,展示深化过程和通项公式的推导过程,表达过程教学法。
本节着重表达等比数列概念形成的过程及通项公式的推导与使用,所以把等比中项的概念安排到第二课时教学。
2.2教材的教法遵循“教为主导,学为主体,练为主线”的教育思想,我所采用的教学方法主要是启发引导探究法,并以讨论法,讲授法相佐。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==等比数列说课篇一:等比数列说课稿等比数列(第一课时)说课稿一、地位作用数列是高中数学重要的内容之一,等比数列是在学习了等差数列后新的一种特殊数列,在生活中如储蓄、分期付款等应用较为广泛,在整个高中数学内容中数列与已学过的函数及后面的数列极限有密切联系,它也是培养学生数学能力的良好题材,它可以培养学生的观察、分析、归纳、猜想及综合解决问题的能力。
基于此,设计本节的数学思路上:利用类比的思想,联系等差数列的概念及通项公式的学习方法,采取自学、引导、归纳、猜想、类比总结的教学思路,充分发挥学生主观能动性,调动学生的主体地位,充分体现教为主导、学为主体、练为主线的教学思想二、教学目标知识目标:1)理解等比数列的概念2)掌握等比数列的通项公式3)并能用公式解决一些实际问题能力目标:培养学生观察能力及发现意识,培养学生运用类比思想、解决分析问题的能力。
三、教学重点1)等比数列概念的理解与掌握关键:是让学生理解“等比”的特点2)等比数列的通项公式的推导及应用四、教学难点“等比”的理解及利用通项公式解决一些问题。
五、教学过程设计(一)预习自学环节。
(8分钟)首先让学生重新阅读课本105页国际象棋发明者的故事,并出示预习提纲,要求学生阅读课本P122至P123例1上面。
回答下列问题1)课本中前3个实例有什么特点?能否举出其它例子,并给出等比数列的定义。
2)观察以下几个数列,回答下面问题:1111,2 ,4,8,??-1,-2,-4,-8??1,2,-4,8??-1,-1,-1,-1,??1,0,1,0??①有哪几个是等比数列?若是公比是什么?②公比q为什么不能等于零?首项能为零吗?③公比q=1时是什么数列?④q>0时数列递增吗?q<0时递减吗?3)怎样推导等比数列通项公式?课本中采取了什么方法?还可以怎样推导?4)等比数列通项公式与函数关系怎样?(二)归纳主导与总结环节(15分钟)这一环节主要是通过学生回答为主体,教师引导总结为主线解决本节两个重点内容。
《等比数列》的说课稿说课人:XX 今天我说的课题是《等比数列》。
主要研究的问题是:等比数列内容的介绍及通项公式的推导。
下面我将从以下几个方面阐述这节课。
一:说教材本节授课内容为等比数列的定义及其通项公式的推导。
我将这一环节分为三个部分,分别为:教材分析、教学目标、重点难点。
1、教材的分析与处理《等比数列》是人民教育出版社出版全日制普通高级中学教科书(必修)数学第一册(上)第三章第四节的内容。
它是数列的重要组成部分,掌握它的概念及其通项公式,有利于进一步研究等比数列的性质及前n项和的推导以及应用,从而极大提高学生利用数列知识解决实际问题的能力。
同时,这节课的内容和教学过程对进一步培养学生观察、分析和归纳问题的能力具有重要的意义。
结合教参与学生的学习能力,我将《等比数列及其通项公式》安排了2节课时。
本节课是第一课时。
2、教学目标根据教学要求,教材的地位和作用,以及学生现有的知识水平和数学能力,我把本节课的教学目的定为如下三个方面:1)知识与技能:要求学生理解等比数列的概念,掌握等比数列的通项公式,并能运用定义及其通项公式解决一些实际问题。
2)过程与方法:培养运用归纳类比的方法去发现并解决问题的能力。
通过实例,理解等比数列的概念;探索并掌握等比数列的通项公式,能在具体的问题情境中,发现数列的等比关系,提高数学建模能力。
3)情感态度与价值观:充分感受数列是反映现实生活的模型,体会数学是来源于现实生活,并应用于现实生活的,数学是丰富多彩的而不是枯燥无味的,提高学习的兴趣3、重点难点根据学生现状、教学要求及教材内容,确立本节课的教学重点为:1)理解等比数列的概念;2)掌握等比数列的通项公式;3)会根据题目已知量求解未知量。
根据学生的实际情况——运用所学的知识分析、解决问题的能力校差,我把这节课的难点定为:1)等比数列的定义及通项公式的深刻理解;2)遇到具体问题时,抽象出数列的模型和数列的等比关系,并能用有关知识解决相应问题;3)灵活应用定义式及通项公式解决相关问题。
二、说学情学生是课堂上的主体,所以,对学生的分析是上好一节课的必要条件。
所以,我将从下面几个方面对本节课的对象进行一个简要说明。
1、在认知基础上,学生在学习了等差数列等相关知识的基础上,已经对数列有了初步的认识。
2、在方法基础上,学生在学习了等差数列的基础,已经初步形成了观察、分析和归纳问题的能力。
3、而做为课堂主体的学生本身,他们适应性有所不同,大部分学生运用所学的知识分析、解决问题的能力较差。
三、说教法学法为突出重点、突破难点,使学生能达到本节课设定的教学目标,我再从教法学法上谈谈教师和学生应注意的方面。
根据目前高一学生的状况以及以往的经验,发现虽然这节课的内容比较简单,但由于老师的讲解过多,导致学生丢失了很多重要的知识。
为了激发学生的学习热情,实施趣味教学。
所以,在教法上教师应注意:1、利用故事引入课题,吸引学生的注意力,提高他们的学习热情,并通过实际生活问题的提出,拉近教学与现实的距离,激发学生呢的求知欲,调动学生参与到课程中的积极性;2、在讲解每一个知识点后,适当的对该知识点进行加深拓展,帮助学生更好的理解教学内容;3、在课程结束时,再一次的回忆本节课的知识结构,加深学生对知识的记忆。
在学法上,学生应注意:1、课程引入时,引导学生自行归纳知识特点,类比出本节课的知识概念。
以此提高学生分析问题,解决问题的能力;2、通过练习,可以帮助学生更好更快的理解记忆知识,也能让教师从中发现学生在知识上有哪些不足;3、通过小结回忆这一步骤,使学生对本节课知识进行一个概括的回忆,并教会学生建立系统的知识结构网。
四、说教学过程在分析教材、确定教学目标、合理选择教法学法的基础上,我把教学程序分为以下几个环节:温故知新、引入新课、讲授新课、巩固提高、反思拓展、布置作业1、温故知新(1)等差数列的定义是什么?(2)等差数列的通项公式及前n项和是什么?设计意图:通过复习等差数列的相关知识,类比学习本节课的内容,用熟知的等差数列内容来分散本节课的难点。
2、导入新课在教学过程中,以两个方面引入课题:(1)阿凡提与高利贷者的故事(2)实际问题。
如:国民生产总值。
引导学生通过观察、分析,类比等差数列的定义归纳得出等比数列的定义及其通项公式。
设计意图:通过故事引入吸引学生的注意,把实际问题与数学知识联系起来,让学生有更高地学习热情。
并由学生通过类比,归纳,去猜想发现等比数列的特点,进而让学生通过用递推公式描述等比数列,以此培养学生归纳总结的能力。
3、讲授新课1)通过引入时学生自行归纳总结的等比数列定义,教师进行总结,给出等比数列的正确定义,并对定义进行更深层次的挖掘和解释。
设计意图:帮助学生理解等比数列的定义。
在这一环节,每一个知识点讲授结束后,我均给出了相应的例题,而在这里,我给出了以下的练习题目:练习:判断下列数列是否是等比数列?为什么?1)1,-1,1,-1,……(是,公比为-1)2)0,2,0,2,0,……(否,任意0≠n a )3)1,3,5,7,9,……(否,前后比值不等)4)3,3,3,3,3,……(是,公比为1)5)432,,,,aq aq aq aq a .....(其中0≠a )(否,0≠q )设计意图:充分调动学生学习的主动性及学习热情,活跃课堂气氛,同时培养学生的口头表达能力和临场应变能力。
并使学生更深刻的理解等比数列的概念。
2) 对练习做出讲解评价后,进行本节课的第二个知识点,也是最后一个知识点“等比数列通项公式的证明”的讲解。
在这节课上,我将对等比数列的通项公式进行证明。
设计意图:通过证明公式让学生明白公式的由来,引导学生走出死记公式的误区。
相应的,这一知识之后,我给出的例题是:例题:1、已知等比数列的首项是-5,公比是-2,问这个数列的第几项的值为-80?解:由题意得:n a =-5*1)2(--n当n a =-80时,有,-5*1)2(--n =-80解得:n=52、一个等比数列的第3项为9,第5项为81,求它的首项和公比?解:93=a ,815=a)1(9213 ==∴q a a )2(81415 ==q a a 两式相除得:39112±=⇒=q q 则 11=a设计意图:例题一使学生进一步理解通项公式中每一个字母所代表的数学含义及它们之间的相互关系,同时培养学生的逆性思维能力,解决学生定性思维顽疾。
例题二则是让学生深刻理解等比数列定义其通项公式,并在应用过程中发现公比的取值情况。
4、巩固提高例题一:(实际问题)某市近十年的国内生产总值从2000亿元开始,每年以10%的速度增长,则第五年的国内生产总值是多少?20001=a ,q=1.1415*q a a =设计意图:把实际问题与数学知识相结合,让学生了解学习的必要性,激发学生的学习热情。
例题二:(深化问题,变式训练)已知数列为无穷等比数列,公比为q(1)将数列中的前k 项去掉,剩下一个新数列,请问,这个数列是等比数列吗?如果是,首项和公比是多少?(是,首项为11-k q a ,公比为q )(2)取出数列中所有的奇数项,组成一个新数列,这个数列是等比数列吗?如果是,首项和公比是多少?(是,首项是q a 1,公比为2q )在原数列中,每隔十项取出一项,组成一个新数列,这个数列是等比数列吗?如果是,公比是多少?(是,首项是101q a ,公比为10q )设计意图:变式训练,使学生更充分的理解等比数列的概念,本题灵活性大,能很大程度的提高学生的思维活性。
5、反思拓展教师引导,学生总结总结本节课的数学思想及主要知识结构和内容,具体如下:主要思想:类比、归纳知识结构:1、等比数列定义是什么?怎样判断一个数列是否是等比数列2、等比数列通项公式?其中每个字母所代表的含义是什么?3、等比数列应注意哪些问题?(a n ≠0、q ≠0)设计意图:为了让学生将获得的知识进一步条理化、系统化,同时培养学生的归纳总结能力及练习后进行再认识的能力6、布置作业P138页练习第二题、第四题。
设计意图:两道题目中,第二题是针对定义的理解及通项公式中字母的理解,比较基础且较容易,而第四题则是深化题,较难。
可以很好的测验出学生在知识上的不足。
五、说板书设计在讲授新课时,我将黑板的左边部分规划为记录本节课重点知识的部分,并且会一直保留,而右边部分,则是用来进行讲解例题及练习时的书写部分。
六、教学评价与反思现代数学教学观念要求学生从“学会”到“会学”转变,因此,我根据教材内容,高二学生的心理特点,遵循因材施教原则和启发性教学思想,本节课的教学策略与方法,我采用规则学习和问题解决策略,即:“案列——公式——应用”,案列为浅层次要求,使学生有概括的印象。
公式为中层次要求,由浅入深,重难点集中推导讲解,便于突破。
应用为综合要求,多角度、多情景中消化巩固所学,反馈验证本节课教学目标的落实。
在教学过程,让学生能主动去观察、猜想、发现、验证,积极动手、动口、动脑,使学生在学知识的同时形成方法。
本节课的教学设计主要有以下特点:1、整个设计依据了建构主义理论,符合学生的认知规律。
2、坚持以学生为主体,体现学生是课堂中学习的主体。
3、用探究的活动形式突破难点4、教师以引路人的身份,引导学生去探究问题发生发展的过程,把主体地位交还给学生。
5、学生积极主动的参与探索问题的情景中。